CN105606904B - 一种闪击点的确定方法 - Google Patents

一种闪击点的确定方法 Download PDF

Info

Publication number
CN105606904B
CN105606904B CN201510733620.0A CN201510733620A CN105606904B CN 105606904 B CN105606904 B CN 105606904B CN 201510733620 A CN201510733620 A CN 201510733620A CN 105606904 B CN105606904 B CN 105606904B
Authority
CN
China
Prior art keywords
lightning
point
actual
monitoring
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510733620.0A
Other languages
English (en)
Other versions
CN105606904A (zh
Inventor
王英海
徐文雷
李永福
李国梁
孟海英
曹军霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guo Wang Juxian County Shandong Province Electric Co
State Grid Corp of China SGCC
Original Assignee
Guo Wang Juxian County Shandong Province Electric Co
State Grid Corp of China SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guo Wang Juxian County Shandong Province Electric Co, State Grid Corp of China SGCC filed Critical Guo Wang Juxian County Shandong Province Electric Co
Priority to CN201510733620.0A priority Critical patent/CN105606904B/zh
Publication of CN105606904A publication Critical patent/CN105606904A/zh
Application granted granted Critical
Publication of CN105606904B publication Critical patent/CN105606904B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • G01R29/0842Measurements related to lightning, e.g. measuring electric disturbances, warning systems

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

本发明公开了一种闪击点的确定方法,先根据闪击密度的大小确定实际闪击点与监测闪击点的关系,然后根据实际现场情况选择常规法即根据雷电闪击的选择性条件进行判断,再根据雷电闪击的选择性确定实际闪击点的概率位置、根据金属导体的熔点不同确定实际闪击点的电流吻合程度;再次是进行熔痕金相综合分析并确定熔痕为闪电所为,从而确定该点为雷击点;当雷击点的高度较高且无法直接接触雷击点时,用剩磁法确定泄流通道,结合闪电定位数据一起确定雷击点,具有方法简单且精度高的优点。

