CN105598465B - 荧光金纳米颗粒的制备方法和应用 - Google Patents

荧光金纳米颗粒的制备方法和应用 Download PDF

Info

Publication number
CN105598465B
CN105598465B CN201610011625.7A CN201610011625A CN105598465B CN 105598465 B CN105598465 B CN 105598465B CN 201610011625 A CN201610011625 A CN 201610011625A CN 105598465 B CN105598465 B CN 105598465B
Authority
CN
China
Prior art keywords
fluorescence
gold nanoparticle
parts
100mmol
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610011625.7A
Other languages
English (en)
Other versions
CN105598465A (zh
Inventor
张彦
高鹏飞
闫美芬
姜晶晶
双少敏
董川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN201610011625.7A priority Critical patent/CN105598465B/zh
Publication of CN105598465A publication Critical patent/CN105598465A/zh
Application granted granted Critical
Publication of CN105598465B publication Critical patent/CN105598465B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明提供了一种荧光金纳米颗粒的制备方法和应用。荧光金纳米颗粒的制备:以体积份数计,将0.2‑1.0份100mmol/L N‑乙酰基‑L‑半胱氨酸水溶液、0.2‑1.0份100mmol/L 氯金酸水溶液和0.5‑5.0份体积比为6:1的甲醇/冰醋酸溶液,搅拌1‑60min,然后向上述混合液中加入3.8‑8.3份的超纯水,搅拌并在加热温度为50‑90℃,回流2‑48h,待冷却后取出,透析干燥后,得到荧光金纳米颗粒。本发明制备工艺简单,避免了毒性较大的还原剂硼氢化钠的使用,反应条件简单,对环境友好,所制得的金纳米颗粒荧光量子产率高、Stocks位移值大,荧光寿命长,稳定性好,可用于汞离子的检测和细胞成像。

Description

荧光金纳米颗粒的制备方法和应用
技术领域
本发明涉及金纳米颗粒的制备,特别涉及一种核壳型的水溶性荧光金纳米颗粒的制备方法和应用。
背景技术
重金属污染对生态环境的危害日益加剧,重金属中毒的现象屡见不鲜,各种重金属正毒害着人类的身心,尤其是Hg、Pb、Cd和Cu的危害不容忽视,虽然环境中重金属离子的浓度不大,但是一旦它们被释放到环境后,不易被去除,在环境中长期累积,直接或间接地对人类的健康和各种生物的生存造成了威胁。因此研发出一种新型的、操作简便的、样品易处理的方法成为分析化学领域的一个热点。此外,生命科学的迅速发展还要求人们从单细胞和单分子水平上原位、活体、实时地了解物质之间的相互作用以及生命的过程。近年来新兴的单分子光学成像技术以其高的灵敏度和分辨率正好适应这一发展的要求。理想的光学探针应该具有信号强、稳定,不易发生光漂白、能够与宿主分子可控结合和化学惰性等特点。纳米材料由于其独特的光学特性、良好的生物相容性、长期稳定性、容易修饰以及良好的光学可调性等优点,在生物传感、细胞成像及癌症治疗等生物化学方面得到了广泛应用。我们之前报道的工作中(Analytical Chemistry,2009,81(4),1676–1695;分析科学学报,2013,29(5):599-604.)以N-乙酰基-L-半胱氨酸、氯金酸为反应物,甲醇/冰醋酸为溶剂制备金纳米颗粒时,需加入强还原剂硼氢化钠将氯金酸中的三价金还原为零价金,再生成金纳米颗粒,反应需分步进行,且反应中用到的强还原剂硼氢化钠强烈刺激粘膜、上呼吸道、眼睛及皮肤,吸入后可因喉和支气管的痉挛、炎症和水肿,化学性肺炎和肺水肿而致死,毒性较大。而且制得的金纳米颗粒荧光量子产率和荧光寿命短,限制了其使用范围。
发明内容
本发明要解决的技术问题是提供一种荧光金纳米颗粒的制备方法,该方法工艺简单,避免使用毒性较大的还原剂硼氢化钠,所制得的金纳米颗粒荧光量子产率高、荧光寿命长。
为解决以上技术问题,本发明采用的技术方案是:
一种荧光金纳米颗粒的制备方法,包括步骤:以体积份数计,将0.2-1.0份100mmol/L N-乙酰基-L-半胱氨酸水溶液、0.2-1.0份100mmol/L氯金酸水溶液和0.5-5.0份体积比为6:1的甲醇/冰醋酸溶液混合,搅拌1-60min,然后向上述混合液中加入3.8-8.3体积份的超纯水,搅拌并在加热温度为50-90℃,回流2-48h,待冷却后取出,透析干燥后,得到荧光金纳米颗粒。
作为优选的方案,以体积份数计,将0.4-0.6份100mmol/L N-乙酰基-L-半胱氨酸水溶液、0.4-0.6份100mmol/L氯金酸水溶液和1-3份体积比为6:1的甲醇/冰醋酸溶液混合,搅拌15-40min,向上述混合液中加入6-8体积份的超纯水,搅拌并在加热温度为60-80℃,回流12-36h。
作为更优选的方案,本发明提供的方法是将0.6mL 100mmol/L N-乙酰基-L-半胱氨酸水溶液、0.4mL 100mmol/L氯金酸水溶液和2.0mL体积比为6:1的甲醇/冰醋酸溶液,搅拌30min,然后向上述混合液中加入7.0mL的超纯水,搅拌并在加热温度为70℃,回流24h。
本发明制得的荧光金纳米颗粒可以在汞离子的检测中应用,也可以在细胞成像中应用。
与现有技术相比,本发明采用天然的生物分子N-乙酰基-L-半胱氨酸为还原剂及配体保护剂制备了一种具有良好生物相容性的核壳型水溶性荧光纳米颗粒。本发明避免了毒性较大的还原剂硼氢化钠的使用,反应条件简单,所得的荧光金纳米颗粒具有较大的Stocks位移,荧光发射峰在590nm左右,在紫外灯光下,以黑色背景观察时,呈现强烈的橙色荧光,荧光量子产率可达14%,室温保存稳定性可达6个月以上。
本发明制得的荧光金纳米颗粒探针对汞离子显示了高的灵敏性和选择性,可应用于汞离子的检测,检测限为0.2nM。此外,该水相合成的金纳米颗粒具有良好的生物相容性,高亮度及不闪烁的特征可作为较好的荧光探针用于单分子检测及生物成像领域。通过结合激光共聚焦扫描显微技术,获取了该新型荧光纳米颗粒在活细胞内的荧光成像,发展了基于纳米粒子探针的光学成像新方法以实现高灵敏、稳定、快速的生物成像。
附图说明
图1是实施例6荧光金纳米颗粒的透射电子显微镜图。
图2是实施例6荧光金纳米颗粒的紫外吸收光谱及荧光激发和发射光谱。
图3是实施例6荧光金纳米颗粒的光稳定性图。
图4是对比例荧光金纳米颗粒的紫外吸收光谱及荧光激发和发射光谱。
图5是实施例6荧光金纳米颗粒对汞离子响应的工作曲线。
图6是实施例6荧光金纳米颗粒同各种金属离子作用后的荧光柱状图。
图7是实施例6荧光金纳米颗粒的细胞成像图。
具体实施方式
实施例1
将0.2mL 100mmol/L N-乙酰基-L-半胱氨酸水溶液、1.0mL 100mmol/L氯金酸水溶液和5.0mL体积比为6:1的甲醇/冰醋酸溶液,搅拌60min,然后向上述混合液中加入3.8mL的超纯水,搅拌并在加热温度为90℃,回流48h,待冷却后取出,透析干燥后,得到荧光金纳米颗粒。该金纳米颗粒的荧光发射峰在550nm左右,Stocks位移为150nm,在紫外灯光下,以黑色背景观察时,呈现强烈的黄橙色荧光,量子产率为1.0%,荧光寿命为0.7μs。
实施例2
将0.4mL 100mmol/L N-乙酰基-L-半胱氨酸水溶液、1.0mL 100mmol/L氯金酸水溶液和4.0mL体积比为6:1的甲醇/冰醋酸溶液,搅拌50min,然后向上述混合液中加入4.6mL的超纯水,搅拌并在加热温度为80℃,回流36h,待冷却后取出,透析干燥后,得到荧光金纳米颗粒。该金纳米颗粒的荧光发射峰在560nm左右,Stocks位移为170nm,在紫外灯光下,以黑色背景观察时,呈现强烈的黄橙色荧光,量子产率为2.5%,荧光寿命为1.5μs。
实施例3
