CN105597938A - Beneficiation method of scheelite - Google Patents
Beneficiation method of scheelite Download PDFInfo
- Publication number
- CN105597938A CN105597938A CN201510630645.8A CN201510630645A CN105597938A CN 105597938 A CN105597938 A CN 105597938A CN 201510630645 A CN201510630645 A CN 201510630645A CN 105597938 A CN105597938 A CN 105597938A
- Authority
- CN
- China
- Prior art keywords
- minutes
- ton
- scheelite
- ore
- water glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 235000019353 potassium silicate Nutrition 0.000 claims abstract description 28
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000012141 concentrate Substances 0.000 claims abstract description 21
- 239000003112 inhibitor Substances 0.000 claims abstract description 18
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 claims abstract description 17
- 235000019982 sodium hexametaphosphate Nutrition 0.000 claims abstract description 17
- 238000003756 stirring Methods 0.000 claims abstract description 17
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims abstract description 17
- 238000007790 scraping Methods 0.000 claims abstract description 11
- 238000002791 soaking Methods 0.000 claims abstract description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 10
- 239000011707 mineral Substances 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 239000012188 paraffin wax Substances 0.000 claims description 4
- 239000000344 soap Substances 0.000 claims description 4
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 claims description 3
- 230000002000 scavenging effect Effects 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 26
- 229910052721 tungsten Inorganic materials 0.000 abstract description 26
- 239000010937 tungsten Substances 0.000 abstract description 26
- 238000011084 recovery Methods 0.000 abstract description 8
- 238000000926 separation method Methods 0.000 abstract description 7
- 238000010408 sweeping Methods 0.000 abstract description 5
- 238000005188 flotation Methods 0.000 description 19
- 238000000227 grinding Methods 0.000 description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052604 silicate mineral Inorganic materials 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- ZXOKVTWPEIAYAB-UHFFFAOYSA-N dioxido(oxo)tungsten Chemical compound [O-][W]([O-])=O ZXOKVTWPEIAYAB-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
一种白钨矿的选矿方法,含WO3?0.2~0.5%的白钨矿,其特征在于由以下步骤组成:将给矿破碎磨矿至-0.074mm粒级占80~90%;按白钨矿给矿重量计,添加调整剂碳酸钠或氢氧化钠500~1200克/吨,搅拌3分钟;添加抑制剂水玻璃800~2000克/吨及六偏磷酸钠20~150克/吨,搅拌5分钟;添加捕收剂200~300克/吨,搅拌3分钟,刮泡5分钟做一次粗选;空白或加抑制剂精选一次,刮泡3分钟得到粗精矿;添加捕收剂100~150克/吨,扫选一次,刮泡3分钟得到尾矿;扫选精矿与精选尾矿合并为中矿。本发明混合使用六偏磷酸钠与水玻璃做抑制剂,钨的回收率提高3~5%,本发明工艺简单,便于工业生产操作,可有效降低水玻璃的使用量,降低药剂成本,提高钨资源的利用率。
A beneficiation method for scheelite, containing WO 3 ? 0.2~0.5% scheelite, which is characterized in that it consists of the following steps: crushing ore feeding to -0.074mm particle size accounts for 80~90%; adding regulator sodium carbonate or Sodium hydroxide 500~1200g/ton, stir for 3 minutes; add inhibitor water glass 800~2000g/ton and sodium hexametaphosphate 20~150g/ton, stir for 5 minutes; add collector 200~300g/ton Tons, stirring for 3 minutes, scraping and soaking for 5 minutes to do a rough separation; blank or adding inhibitors to select once, scraping and soaking for 3 minutes to obtain coarse concentrate; adding collector 100~150 g/ton, sweeping once, scraping and soaking The tailings are obtained in 3 minutes; the sweeping concentrated ore and the selected tailings are merged into middle ore. The present invention mixes sodium hexametaphosphate and water glass as inhibitors, and the recovery rate of tungsten is increased by 3-5%. resource utilization.
Description
技术领域technical field
本发明涉及到一种钨矿的选矿方法,属于选矿技术领域。The invention relates to a method for beneficiating tungsten ore, which belongs to the technical field of beneficiation.