Description

一种闪击点的确定方法
技术领域
本发明涉及闪击闪电监测领域,尤其涉及一种闪击点的确定方法。
背景技术
确定闪击点的基本条件是有雷电对地闪击并且有金属构件或者其它导体遭受闪击,其确定方法包括四个方面,首先是必须有雷电对地闪击,其确定方法是通过查询闪电定位仪数据,从而确定闪电的形成;其次是闪击点符合雷电对地闪击具备的选择性条件;再次是闪击点金属熔痕状况应与雷电流大小相吻合;最后是闪击熔痕应与金相分析结果相吻合。
目前,我国气象部门的闪电监测系统,采用多站定位法对雷电闪击点实施定位,但是由于定位系统的精度原因,造成实际闪击点与闪电定位仪监测闪击点(以下称“监测闪击点”)之间存在一定的距离误差。
发明内容
本发明的目的在于提供一种闪击点的确定方法,先确定实际闪击点与监测闪击点的关系,然后根据实际现场情况选择常规法或非常规法对监测闪击点进行多方判断,得出最终的实际闪击点。
为实现上述目的,本发明提供一种闪击点的确定方法,包括如下步骤:
S1、确定监测闪击点与实际闪击点的关系;
S2、采用常规法确定闪击点的位置;
S3、当闪电闪击到建筑物的尖部或者铁塔的接闪杆时,采用非常规法确定闪击点的位置。
进一步地,所述步骤S1包括:
S11、当闪击密度较小且间距较大时,实际闪击点与监测闪击点采用间距法来确定其二者的吻合度;
S12、当闪击密度较大时,根据雷电流强度确定实际闪击点。
进一步地,步骤S11包括:
S111、计算实际闪击点A与监测闪击点之间的间距:
实际闪击点A的经纬度为E1、N1,监测闪击点B点的经纬度为E2、N2,则其间距d为:
Figure GDA0000962651070000021
式中:D-闪电定位仪监测闪击点距实际闪击点的距离,m;
E2、N2-监测闪击点的经纬度,度;
E1、N1-实际闪击点经纬度,度;
S112、利用排他法对实际闪击点周边的监测闪击点进行选取,当间距d小于等于1km确定的监测闪击点即为雷电闪击点。
进一步地,步骤S12包括:
S121、先根据S11的方法确定实际闪击点周边半径1km范围内的监测闪击点;
S122、对雷击事故进行综合分析,根据雷电泄流通道与受损设备的耐冲击电压能力,结合损坏设备的雷电流、泄流通道的雷电流与闪击点的雷电流的情况,确定造成设备损坏时实际闪击点的最小雷电流。
S123、根据危害时间,对监测闪击点再进行时间筛选;当受损设备中具有时间监控设备时,在确定设备受损的时间精度时,应接近闪电定位仪监测精度;当监测闪击点仅为一点时,可确定该监测闪击点为实际闪击点,其雷电流强度为实际闪击雷电流;当有多个监测闪击点符合要求时,确定实际闪击雷电流为一区域值,其下限不小于多个监测闪击点中的最小雷电流。
进一步地,步骤S2中包括:
S21、根据雷电闪击的选择性确定实际闪击点的概率位置;
S22、根据金属导体的熔点不同确定实际闪击点的电流吻合程度。
进一步地,步骤S21包括:
根据地理位置、建筑物的形状特点、金属构件的形状特点分析雷电闪击的概率:
同一环境中,当土壤电阻率差别较小,地形基本一致时,金属构件的雷击概率大于非金属构件的雷击概率;构筑物的雷击概率大于建筑物的雷击概率;
建筑物为平房时,平房顶和坡度小雨等于1/10的屋面、檐角、女儿墙易受雷击;坡度大于1/10小于1/2的屋面则屋角、屋脊、檐角、屋檐易受雷击;坡度大于等于1/2的屋面则屋角、屋脊、檐角易受雷击;
建筑物为楼房时,楼房的楼角易遭受雷击;
建筑物和构筑物顶部高于建筑物和构筑物的凸起物体易遭受雷击。
进一步地,所述步骤S22中:
根据雷电闪击的选择性特点,在闪电定位仪所示的经纬度10米的半径范围内检查疑似雷击点;
对雷电闪击处出现融化的金属导体的最低载流量进行计算,再根据分流情况,计算流经雷电闪击处的最小雷电流,将该电流与闪电定位仪监测闪击点的检测数据比较,基本相近时,初判该处有雷电流闪击;
再进行熔痕金相综合分析并确定熔痕为闪电所为,从而确定该监测闪击点为实际闪击点。
进一步地,所述步骤S3中:
接闪的金属构件在泄流时在其周围产生电磁场,并随距离加大逐渐减小,当泄流通道附近的金属构件的剩磁量较大,并随距离加大而减小,较近距离的金属构件剩磁量较泄流通道大时,确定该监测闪击点为实际闪击点。
本发明提供的所述闪击点的确定方法,先根据闪击密度的大小确定实际闪击点与监测闪击点的关系,然后根据实际现场情况选择常规法即根据雷电闪击的选择性条件进行判断,再根据雷电闪击的选择性确定实际闪击点的概率位置、根据金属导体的熔点不同确定实际闪击点的电流吻合程度;再次是进行熔痕金相综合分析并确定熔痕为闪电所为,从而确定该点为雷击点;当雷击点的高度较高且无法直接接触雷击点时,用剩磁法确定泄流通道,结合闪电定位数据一起确定雷击点,具有方法简单且精度高的优点。
附图说明
图1为本发明的方法流程图;
图2为本发明中雷电闪击密度较小时实际闪击点与监测闪击点的关系图;
图3为本发明中雷电闪击密度较大时实际闪击点与监测闪击点的关系图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种闪击点的确定方法,包括如下步骤:
S1、确定监测闪击点与实际闪击点的关系;
S2、采用常规法确定闪击点的位置;