将0.4mL 100mmol/L N-乙酰基-L-半胱氨酸水溶液、0.6mL 100mmol/L氯金酸水溶液和3.0mL体积比为6:1的甲醇/冰醋酸溶液,搅拌40min,,然后向上述混合液中加入6.0mL的超纯水,继续搅拌并在加热温度为70℃,回流36h,待冷却后取出,透析干燥后,得到荧光金纳米颗粒。该金纳米颗粒的荧光发射峰在590nm左右,Stocks位移为250nm,在紫外灯光下,以黑色背景观察时,呈现强烈的橙色荧光,量子产率为6.0%,荧光寿命为6.3μs。
实施例4
将1.0mL 100mmol/L N-乙酰基-L-半胱氨酸水溶液、0.4mL 100mmol/L氯金酸水溶液和1.0mL体积比为6:1的甲醇/冰醋酸溶液,搅拌15min,然后向上述混合液中加入7.6mL的超纯水,搅拌并在加热温度为60℃,回流12h,待冷却后取出,透析干燥后,得到荧光金纳米颗粒。该金纳米颗粒的荧光发射峰在600nm左右,Stocks位移为250nm,在紫外灯光下,以黑色背景观察时,呈现强烈的橙红色荧光,量子产率为8.0%,荧光寿命为3.9μs。
实施例5
将1.0mL 100mmol/L N-乙酰基-L-半胱氨酸水溶液、0.2mL 100mmol/L氯金酸水溶液和0.5mL体积比为6:1的甲醇/冰醋酸溶液,搅拌1min,然后向上述混合液中加入8.3mL的超纯水,搅拌并在加热温度为50℃,回流2h,待冷却后取出,透析干燥后,得到荧光金纳米颗粒。该金纳米颗粒的荧光发射峰在610nm左右,Stocks位移为250nm,在紫外灯光下,以黑色背景观察时,呈现强烈的橙红色荧光,量子产率为5.0%,荧光寿命为2.4μs。
实施例6
将0.6mL 100mmol/L N-乙酰基-L-半胱氨酸水溶液、0.4mL 100mmol/L氯金酸水溶液和2.0mL体积比为6:1的甲醇/冰醋酸溶液,搅拌30min,然后向上述混合液中加入7.0mL的超纯水,搅拌并在加热温度为70℃,回流24h,待冷却后取出,透析干燥后,得到荧光金纳米颗粒。将该金纳米颗粒配置成0.1mg/mL的水溶液,滴于附有碳膜的铜网上,真空干燥后进行测试,测得荧光金纳米颗粒的粒径<2nm,如图1。把2mL的PBS缓冲液(10mmol/L)体系和200μL金纳米荧光颗粒溶液加到荧光比色皿中,测定其紫外吸收光谱及荧光激发和发射光谱,如图2所示,该金纳米颗粒的荧光发射峰在590nm左右,Stocks位移为250nm,在紫外灯光下,以黑色背景观察时,呈现强烈的橙色荧光,量子产率为14%,荧光寿命为8.5μs。将该荧光金纳米颗粒水溶液室温放置,定期检测其在590nm处的荧光强度,如图3所示,6个月后荧光强度值基本保持不变,说明该荧光金纳米颗粒对外界空气、溶液体系等具有很好的光稳定性。
对比例
本实施例作为对比实施例,与实施例6进行对比,结果如表1所示。
以疏基化合物N-乙酰基-L-半胱氨酸为配体,通过NaBH4还原HAuCl4·3H2O合成了单层配体修饰的金纳米颗粒。具体步骤如下:
称取2.27g NAC,溶解于100mL体积比为6:1的甲醇-冰醋酸混合液中。称取1.82gHAuCl4,溶解于100mL体积比为6:1的甲醇-冰醋酸混合液中。将氯金酸溶液转移至500mL的圆底烧瓶中,冰浴搅拌下向其中加入配置好的NAC甲醇-冰醋酸溶液,当溶液由金黄色变为橙色并有一些白色悬浮物时,一次性快速加入45mL含NaBH4(3.5g)的乙醇超声分散溶液,反应30min,加入200mL丙酮停止反应,离心收集沉淀。用适量水和丙酮将上述沉淀物反复溶解、沉淀并离心洗涤,再用透析膜透析以除去溶液中存在的杂质离子,干燥后得到金纳米颗粒。将该金纳米颗粒配置成0.1mg/mL的水溶液,把2mL的PBS缓冲液(10mmol/L)体系和200μL金纳米颗粒储备液加到荧光比色皿中,测定其紫外吸收光谱及荧光激发和发射光谱,如图4所示,该金纳米颗粒的荧光发射峰在740nm左右,在紫外灯光下,以黑色背景观察时,呈现暗红色荧光,量子产率为0.01%,荧光寿命为305ns。
表1
实施例7
将实施例6制备的金纳米颗粒配置成0.1mg/mL的水溶液,把2mL的PBS缓冲液(10mmol/L)体系和200μL金纳米荧光探针储备液加到荧光比色皿中,分别加入不同浓度的汞离子,以340nm为激发波长,测定其荧光光谱。随着汞离子浓度的增大,金纳米颗粒的荧光逐渐被猝灭,如图5所示,荧光强度的变化与汞离子的浓度呈现性关系,如图5插图所示,图中荧光强度的变化以F0/F表示,其中F0和F分别表示汞离子不存在和存在下金纳米颗粒的荧光强度,汞离子的检测限为2×10-10nmol/L。通过线性拟合得到了金纳米颗粒的回归方程为:Y=1.25+0.00089X,线性系数为R2=0.998,基于此该荧光金纳米颗粒可应用于各种水域如湖水、自来水、河水中汞离子的检测。
实施例8
将实施例6制备的金纳米颗粒配置成0.1mg/mL的水溶液,把2mL的PBS缓冲液(10mmol/L)体系和200μL金纳米荧光探针储备液加到荧光比色皿中,再分别加入Hg2+与其它的共存离子(共存离子浓度是汞离子的100倍)K+,Na+,Li+,Zn2+,Mn2+,Ba2+,Ca2+,Cu2+,Cd2+,Mg2+,Pb2+,Br-,F-,NO3 -,SO4 2-,C2O4 2-,B4O7 2-,CO3 2-,以340nm为激发波长,分别测其荧光光谱,绘制不同离子对应590nm处荧光强度的柱状图,见图6。经实验证明,其它离子不干扰体系对汞离子的检测。
实施例9
将实施例6制备的金纳米颗粒配置成0.2mg/mL的水溶液,。取上述100μL荧光金纳米颗粒溶液加入含有贴壁细胞的培养基,置于37℃的5%CO2培养箱中孵育2h后,用磷酸盐缓冲液(PBS,pH 7.4)轻轻清洗三次,以除去培养基中过量的未进入细胞的金纳米颗粒溶液。将细胞固定后在奥林巴斯FV1000激光共聚焦显微镜下,通过线性扫描进行荧光成像(40倍物镜)。分别用波长为405nm的激光激发,收集发射波段为530-630nm的橙色荧光。如图7,金纳米颗粒探针在共聚焦荧光成像仪下显示强的橙色荧光。荧光金纳米颗粒具有很好的细胞膜穿透性,可应用于膀胱癌细胞成像的检测。

Claims (4)

1.一种荧光金纳米颗粒的制备方法,其特征在于,以体积份数计,将0.4-0.6份100mmol/L N-乙酰基-L-半胱氨酸水溶液、0.4-0.6份100mmol/L氯金酸水溶液和1-3份体积比为6:1的甲醇/冰醋酸溶液混合,搅拌15-40min,向上述混合液中加入6-8体积份的超纯水,搅拌并在加热温度为60-80℃,回流12-36h。
2.如权利要求1所述的荧光金纳米颗粒制备方法,其特征在于,是将0.6mL 100mmol/LN-乙酰基-L-半胱氨酸水溶液、0.4mL 100mmol/L氯金酸水溶液和2.0mL体积比为6:1的甲醇/冰醋酸溶液,搅拌30min,然后向上述混合液中加入7.0mL的超纯水,搅拌并在加热温度为70℃,回流24h。
3.如权利要求1或2所述方法制得的荧光金纳米颗粒在汞离子的检测中应用。
4.如权利要求1或2所述方法制得的荧光金纳米颗粒在细胞成像中应用。
CN201610011625.7A 2016-01-08 2016-01-08 荧光金纳米颗粒的制备方法和应用 Expired - Fee Related CN105598465B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610011625.7A CN105598465B (zh) 2016-01-08 2016-01-08 荧光金纳米颗粒的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610011625.7A CN105598465B (zh) 2016-01-08 2016-01-08 荧光金纳米颗粒的制备方法和应用

Publications (2)

Publication Number Publication Date
CN105598465A CN105598465A (zh) 2016-05-25
CN105598465B true CN105598465B (zh) 2017-12-05

Family

ID=55979098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610011625.7A Expired - Fee Related CN105598465B (zh) 2016-01-08 2016-01-08 荧光金纳米颗粒的制备方法和应用

Country Status (1)