背景技术Background technique
我国钨资源丰富,储量、产量均居世界首位。钨是一种具有战略意义的稀有金属,广泛应用于冶金、军事、化工等高科技领域,因此如何合理开发利用钨资源一直备受关注。自然界已发现的钨矿物中,最具工业价值的为黑钨矿和白钨矿,而我国黑钨资源接近枯竭,充分利用白钨资源代替黑钨资源已迫在眉睫。my country is rich in tungsten resources, with reserves and output ranking first in the world. Tungsten is a rare metal with strategic significance and is widely used in high-tech fields such as metallurgy, military affairs, and chemical industry. Therefore, how to rationally develop and utilize tungsten resources has always attracted attention. Among the tungsten minerals that have been discovered in nature, wolframite and scheelite are the most valuable for industrial use. However, black tungsten resources in my country are close to exhaustion, and it is imminent to make full use of scheelite resources to replace black tungsten resources.
我国目前已发现的钨矿床大部分为矽卡岩型,其中黑白钨矿交代共生,伴生组分复杂且嵌布粒度较细,一般采用重选方法回收粗粒级钨矿,细粒级钨矿(多为白钨)通过浮选法回收。按照脉石矿物的类型分类,白钨浮选工艺可简单分为白钨矿-石英(硅酸盐矿物)型及白钨矿-方解石、萤石(重晶石)型;按照浮选工艺分类,则可分为白钨常温浮选工艺及白钨加温浮选工艺。目前,我国在白钨浮选工艺方面已取得了较多的进展,生产工艺较为成熟,对原矿入选品位的要求也大大放宽,甚至从尾矿中也能回收钨,这有利于钨资源的充分回收利用。Most of the tungsten deposits that have been discovered in my country are of skarn type, in which black and white tungsten ore are metasomatized, and the associated components are complex and embedded with fine particle size. Generally, the gravity separation method is used to recover coarse-grained tungsten ore and fine-grained tungsten ore. (mostly scheelite) recovered by flotation. According to the classification of gangue minerals, the scheelite flotation process can be simply divided into scheelite-quartz (silicate mineral) type and scheelite-calcite, fluorite (barite) type; according to the flotation process classification , can be divided into scheelite normal temperature flotation process and scheelite heating flotation process. At present, my country has made more progress in the scheelite flotation process, the production process is relatively mature, and the requirements for the selected grade of raw ore are also greatly relaxed. Even tungsten can be recovered from tailings, which is conducive to the full utilization of tungsten resources. recycle and re-use.
白钨浮选多采用优先浮选工艺,通过预先富集得到钨粗精矿,再精选得到符合产品质量要求的合格钨精矿,整个工艺流程需使用调整剂、抑制剂及捕收剂。调整剂的作用主要是调整矿浆酸碱性等,使浮选环境最有利于目的矿物与脉石矿物的分离;抑制剂主要作用于脉石矿物,使其不随着浮选泡沫进入精矿产品;捕收剂则是作用于目的矿物,使其变得疏水易上浮进入精矿产品。Scheelite flotation mostly adopts the priority flotation process, through pre-enrichment to obtain rough tungsten concentrate, and then selected to obtain qualified tungsten concentrate that meets the product quality requirements. The entire process requires the use of regulators, inhibitors and collectors. The function of the regulator is mainly to adjust the acidity and alkalinity of the pulp, so that the flotation environment is most conducive to the separation of the target minerals and the gangue minerals; the inhibitor mainly acts on the gangue minerals so that they do not enter the concentrate products with the flotation foam; The collector acts on the target mineral, making it hydrophobic and easy to float into the concentrate product.