S3、当闪电闪击到建筑物的尖部或者铁塔的接闪杆时,采用非常规法确定闪击点的位置。
当监测闪击点的密度稀疏,同时间距较大时,实际闪击点与监测闪击点的吻合方法可采用间距法予以确定。假定实际闪击点A(请参阅图2)的经纬度为E1、N1,监测闪击点B点的经纬度为E2、N2,则其间距d为:
Figure GDA0000962651070000051
式中:D-闪电定位仪监测闪击点距实际闪击点的距离,m;
E2、N2-监测闪击点的经纬度,度;
E1、N1-实际闪击点经纬度,度。
对实际闪击点周边的监测闪击点利用排他法进行选取,删除间距大于1km的闪击点,剩余监测闪击点即为雷电闪击点。当采用ADTD探测仪实施监测时,可将筛选间距标准降低到300m。
当闪击密度较大时,根据雷电流强度确定实际闪击点,包括:
(1)确定实际闪击点A(请参阅图3)周边半径1km范围内的监测闪击点。
利用式
Figure GDA0000962651070000052
计算实际闪击点与监测闪击点间的距离,保留间距小于1km的监测闪击点。如图3中,经计算保留B1~B8,删除超过1km的C1~C7。
(2)分析事故情况,确定造成危害的最小雷电流。
对雷击事故进行综合分析,根据雷电泄流通道与受损设备的耐冲击电压能力,结合损坏设备的雷电流、泄流通道的雷电流、闪击点的雷电流等几方面的基本情况,从而确定造成设备损坏时实际闪击点的最小雷电流。
如2011年8月12日,山东某地野外务工的农民,恰遇雷雨天气,他在接触附近铁塔的瞬间造成雷击死亡。1.6m的接触12m铁塔,
经现场调查,该铁塔高30m、受害人体高1.75m、该铁塔的冲击电阻为5Ω、铁塔的电感系数为1.5μH/m,假定人体手臂的接触高度为1.6m、人体的电阻为2000Ω、人体死亡的临界雷电流为180A。造成人体死亡的电压U人体为:
U人体=iR=2000×180=360000V
而U人体=U1.6
Figure GDA0000962651070000061
Figure GDA0000962651070000062
所以
Figure GDA0000962651070000063
由此推断,造成此次雷击事故时,闪击该铁塔的最小雷电流为12.48kA。
将此雷电流作为该事故的最小雷电流来筛选监测闪击点的雷电流,自(1)款保留的监测闪击点数据中,选取雷电流强度大于最小雷电流的监测闪击点。
(3)根据危害时间,通过综合分析,确定监测闪击点。
对(2)款筛选后的监测闪击点再进行时间筛选,选择与实际闪击受害时间接近的监测闪击点。当受损设备具有时间监控设备时,在确定设备受损的时间精度时,应尽量接近闪电定位仪监测精度。
当经过“距离、最小雷电流、时间”各项指标进行筛选,剩余闪电定位仪监测点仅为一点时,可确定该监测点为实际闪击点,其雷电流强度为实际闪击雷电流。
经过筛选,当有多个监测闪击点符合要求时,无法确定其中某个监测闪击点与实际闪击点的关系,因此,在确定闪击点雷电流强度时,可确定危害雷电流为一区域值,其下限为不小于最小雷电流。
步骤S2中包括:
S21、根据雷电闪击的选择性确定实际闪击点的概率位置;
S22、根据金属导体的熔点不同确定实际闪击点的电流吻合程度。
步骤S21包括:
根据地理位置、建筑物的形状特点、金属构件的形状特点分析雷电闪击的概率:
同一环境中,当土壤电阻率差别较小,地形基本一致时,金属构件的雷击概率大于非金属构件的雷击概率;构筑物的雷击概率大于建筑物的雷击概率;
建筑物为平房时,平房顶和坡度小雨等于1/10的屋面、檐角、女儿墙易受雷击;坡度大于1/10小于1/2的屋面则屋角、屋脊、檐角、屋檐易受雷击;坡度大于等于1/2的屋面则屋角、屋脊、檐角易受雷击;
建筑物为楼房时,楼房的楼角易遭受雷击;
建筑物和构筑物顶部高于建筑物和构筑物的凸起物体易遭受雷击。
进一步地,所述步骤S22中:
根据雷电闪击的选择性特点,在闪电定位仪所示的经纬度10米的半径范围内检查疑似雷击点;
对雷电闪击处出现融化的金属导体的最低载流量进行计算,再根据分流情况,计算流经雷电闪击处的最小雷电流,将该电流与闪电定位仪监测闪击点的检测数据比较,基本相近时,初判该处有雷电流闪击;
再进行熔痕金相综合分析并确定熔痕为闪电所为,从而确定该监测闪击点为实际闪击点。
所述步骤S3中:
接闪的金属构件在泄流时在其周围产生电磁场,并随距离加大逐渐减小,当泄流通道附近的金属构件的剩磁量较大,并随距离加大而减小,较近距离的金属构件剩磁量较泄流通道大时,确定该监测闪击点为实际闪击点。
综上,本发明提供的所述闪击点的确定方法,先根据闪击密度的大小确定实际闪击点与监测闪击点的关系,然后根据实际现场情况选择常规法即根据雷电闪击的选择性条件进行判断,再根据雷电闪击的选择性确定实际闪击点的概率位置、根据金属导体的熔点不同确定实际闪击点的电流吻合程度;再次是进行熔痕金相综合分析并确定熔痕为闪电所为,从而确定该点为雷击点;当雷击点的高度较高且无法直接接触雷击点时,用剩磁法确定泄流通道,结合闪电定位数据一起确定雷击点,具有方法简单且精度高的优点。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