Country Link
CN (1) CN105598465B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108274019B (zh) * 2018-01-31 2021-06-08 华南理工大学 一种具有表面等离子体共振吸收性质的发光金纳米粒子的合成方法
CN109632732B (zh) * 2018-11-26 2021-05-14 山西大学 一种近红外荧光增敏法测定葡萄糖
CN114558569B (zh) * 2022-01-27 2023-06-16 山西大学 一种金银双金属纳米团簇及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009108125A1 (en) * 2008-02-28 2009-09-03 Agency For Science, Technology And Research Gold nanoparticles
CN103737017A (zh) * 2014-01-14 2014-04-23 山西大学 一种荧光金纳米颗粒及其制备方法
CN103920889A (zh) * 2014-04-03 2014-07-16 东南大学 巯基聚乙二醇在制备水溶性金纳米簇中的应用
CN104788542A (zh) * 2015-04-08 2015-07-22 华东师范大学 一种寡肽及其保护的荧光金纳米簇、其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009108125A1 (en) * 2008-02-28 2009-09-03 Agency For Science, Technology And Research Gold nanoparticles
CN103737017A (zh) * 2014-01-14 2014-04-23 山西大学 一种荧光金纳米颗粒及其制备方法
CN103920889A (zh) * 2014-04-03 2014-07-16 东南大学 巯基聚乙二醇在制备水溶性金纳米簇中的应用
CN104788542A (zh) * 2015-04-08 2015-07-22 华东师范大学 一种寡肽及其保护的荧光金纳米簇、其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N-乙酰基-L-半胱氨酸单层保护的的金纳米粒子和重金属离子作用的研究;郭彦青等;《分析科学学报》;20131020;第29卷(第5期);第599-604页 *
半胱氨酸诱导金纳米带室温合成;黄岚等;《科学通报》;20081030;第53卷(第20期);第2531-2532页 *

Also Published As

Publication number Publication date
CN105598465A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
Wang et al. Colorimetric fluorescent paper strip with smartphone platform for quantitative detection of cadmium ions in real samples
Borisov et al. Precipitation as a simple and versatile method for preparation of optical nanochemosensors
CN105772742B (zh) 一种荧光金纳米团簇的制备方法和应用
Yang et al. Polyethyleneimine-functionalized carbon dots as a fluorescent probe for doxorubicin hydrochloride by an inner filter effect
Wu et al. Visible-light-sensitized highly luminescent europium nanoparticles: preparation and application for time-gated luminescence bioimaging
Luo et al. Highly sensitive and selective turn-on fluorescent chemosensor for Hg2+ in pure water based on a rhodamine containing water-soluble copolymer
CN105598465B (zh) 荧光金纳米颗粒的制备方法和应用
CN108467732B (zh) 一种荧光二硫化钼量子点及其制备方法和应用
CN109652065B (zh) 一种金掺杂荧光碳量子点的制备方法
Liu et al. A convenient and label-free fluorescence “turn off–on” nanosensor with high sensitivity and selectivity for acid phosphatase
CN112986197A (zh) 用于检测汞离子的比率荧光探针、荧光纸芯片和检测方法
Wang et al. Microfluidic-based fluorescent electronic eye with CdTe/CdS core-shell quantum dots for trace detection of cadmium ions
CN110508828A (zh) 基于l-甲硫氨酸的橙红色荧光铜纳米团簇的制备方法
Song et al. Green fluorescent nanomaterials for rapid detection of chromium and iron ions: wool keratin-based carbon quantum dots
Qin et al. Auto-fluorescence of cellulose paper with spatial solid phrase dispersion-induced fluorescence enhancement behavior for three heavy metal ions detection
CN111440608A (zh) 一种双发射比率荧光探针和检测铜离子的方法
CN106518800B (zh) 一种基于氢离子激活的双响应检测ClO-/H2S荧光分子探针的制备方法及应用
Mohandoss et al. Multicolor emission-based nitrogen, sulfur and boron co-doped photoluminescent carbon dots for sequential sensing of Fe3+ and cysteine: RGB color sensor and live cell imaging
Nejdl et al. Rapid preparation of self-assembled CdTe quantum dots used for sensing of DNA in urine
CN113310960B (zh) 硫量子点的合成方法及基于硫量子点测定Fe2+和H2O2的方法
Xue et al. Carboxylate-modified squaraine dye doped silica fluorescent pH nanosensors
CN111647401B (zh) 一种橙色荧光碳点及其在检测过氧亚硝酸根离子中的应用
CN107151555A (zh) 一种可控发光碳纳米粒子及制备方法和应用
CN103217416A (zh) 检测二价汞离子的检测组合物、方法与试剂盒
Scheucher et al. Composite particles with magnetic properties, near-infrared excitation, and far-red emission for luminescence-based oxygen sensing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171205

Termination date: 20210108

CF01 Termination of patent right due to non-payment of annual fee