根据矿石性质的不同,白钨优先浮选工艺中各种药剂的种类及用量有所不同,但绝大多数都需要使用水玻璃作为脉石矿物的抑制剂。水玻璃由于来源广泛,对环境污染较小,且抑制效果较好,因此在白钨浮选工艺中广泛应用。但普遍存在水玻璃用量过大的问题,这无形中增加了浮选药剂成本;同时工业生产上一般直接使用水玻璃原液,由于水玻璃原液浓度高,粘度较大,极易造成药剂管道堵塞,给生产操作带来不便,同时使尾矿水不易沉降。According to the different properties of the ore, the types and dosages of various reagents in the scheelite preferential flotation process are different, but most of them need to use water glass as the inhibitor of gangue minerals. Water glass is widely used in the scheelite flotation process because of its wide source, less environmental pollution and better inhibition effect. However, there is a common problem that the amount of water glass is too large, which virtually increases the cost of flotation reagents; at the same time, industrial production generally uses water glass stock solution directly. Due to the high concentration and high viscosity of the water glass stock solution, it is easy to cause blockage of the chemical pipeline. It brings inconvenience to the production operation, and at the same time makes the tailings water not easy to settle.
发明内容Contents of the invention
本发明的目的是提供一种降低白钨浮选中水玻璃的用量,提高粗精矿中钨的回收率的选矿方法。The purpose of the present invention is to provide a kind of beneficiation method which reduces the consumption of water glass in scheelite flotation and improves the recovery rate of tungsten in rough concentrate.
本发明所述的白钨矿是指含WO30.2~0.5%的白钨矿。The scheelite in the present invention refers to the scheelite containing 0.2-0.5% WO 3 .
本发明的选矿由以下步骤组成:将给矿破碎磨矿至-0.074mm粒级占80~90%;按白钨矿给矿重量计,添加调整剂碳酸钠或氢氧化钠500~1200克/吨,搅拌3分钟;添加抑制剂水玻璃800~2000克/吨及六偏磷酸钠20~150克/吨,搅拌5分钟;添加捕收剂200~300克/吨,搅拌3分钟,刮泡5分钟做一次粗选;空白或加抑制剂精选一次,刮泡3分钟得到粗精矿;添加捕收剂100~150克/吨,扫选一次,刮泡3分钟得到尾矿;扫选精矿与精选尾矿合并为中矿。The beneficiation of the present invention consists of the following steps: crushing and grinding the ore feed to -0.074mm particle size accounts for 80~90%; based on the weight of scheelite ore feed, adding 500~1200 g/ ton, stir for 3 minutes; add inhibitor water glass 800~2000g/ton and sodium hexametaphosphate 20~150g/ton, stir for 5 minutes; add collector 200~300g/ton, stir for 3 minutes, scrape Do roughing once in 5 minutes; select once with blank or add inhibitor, scrape and soak for 3 minutes to get rough concentrate; add collector 100~150 g/ton, sweep once, scrape and soak for 3 minutes to get tailings; sweep Concentrate and selected tailings are combined into middle ore.
本发明所述捕收剂为ZL、氧化石蜡皂或油酸钠中的一种或两种。The collector in the present invention is one or two of ZL, oxidized paraffin soap or sodium oleate.
六偏磷酸钠在浮选工艺中一般作为调整剂(分散剂)使用,用量较少,但能强化各矿物颗粒间的单体分散,改善浮选效果。除此之外,六偏磷酸钠是硅酸盐矿物的有效抑制剂。因此,本发明针对白钨浮选工艺水玻璃用量较高的情况,在浮选过程中添加少量的六偏磷酸钠与水玻璃配成混合抑制剂,可显著减少水玻璃的用量,并且有利于提高钨的浮选回收率。Sodium hexametaphosphate is generally used as a regulator (dispersant) in the flotation process. The dosage is small, but it can strengthen the monomer dispersion between mineral particles and improve the flotation effect. In addition to this, sodium hexametaphosphate is an effective inhibitor of silicate minerals. Therefore, the present invention is aimed at the situation that the amount of water glass used in the scheelite flotation process is higher, adding a small amount of sodium hexametaphosphate and water glass to form a mixed inhibitor in the flotation process, which can significantly reduce the amount of water glass used, and is beneficial to Improve the flotation recovery rate of tungsten.
选别指标与现有技术相比,在不影响粗精矿质量的前提下,可提高粗精矿钨的回收率。根据原矿组成的差异,混合使用六偏磷酸钠与水玻璃做为抑制剂,与单独使用水玻璃作为抑制剂相比,可降低水玻璃用量。Compared with the prior art, the sorting index can improve the recovery rate of rough concentrate tungsten without affecting the quality of rough concentrate. According to the difference in ore composition, the mixed use of sodium hexametaphosphate and water glass as an inhibitor can reduce the amount of water glass compared with using water glass alone as an inhibitor.
入选白钨矿矿浆为白钨矿经脱除硫化矿后的尾矿或者白钨矿原矿经磨矿后的矿浆。在适宜的加药点,依次加入调整剂、混合抑制剂及捕收剂,其中混合抑制剂可以是分别加入六偏磷酸钠及水玻璃,也可以将六偏磷酸钠与水玻璃按适当比例配成合剂使用。The selected scheelite pulp is the tailings of scheelite after removal of sulfide ore or the pulp of scheelite raw ore after ore grinding. At the appropriate dosing point, add regulator, mixed inhibitor and collector in sequence, wherein the mixed inhibitor can be added sodium hexametaphosphate and water glass respectively, or sodium hexametaphosphate and water glass can be mixed in an appropriate proportion The compounding agent is used.
本发明混合使用六偏磷酸钠与水玻璃做抑制剂,与单独使用水玻璃作为抑制剂相比,可在不影响粗精矿质量的前提下,钨的回收率提高3~5%。本发明工艺简单,便于工业生产操作,可有效降低水玻璃的使用量,降低药剂成本,从而提高钨资源的利用率。The present invention mixes sodium hexametaphosphate and water glass as an inhibitor, and compared with using water glass alone as an inhibitor, the recovery rate of tungsten can be increased by 3-5% without affecting the quality of rough concentrate. The invention has simple process, is convenient for industrial production operation, can effectively reduce the usage amount of water glass, reduce the cost of medicine, and thus improve the utilization rate of tungsten resources.
附图说明Description of drawings
图1是本发明的选矿方法流程图。Fig. 1 is a flow chart of the mineral processing method of the present invention.
具体实施方式detailed description
下面结合实施例对本发明进一步说明,而非限制本发明。The present invention will be further described below in conjunction with the examples, rather than limiting the present invention.
实施例1Example 1
矿石样品为湖南某白钨矿原矿样,含WO30.23%。The ore sample is a raw ore sample of a scheelite mine in Hunan, containing 0.23% WO 3 .
破碎磨矿至-0.074mm粒级占85%;添加调整剂碳酸钠1000克/吨,搅拌3分钟;添加水玻璃2000克/吨及六偏磷酸钠20克/吨,搅拌5分钟;添加捕收剂ZL200克/吨,搅拌3分钟,刮泡5分钟做一次粗选;空白精选一次,刮泡3分钟得到粗精矿;添加捕收剂ZL100克/吨,扫选一次,刮泡3分钟得到尾矿;扫选精矿与精选尾矿合并为中矿。Crushing and grinding to -0.074mm particle size accounted for 85%; adding regulator sodium carbonate 1000 g/ton, stirring for 3 minutes; adding water glass 2000 g/ton and sodium hexametaphosphate 20 g/ton, stirring for 5 minutes; Collecting agent ZL200g/ton, stirring for 3 minutes, scraping and soaking for 5 minutes to do a rough separation; blank selection once, scraping and soaking for 3 minutes to obtain coarse concentrate; The tailings are obtained in minutes; the sweeping concentrate and the selected tailings are combined into middle ore.
实施例2Example 2
矿石样品为江西某白钨矿原矿脱除硫化矿后的尾矿样,含WO30.18%。The ore sample is the tailings sample of a scheelite ore in Jiangxi after removal of sulfide ore, containing 0.18% WO 3 .
无需细磨;添加调整剂氢氧化钠500克/吨,搅拌3分钟;添加水玻璃2000克/吨及六偏磷酸钠150克/吨(原流程粗选单独使用水玻璃用量5000克/吨),搅拌5分钟;添加捕收剂氧化石蜡皂250克/吨及油酸钠50克/吨,搅拌3分钟,刮泡5分钟做一次粗选;空白精选一次,刮泡3分钟得到粗精矿;添加捕收剂氧化石蜡皂150克/吨,扫选一次,刮泡3分钟得到尾矿;扫选精矿与精选尾矿合并为中矿。No need for fine grinding; add regulator sodium hydroxide 500 g/ton, stir for 3 minutes; add water glass 2000 g/ton and sodium hexametaphosphate 150 g/ton (the amount of water glass used alone for rough selection in the original process is 5000 g/ton) , stirred for 5 minutes; added collector oxidized paraffin soap 250 g/ton and sodium oleate 50 g/ton, stirred for 3 minutes, scraped and soaked for 5 minutes to do a rough selection; blank selection once, scraped and soaked for 3 minutes to get rough ore; add collector oxidized paraffin soap 150 g/ton, sweep once, and scrape and soak for 3 minutes to obtain tailings; sweeping concentrate and selected tailings are combined into middle ore.
实施例3Example 3
矿石样品为江西某白钨矿原矿样,含WO30.50%。The ore sample is a raw ore sample of a scheelite mine in Jiangxi, containing 0.50% WO 3 .
破碎磨矿至-0.074mm粒级占80%;添加调整剂碳酸钠800克/吨,搅拌3分钟;添加水玻璃2000克/吨及六偏磷酸钠60克/吨,搅拌5分钟;添加捕收剂ZL300克/吨,搅拌3分钟,刮泡5分钟做一次粗选;添加六偏磷酸钠20克/吨(原流程为空白精选),精选一次,刮泡3分钟得到粗精矿;添加捕收剂ZL150克/吨,扫选一次,刮泡3分钟得到尾矿;扫选精矿与精选尾矿合并为中矿。Crushing and grinding to -0.074mm particle size accounted for 80%; adding regulator sodium carbonate 800 g/ton, stirring for 3 minutes; adding water glass 2000 g/ton and sodium hexametaphosphate 60 g/ton, stirring for 5 minutes; Collecting agent ZL300g/ton, stirring for 3 minutes, scraping and soaking for 5 minutes to do a rough separation; adding sodium hexametaphosphate 20g/ton (the original process is blank selection), refining once, scraping and soaking for 3 minutes to get a rough concentrate ; Add collector ZL150 g/ton, sweep once, scrape and soak for 3 minutes to get tailings; sweep concentrate and selected tailings are merged into middle ore.
实施例4Example 4
矿石样品为某白钨矿原矿脱除硫化矿后的尾矿样,含WO30.21%。The ore sample is the tailings sample of a certain scheelite ore after removal of sulfide ore, containing 0.21% WO 3 .
细磨至-0.074mm粒级占85%;添加调整剂碳酸钠1200克/吨,搅拌3分钟;添加水玻璃800克/吨及六偏磷酸钠150克/吨,搅拌5分钟;添加捕收剂ZL250克/吨,搅拌3分钟,刮泡5分钟做一次粗选;空白精选一次,刮泡3分钟得到粗精矿;添加捕收剂ZL100克/吨,扫选一次,刮泡3分钟得到尾矿;扫选精矿与精选尾矿合并为中矿。Fine grinding to -0.074mm particle size accounts for 85%; add regulator sodium carbonate 1200 g/ton, stir for 3 minutes; add water glass 800 g/ton and sodium hexametaphosphate 150 g/ton, stir for 5 minutes; add collecting Agent ZL250g/ton, stirring for 3 minutes, scraping and soaking for 5 minutes for a rough separation; blank selection once, scraping and soaking for 3 minutes to obtain coarse concentrate; adding collector ZL100g/ton, sweeping once, scraping and soaking for 3 minutes The tailings are obtained; the scavenging concentrate and the selected tailings are combined into middle ore.
表1是本发明实施例的钨品位和钨回收率。结果表明,本发明加入六偏磷酸钠代替部分水玻璃,可降低粗选水玻璃用量约1/4~1/3,粗精矿钨回收率提高3~5%左右。Table 1 is the tungsten grade and tungsten recovery rate of the examples of the present invention. The results show that the present invention adds sodium hexametaphosphate to replace part of the water glass, which can reduce the consumption of water glass in rough separation by about 1/4~1/3, and the recovery rate of tungsten in rough concentrate can be increased by about 3~5%.
表1本发明实施例的钨品位和钨回收率Tungsten grade and tungsten recovery rate of table 1 embodiment of the present invention
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510630645.8A CN105597938A (en) | 2015-09-29 | 2015-09-29 | Beneficiation method of scheelite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510630645.8A CN105597938A (en) | 2015-09-29 | 2015-09-29 | Beneficiation method of scheelite |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105597938A true CN105597938A (en) | 2016-05-25 |
Family
ID=55978604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510630645.8A Pending CN105597938A (en) | 2015-09-29 | 2015-09-29 | Beneficiation method of scheelite |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105597938A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106733217A (en) * | 2017-04-07 | 2017-05-31 | 安徽工业大学 | A kind of calcareous Scheelite Flotation collecting agent high and its preparation method and application method |
CN106733215A (en) * | 2016-12-07 | 2017-05-31 | 广西大学 | A kind of preparation method of scheelite inhibitor |
CN107583769A (en) * | 2016-07-06 | 2018-01-16 | 长春黄金研究院 | A kind of method that flotation tailing normal temperature selects tungsten |
CN107983539A (en) * | 2017-12-06 | 2018-05-04 | 中南大学 | Application of the hydrolysis of polymaleic anhydride in Scheelite Flotation |
CN108993778A (en) * | 2018-06-22 | 2018-12-14 | 昆明理工大学 | A kind of scheelite normal temperature flotation method |
CN111495600A (en) * | 2020-04-14 | 2020-08-07 | 湖南柿竹园有色金属有限责任公司 | Scheelite flotation method |
CN114367382A (en) * | 2021-12-09 | 2022-04-19 | 湖南柿竹园有色金属有限责任公司 | Normal-temperature flotation method for high-calcium low-grade scheelite |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4366050A (en) * | 1981-01-19 | 1982-12-28 | Amax Inc. | Scheelite flotation |
CN101417267A (en) * | 2008-12-05 | 2009-04-29 | 长沙有色冶金设计研究院 | Low-grade scheelite in molybdenum floatation tailings |
CN101507950A (en) * | 2009-03-20 | 2009-08-19 | 中南大学 | Mineral separation process capable of recovering micro scheelite from scheelite flotation tailings |
CN102441482A (en) * | 2011-09-30 | 2012-05-09 | 广州有色金属研究院 | A kind of beneficiation method of pyrrhotite-rich scheelite |
CN102489393A (en) * | 2011-12-04 | 2012-06-13 | 华南师范大学 | Ore dressing method for separation and recovery of scheelite and fluorite from sulfur flotation tailings of polymetallic ore |
CN104858045A (en) * | 2015-06-08 | 2015-08-26 | 湖北鑫鹰环保科技股份有限公司 | Novel scheelite roughing technology |
-
2015
- 2015-09-29 CN CN201510630645.8A patent/CN105597938A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4366050A (en) * | 1981-01-19 | 1982-12-28 | Amax Inc. | Scheelite flotation |
CN101417267A (en) * | 2008-12-05 | 2009-04-29 | 长沙有色冶金设计研究院 | Low-grade scheelite in molybdenum floatation tailings |
CN101507950A (en) * | 2009-03-20 | 2009-08-19 | 中南大学 | Mineral separation process capable of recovering micro scheelite from scheelite flotation tailings |
CN102441482A (en) * | 2011-09-30 | 2012-05-09 | 广州有色金属研究院 | A kind of beneficiation method of pyrrhotite-rich scheelite |
CN102489393A (en) * | 2011-12-04 | 2012-06-13 | 华南师范大学 | Ore dressing method for separation and recovery of scheelite and fluorite from sulfur flotation tailings of polymetallic ore |
CN104858045A (en) * | 2015-06-08 | 2015-08-26 | 湖北鑫鹰环保科技股份有限公司 | Novel scheelite roughing technology |
Non-Patent Citations (3)
Title |
---|
艾光华等: "组合捕收剂从含钙矿物浮选体系中回收微细粒白钨矿", 《有色金属工程》 * |
许鸿国等: "白钨矿浮选药剂研究现状及展望", 《有色金属科学与工程》 * |
邱廷省等: "某难选白钨矿浮选工艺及流程试验研究", 《有色金属科学与工程》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107583769A (en) * | 2016-07-06 | 2018-01-16 | 长春黄金研究院 | A kind of method that flotation tailing normal temperature selects tungsten |
CN106733215A (en) * | 2016-12-07 | 2017-05-31 | 广西大学 | A kind of preparation method of scheelite inhibitor |
CN106733215B (en) * | 2016-12-07 | 2019-02-01 | 广西大学 | A kind of preparation method of scheelite inhibitor |
CN106733217A (en) * | 2017-04-07 | 2017-05-31 | 安徽工业大学 | A kind of calcareous Scheelite Flotation collecting agent high and its preparation method and application method |
CN106733217B (en) * | 2017-04-07 | 2019-06-11 | 安徽工业大学 | A kind of high-calcium scheelite flotation collector and preparation method and application method thereof |
CN107983539A (en) * | 2017-12-06 | 2018-05-04 | 中南大学 | Application of the hydrolysis of polymaleic anhydride in Scheelite Flotation |
CN108993778A (en) * | 2018-06-22 | 2018-12-14 | 昆明理工大学 | A kind of scheelite normal temperature flotation method |
CN111495600A (en) * | 2020-04-14 | 2020-08-07 | 湖南柿竹园有色金属有限责任公司 | Scheelite flotation method |
CN114367382A (en) * | 2021-12-09 | 2022-04-19 | 湖南柿竹园有色金属有限责任公司 | Normal-temperature flotation method for high-calcium low-grade scheelite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105597938A (en) | Beneficiation method of scheelite | |
CN108160313B (en) | A kind of method of cupric oxide ore thickness grading-reinforcing fine fraction sulfide flotation | |
CN101869876B (en) | Ore dressing method of low-grade scheelite | |
CN101269352B (en) | Beneficiation method for black and white tungsten fine deposit | |
CN106170343B (en) | A kind of beneficiation method of chalcopyrite | |
CN100562369C (en) | High iron pelitization wulfenite floatation method | |
CN105689150B (en) | A kind of lead-zinc oxide ore flotation inhibitor and its application | |
CN103691569A (en) | Flotation method for high-sulfur gold-bearing copper ore | |
CN102441482A (en) | A kind of beneficiation method of pyrrhotite-rich scheelite | |
CN105327772A (en) | Pre-desliming beneficiation method for fine-grain embedded molybdenum ore | |
CN108380397A (en) | A kind of recovery method of low concentration calcite type containing mica fluorite tailing | |
CN106269287A (en) | A kind of beneficiation method improving the difficult copper sulfide ore beneficiation response rate | |
CN103990549A (en) | Beneficiation method for complex multi-metal sulfide electrum comprehensive recovery | |
CN110976097B (en) | Flotation method for zinc oxide in sulfide ore tailings | |
CN105381867B (en) | A kind of method for floating of aphanitic graphite | |
CN104259013A (en) | Inhibitor for separating blue chalcocite from pyrite and beneficiation method thereof | |
CN103223377A (en) | Low-grade antimony oxide ore flotation separation method | |
CN105834006B (en) | A kind of beneficiation method of low-grade nickel sulfide ore | |
CN105312159A (en) | Flotation reagent system for fine wolframite in gravity concentration tailings | |
CN114904659B (en) | Cascade strengthening inhibition method for talcum and molybdenite flotation separation combined inhibitor | |
CN107638949A (en) | Application of the cation etherification starch in Scheelite Flotation | |
CN107824341B (en) | It is a kind of to improve difficult copper sulfide ore beneficiation and refer to calibration method | |
CN106423576A (en) | Porphyry copper molybdenum ore copper molybdenum flotation process | |
CN105903572B (en) | A kind of method for eliminating copper ion in secondary copper sulfide polymetallic ore slurry solution | |
CN107115975B (en) | Beneficiation method for recovering micro-fine particle iron oxide from copper dressing tailings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160525 |