1.一种闪击点的确定方法,其特征在于,包括如下步骤:
S1、确定监测闪击点与实际闪击点的关系,本步骤S1包括:S11、当闪击密度较小且间距较大时,实际闪击点与监测闪击点采用间距法来确定其二者的吻合度;S12、当闪击密度较大时,根据雷电流强度确定实际闪击点;
S2、采用常规法确定实际闪击点的位置,本步骤S2包括:S21、根据雷电闪击的选择性确定实际闪击点的概率位置;S22、根据金属导体的熔点不同确定实际闪击点的电流吻合程度;
S3、当闪电闪击到建筑物的尖部或者铁塔的接闪杆时,采用非常规法确定实际闪击点的位置,本步骤S3中:接闪的金属构件在泄流时在其周围产生电磁场,并随距离加大逐渐减小,当泄流通道附近的金属构件的剩磁量较大,并随距离加大而减小,较近距离的金属构件剩磁量较泄流通道大时,确定该监测闪击点为实际闪击点。
2.根据权利要求1所述的一种闪击点的确定方法,其特征在于,步骤S11包括:
S111、计算实际闪击点与监测闪击点之间的间距:
实际闪击点的经纬度为E1、N1,监测闪击点的经纬度为E2、N2,则其间距D为:
Figure FDA0002176319330000011
式中:D-闪电定位仪监测闪击点距实际闪击点的距离,单位为m;
E2、N2-监测闪击点的经纬度,单位为度;
E1、N1-实际闪击点经纬度,单位为度;
S112、利用排他法对实际闪击点周边的监测闪击点进行选取,当间距D小于等于1km确定的监测闪击点即为实际闪击点。
3.根据权利要求2所述一种闪击点的确定方法,其特征在于,步骤S12包括:
S121、先根据S11的方法确定实际闪击点周边半径1km范围内的监测闪击点;
S122、对雷击事故进行综合分析,根据雷电泄流通道与受损设备的耐冲击电压能力,结合损坏设备的雷电流、泄流通道的雷电流与实际闪击点的雷电流的情况,确定造成设备损坏时实际闪击点的最小雷电流;
S123、根据危害时间,对监测闪击点再进行时间筛选;当受损设备中具有时间监控设备时,在确定设备受损的时间精度时,应接近闪电定位仪监测精度;当监测闪击点仅为一点时,可确定该监测闪击点为实际闪击点,其雷电流强度为实际闪击雷电流;当有多个监测闪击点符合要求时,确定实际闪击雷电流为一区域值,其下限不小于多个监测闪击点中的最小雷电流。
4.根据权利要求1所述的一种闪击点的确定方法,其特征在于,步骤S21包括:
根据地理位置、建筑物的形状特点、金属构件的形状特点分析雷电闪击的概率:
同一环境中,当土壤电阻率差别较小,地形基本一致时,金属构件的雷击概率大于非金属构件的雷击概率;构筑物的雷击概率大于建筑物的雷击概率;
建筑物为平房时,平房顶和坡度小于等于1/10的屋面,则屋面、檐角、女儿墙易受雷击;坡度大于1/10小于1/2的屋面,则屋角、屋脊、檐角、屋檐易受雷击;坡度大于等于1/2的屋面,则屋角、屋脊、檐角易受雷击;
建筑物为楼房时,楼房的楼角易遭受雷击;
建筑物和构筑物顶部高于建筑物和构筑物的凸起物体易遭受雷击。
5.根据权利要求1所述的一种闪击点的确定方法,其特征在于,所述步骤S22中:
根据雷电闪击的选择性特点,在闪电定位仪所示的经纬度10米的半径范围内检查疑似雷击点;
对雷电闪击处出现熔化的金属导体的最低载流量进行计算,再根据分流情况,计算流经雷电闪击处的最小雷电流,将该电流与闪电定位仪监测闪击点的检测数据比较,基本相近时,初判该处有雷电流闪击;
再进行熔痕金相综合分析并确定熔痕为闪电所为,从而确定该监测闪击点为实际闪击点。
CN201510733620.0A 2015-10-31 2015-10-31 一种闪击点的确定方法 Active CN105606904B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510733620.0A CN105606904B (zh) 2015-10-31 2015-10-31 一种闪击点的确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510733620.0A CN105606904B (zh) 2015-10-31 2015-10-31 一种闪击点的确定方法

Publications (2)

Publication Number Publication Date
CN105606904A CN105606904A (zh) 2016-05-25
CN105606904B true CN105606904B (zh) 2020-03-17

Family

ID=55986992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510733620.0A Active CN105606904B (zh) 2015-10-31 2015-10-31 一种闪击点的确定方法

Country Status (1)

Country Link
CN (1) CN105606904B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845188A (zh) * 2018-07-11 2018-11-20 云南电网有限责任公司电力科学研究院 一种远距离云地闪电的单站定位方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1944627A2 (fr) * 2007-01-12 2008-07-16 ABB France Réseau de surveillance d'événements orageux et procédés correspondants
CN101545777A (zh) * 2009-04-29 2009-09-30 中国气象局气象探测中心 同步双成像闪电定位方法
CN201548622U (zh) * 2009-08-12 2010-08-11 中国气象科学研究院 宽带干涉仪三维闪电辐射源定位系统
CN102646150A (zh) * 2011-02-18 2012-08-22 华东电力试验研究院有限公司 基于雷电定位信息的雷击线路风险判断方法
CN104597377A (zh) * 2015-01-16 2015-05-06 国家电网公司 输电线路雷击点与闪络点不一致时的故障测距方法
CN104655986A (zh) * 2015-02-26 2015-05-27 国家电网公司 输电线路跳闸雷击故障点判别方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1944627A2 (fr) * 2007-01-12 2008-07-16 ABB France Réseau de surveillance d'événements orageux et procédés correspondants
CN101545777A (zh) * 2009-04-29 2009-09-30 中国气象局气象探测中心 同步双成像闪电定位方法
CN201548622U (zh) * 2009-08-12 2010-08-11 中国气象科学研究院 宽带干涉仪三维闪电辐射源定位系统
CN102646150A (zh) * 2011-02-18 2012-08-22 华东电力试验研究院有限公司 基于雷电定位信息的雷击线路风险判断方法
CN104597377A (zh) * 2015-01-16 2015-05-06 国家电网公司 输电线路雷击点与闪络点不一致时的故障测距方法
CN104655986A (zh) * 2015-02-26 2015-05-27 国家电网公司 输电线路跳闸雷击故障点判别方法

Also Published As

Publication number Publication date
CN105606904A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
Ding et al. Assessment of methods for extreme value analysis of non-Gaussian wind effects with short-term time history samples
CN106950614A (zh) 一种区域自动气象站小时雨量数据质量控制方法
CN107169645B (zh) 一种计及暴雨灾害影响的输电线路故障概率在线评估方法
CN103837769B (zh) 一种输电线路雷害预警方法及其系统
WO2018019278A1 (zh) 基于小型雷达的输电线路雷电监测预警方法及存储介质
KR20140029865A (ko) 배전선로 내뢰설계 성능평가 장치 및 그 방법
CN105606904B (zh) 一种闪击点的确定方法
CN105809574A (zh) 一种结合地形参数判定线路走廊云地闪高危区段的方法
CN105116292B (zh) 线路雷击故障点定位方法及系统
CN107228652A (zh) 具有沉陷报警系统的光伏接地网
CN107797016B (zh) 一种针对输电线路雷击故障的诊断方法
Wooi et al. Cloud-to-ground lightning in Malaysia: A review study
CN113466570A (zh) 一种雷电预警方法及雷电预警设备
CN104076250A (zh) 一种分析同塔双回线路上相导线绕击及绕击跳闸率的方法
CN115796577A (zh) 一种配网雷击风险预警方法
CN110543610A (zh) 一种实时雷击输电线路风险评估方法
Lombardo et al. An Approach for Assessing Misclassification of Tornado Characteristics Using Damage
CN108493773B (zh) 基于升降式避雷针的古建筑防雷方法及系统
CN108596427B (zh) 一种输电线路雷击风险等级图的绘制方法
Hu et al. Lightning risk assessment at high spatial resolution at the residential sub-district scale: a case study in the Beijing metropolitan area
CN206074840U (zh) 一种面向电网的局部灾害性天气临近预警系统
Wang et al. Risk analysis method based on FMEA for transmission line in lightning hazards
CN112161655A (zh) 一种接闪杆状态检测方法及装置
Biswas et al. Soil resistivity, earthing and footing resistance of overhead transmission line towers
CN111665397B (zh) 基于危险度识别的古建筑防雷击方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant