CN105588587A - 基于自动电平控制的自发布里渊散射信号提取装置及方法 - Google Patents

基于自动电平控制的自发布里渊散射信号提取装置及方法 Download PDF

Info

Publication number
CN105588587A
CN105588587A CN201510926379.3A CN201510926379A CN105588587A CN 105588587 A CN105588587 A CN 105588587A CN 201510926379 A CN201510926379 A CN 201510926379A CN 105588587 A CN105588587 A CN 105588587A
Authority
CN
China
Prior art keywords
signal
fiber
optical fiber
brillouin scattering
rayleigh scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510926379.3A
Other languages
English (en)
Other versions
CN105588587B (zh
Inventor
李卓明
梁胜利
曹志英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electronics Technology Instruments Co Ltd CETI
Original Assignee
CETC 41 Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 41 Institute filed Critical CETC 41 Institute
Priority to CN201510926379.3A priority Critical patent/CN105588587B/zh
Publication of CN105588587A publication Critical patent/CN105588587A/zh
Application granted granted Critical
Publication of CN105588587B publication Critical patent/CN105588587B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35329Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种基于自动电平控制的自发布里渊散射信号提取装置及方法,第一光纤耦合器的两个输出端分别对应连接第二光纤耦合器的两个输入端,形成两个光纤臂,构成光纤马赫-曾德干涉仪,压电陶瓷缠绕于一个光纤臂上,使两光纤臂间存在长度差,第二光纤耦合器的瑞利散射信号输出端连接有第三光纤耦合器,布里渊散射信号输出端连接隔离器,第三光纤耦合器的输出端连接光电探测器,光电探测器连接对数放大器,对数放大器的输出端连接积分器,对两光纤臂的光程差进行调节。本发明通过自动检测瑞利散射光强度自动调节压电陶瓷驱动电压,不需人工边观测边手动调节,解决光源频率漂移及震动等影响使得瑞利散射的增大导致布里渊散射信号提取困难的问题。

Description

基于自动电平控制的自发布里渊散射信号提取装置及方法
技术领域
本发明涉及一种基于自动电平控制的自发布里渊散射信号提取装置及方法。
背景技术
目前,所报道的基于自发布里渊散射信号的提取方法主要有两类,外差检测和直接检测。外差检测方案具有信噪比高、不受光源频率漂移的影响等优点,但系统复杂,成本非常高。基于法布里-珀罗干涉仪(F-P干涉仪)的直接检测方法插入损耗较大,超过10dB,对本来就很微弱的布里渊散射信号检测不利。后来出现了包括本作者在内的研究人员设计的采用马赫-曾德干涉仪(MZI)提取布里渊散射信号的方法,其具体实现框图如图1所示。
用两个标准3dB光纤耦合器及其光纤臂连接而成光纤MZI,其中一个光纤臂上缠绕圆筒形压电陶瓷,使两臂间引入一定长度差。并在压电陶瓷两个电极施加一定的直流电压,通过调节该直流电压,圆筒压电陶瓷直径产生变化,缠绕在其上的光纤长度产生变化,进而实现对MZI两个臂的光程差的调节。当在MZI一个输入端输入两个频率分别为f1和f2的光波时,如果二者的频差Δf与光纤MZI自由程(FSR)满足关系式:
Δf=(k+1/2)FSR
则调节光纤MZI两臂之间长度差可使两种不同频率的光波在第二个耦合器两个不同端口输出。
光纤中的布里渊散射是光波和声波在光纤中传播时相互作用而产生的非线性散射光,布里渊散射的斯托克斯光与反斯托克斯光频率相对于入射光频率(等于瑞利散射光频率)产生一个布里渊频移。这样,布里渊散射和瑞利散射两种频率不同的光波入射到光纤MZI,经过压电陶瓷调节两臂光程差,可以使布里渊散射和瑞利散射从不同端口输出,在输出端口加入隔离器,使布里渊散射通过,瑞利散射得到抑制,布里渊散射信号通过隔离器后再次通过光纤MZI,对瑞利散射进一步抑制,最终输出高纯的布里渊散射信号。
现有基于光纤MZI的布里渊散射信号提取装置靠手动调节压电陶瓷的驱动电压,获得对瑞利散射的最佳抑制,提取布里渊散射信号。由于布里渊散射信号与瑞利散射信号之间的频率间隔约为11GHz左右,相对于光波频率来说距离非常近,光源信号频率随着环境温度的变化不断漂移,并且光纤MZI本身对环境也非常敏感,使得对瑞利散射的抑制不稳定,需要边观测边调节,应用非常不便,只能用于实验室,实用化程度较低。
发明内容
本发明为了解决上述问题,提出了一种基于自动电平控制的自发布里渊散射信号提取装置及方法,本发明通过在光纤MZI中引入自动电平控制技术实现对瑞利散射抑制的自动调节,使布里渊散射信号提取过程自动化,稳定可靠,便于将技术产品化。
为了实现上述目的,本发明采用如下技术方案:
一种基于自动电平控制的自发布里渊散射信号提取装置,包括第一光纤耦合器和第二光纤耦合器,其中,第一光纤耦合器的两个输出端分别对应连接第二光纤耦合器的两个输入端,形成两个光纤臂,构成光纤马赫-曾德干涉仪,压电陶瓷缠绕于一个光纤臂上,使两光纤臂间存在长度差,第二光纤耦合器的瑞利散射信号输出端连接有第三光纤耦合器,布里渊散射信号输出端连接隔离器,所述第三光纤耦合器的输出端连接光电探测器,将瑞利散射光信号转换为电信号,光电探测器连接对数放大器,使电信号具有更大的增益,对数放大器的输出端连接积分器,对放大的电信号和参考电平进行误差积分,经驱动放大器使输出信号达到压电陶瓷的驱动电压范围,对两光纤臂的光程差进行调节。
所述隔离器使布里渊散射信号通过,抑制瑞利散射信号。
所述压电陶瓷为圆筒形压电陶瓷,使两光纤臂间引入一定长度差。
进一步的,所述压电陶瓷两个电极施加一定的直流电压,通过调节该直流电压,圆筒压电陶瓷直径产生变化,缠绕在其上的光纤长度产生变化,调节两个光纤臂的光程差。
所述第一光纤耦合器的输入端输入的信号包括两个频率,且两者的频率差Δf与光纤马赫-曾德干涉仪的自由程FSR满足:Δf=(k+1/2)FSR,k为整数。
所述输入信号经过第二光纤耦合器,布里渊散射信号和瑞利散射信号分别通过两个不同的输出口输出。
所述参考电平设置为能够使瑞利散射处于最小的电平值。
一种基于自动电平控制的自发布里渊散射信号提取方法,具体为:第一光纤耦合器的两个输出端分别对应连接第二光纤耦合器的两个输入端,形成两个光纤臂,构成光纤马赫-曾德干涉仪,压电陶瓷缠绕于一个光纤臂上,使两光纤臂间存在长度差,使布里渊散射信号和瑞利散射信号从第二光纤耦合器的不同端口输出,瑞利散射信号经过光电检测器,将瑞利散射光信号转换为电信号,将该信号进行对数放大,使瑞利散射微弱时获得更大的增益,提高电路处理的动态范围,对数放大器的输出与参考电平通过积分器对比较误差进行积分,经驱动放大器使输出信号达到压电陶瓷的驱动电压范围,对两光纤臂的光程差进行进一步的调节,阻止瑞利散射增大,使布里渊散射输出信噪比达到最佳。
所述第三耦合器、光电探测器、对数放大器、积分器、驱动放大器和光纤马赫-曾德干涉仪构成负反馈环路,对瑞利散射信号进行自动抑制。
本发明的有益效果为:
(1)光纤马赫-曾德干涉仪的输出端将信号分为两路,其中一路瑞利散射信号经光电检测后用于对其的自动电平控制,达到稳定获得布里渊散射信号最佳信噪比的目的;
(2)瑞利散射信号经耦合器、光电探测器、对数放大器、积分器、驱动放大器和光纤MZI组成负反馈环路,对瑞利散射进行自动抑制;
(3)参考电平设置为能够使瑞利散射处于最小的电平值,这样,当出现由于温度等环境变化或激光器本身频率漂移导致瑞利散射增大时,自动电平控制负反馈环路可以自动对MZI两臂的光程差进行调节,阻止瑞利散射增大,达到稳定布里渊散射输出信噪比的目的。;
(4)通过自动电平控制技术来实现对瑞利散射的自动抑制,从而稳定的获得布里渊散射信号,避免了人工边观测边调节带来的应用困难,使基于自发布里渊散射的光纤传感技术更易于产品化;
(5)通过自动检测瑞利散射光强度自动调节压电陶瓷驱动电压,不需人工边观测边手动调节,解决光源频率漂移及震动等影响使得瑞利散射的增大导致布里渊散射信号提取困难的问题。
附图说明
图1为现有的基于马赫曾德干涉仪的布里渊散射信号提取装置结构示意图;
图2为本发明的结构示意图;
其中:1、光纤耦合器,2、压电陶瓷,3、隔离器,4、驱动放大器,5、积分器,6、对数放大器,7、光电探测器,B,R、输入信号,B、布里渊散射信号,R、瑞利散射信号,C、参考信号。
具体实施方式:
下面结合附图与实施例对本发明作进一步说明。
如图1所示,现有的基于马赫曾德干涉仪的布里渊散射信号提取装置,是用两个标准3dB光纤耦合器1及其光纤臂连接而成光纤MZI(马赫-曾德干涉仪),其中一个光纤臂上缠绕圆筒形压电陶瓷2,使两臂间引入一定长度差。并在压电陶瓷2两个电极施加一定的直流电压,通过调节该直流电压,圆筒压电陶瓷2直径产生变化,缠绕在其上的光纤长度产生变化,进而实现对MZI两个臂的光程差的调节。当在MZI一个输入端输入两个频率分别为f1和f2的光波时,如果二者的频差Δf与光纤MZI自由程(FSR)满足关系式:
Δf=(k+1/2)FSR
则调节光纤MZI两臂之间长度差可使两种不同频率的光波在第二个耦合器两个不同端口输出。
光纤中的布里渊散射是光波和声波在光纤中传播时相互作用而产生的非线性散射光,布里渊散射的斯托克斯光与反斯托克斯光频率相对于入射光频率(等于瑞利散射光频率)产生一个布里渊频移。这样,布里渊散射和瑞利散射两种频率不同的光波入射到光纤MZI,经过压电陶瓷2调节两臂光程差,可以使布里渊散射和瑞利散射从不同端口输出,在输出端口加入隔离器3,使布里渊散射通过,瑞利散射得到抑制,布里渊散射信号通过隔离器3后再次通过光纤MZI,对瑞利散射进一步抑制,最终输出高纯的布里渊散射信号。
如图2所示,本发明通过在光纤MZI中引入自动电平控制技术实现对瑞利散射抑制的自动调节,使布里渊散射信号提取过程自动化,稳定可靠,便于将技术产品化。
当光源发生频率漂移或光纤MZI受环境影响时,原瑞利散射最佳抑制状态会发生变化,即瑞利散射增大,布里渊散射减小,此时需要重新调节压电陶瓷2驱动电压,改变光纤MZI两臂之间的光程差,重新获得瑞利散射的最佳抑制。本发明通过将瑞利散射信号(R)输出端加入一个光纤耦合器1,使瑞利散射另外分出一路,经过光电检测器,将瑞利散射光信号转换为电信号,将该信号进行对数放大,使瑞利散射微弱时获得更大的增益,提高电路处理的动态范围,对数放大器6的输出与参考电平通过积分器5对比较误差进行积分,经驱动放大器4使输出信号达到压电陶瓷2的驱动电压范围。参考电平设置为能够使瑞利散射处于最小的电平值,这样,当出现由于温度等环境变化或激光器本身频率漂移导致瑞利散射增大时,自动电平控制负反馈环路可以自动对MZI两臂的光程差进行调节,阻止瑞利散射增大,达到稳定布里渊散射输出信噪比的目的。
瑞利散射经耦合器、光电探测器7、对数放大器6、积分器5、驱动放大器4和光纤MZI组成负反馈环路,对瑞利散射进行自动抑制。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (9)

1.一种基于自动电平控制的自发布里渊散射信号提取装置,包括第一光纤耦合器和第二光纤耦合器,其中,第一光纤耦合器的两个输出端分别对应连接第二光纤耦合器的两个输入端,形成两个光纤臂,构成光纤马赫-曾德干涉仪,压电陶瓷缠绕于一个光纤臂上,使两光纤臂间存在长度差,其特征是:第二光纤耦合器的瑞利散射信号输出端连接有第三光纤耦合器,布里渊散射信号输出端连接隔离器,所述第三光纤耦合器的输出端连接光电探测器,将瑞利散射光信号转换为电信号,光电探测器连接对数放大器,使电信号具有更大的增益,对数放大器的输出端连接积分器,对放大的电信号和参考电平进行误差积分,经驱动放大器使输出信号达到压电陶瓷的驱动电压范围,对两光纤臂的光程差进行调节。
2.如权利要求1所述的一种基于自动电平控制的自发布里渊散射信号提取装置,其特征是:所述隔离器使布里渊散射信号通过,抑制瑞利散射信号。
3.如权利要求1所述的一种基于自动电平控制的自发布里渊散射信号提取装置,其特征是:所述压电陶瓷为圆筒形压电陶瓷,使两光纤臂间引入一定长度差。
4.如权利要求3所述的一种基于自动电平控制的自发布里渊散射信号提取装置,其特征是:所述压电陶瓷两个电极施加一定的直流电压,通过调节该直流电压,圆筒压电陶瓷直径产生变化,缠绕在其上的光纤长度产生变化,调节两个光纤臂的光程差。
5.如权利要求1所述的一种基于自动电平控制的自发布里渊散射信号提取装置,其特征是:所述第一光纤耦合器的输入端输入的信号包括两个频率,且两者的频率差Δf与光纤马赫-曾德干涉仪的自由程FSR满足:Δf=(k+1/2)FSR,k为整数。
6.如权利要求1所述的一种基于自动电平控制的自发布里渊散射信号提取装置,其特征是:所述输入信号经过第二光纤耦合器,布里渊散射信号和瑞利散射信号分别通过两个不同的输出口输出。
7.如权利要求1所述的一种基于自动电平控制的自发布里渊散射信号提取装置,其特征是:所述参考电平设置为能够使瑞利散射处于最小的电平值。
8.一种基于自动电平控制的自发布里渊散射信号提取方法,其特征是:具体为:第一光纤耦合器的两个输出端分别对应连接第二光纤耦合器的两个输入端,形成两个光纤臂,构成光纤马赫-曾德干涉仪,压电陶瓷缠绕于一个光纤臂上,使两光纤臂间存在长度差,使布里渊散射信号和瑞利散射信号从第二光纤耦合器的不同端口输出,瑞利散射信号经过光电检测器,将瑞利散射光信号转换为电信号,将该信号进行对数放大,使瑞利散射微弱时获得更大的增益,提高电路处理的动态范围,对数放大器的输出与参考电平通过积分器对比较误差进行积分,经驱动放大器使输出信号达到压电陶瓷的驱动电压范围,对两光纤臂的光程差进行进一步的调节,阻止瑞利散射增大,使布里渊散射输出信噪比达到最佳。
9.如权利要求8所述的一种基于自动电平控制的自发布里渊散射信号提取方法,其特征是:所述第三耦合器、光电探测器、对数放大器、积分器、驱动放大器和光纤马赫-曾德干涉仪构成负反馈环路,对瑞利散射信号进行自动抑制。
CN201510926379.3A 2015-12-11 2015-12-11 基于自动电平控制的自发布里渊散射信号提取装置及方法 Expired - Fee Related CN105588587B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510926379.3A CN105588587B (zh) 2015-12-11 2015-12-11 基于自动电平控制的自发布里渊散射信号提取装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510926379.3A CN105588587B (zh) 2015-12-11 2015-12-11 基于自动电平控制的自发布里渊散射信号提取装置及方法

Publications (2)

Publication Number Publication Date
CN105588587A true CN105588587A (zh) 2016-05-18
CN105588587B CN105588587B (zh) 2017-10-24

Family

ID=55928344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510926379.3A Expired - Fee Related CN105588587B (zh) 2015-12-11 2015-12-11 基于自动电平控制的自发布里渊散射信号提取装置及方法

Country Status (1)

Country Link
CN (1) CN105588587B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631814A (zh) * 2017-09-14 2018-01-26 电子科技大学 光自相干传感光路结构、频移变化检测方法和传感装置
CN109163749A (zh) * 2018-09-30 2019-01-08 中国电子科技集团公司第三十四研究所 一种非平衡光纤m-z干涉仪、其调节平台和制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110292394A1 (en) * 2010-05-25 2011-12-01 The Chinese University Of Hong Kong Optical sensing devices and methods for detecting samples using the same
CN102279444A (zh) * 2011-07-26 2011-12-14 南京大学 一种用于消除布里渊光纤传感器中偏振噪声的无源装置
CN102809387A (zh) * 2012-08-17 2012-12-05 东北大学 一种新型的botdr信号解调方法
CN104776871A (zh) * 2015-01-30 2015-07-15 佛山科学技术学院 光纤布里渊分布式测量光路、装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110292394A1 (en) * 2010-05-25 2011-12-01 The Chinese University Of Hong Kong Optical sensing devices and methods for detecting samples using the same
CN102279444A (zh) * 2011-07-26 2011-12-14 南京大学 一种用于消除布里渊光纤传感器中偏振噪声的无源装置
CN102809387A (zh) * 2012-08-17 2012-12-05 东北大学 一种新型的botdr信号解调方法
CN104776871A (zh) * 2015-01-30 2015-07-15 佛山科学技术学院 光纤布里渊分布式测量光路、装置和方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HE YUJUN等: "Spontaneous Brillouin-distributed optical fiber temperature sensing system based on all-fiber Mach-Zehnder interferometer", 《ADVANCED SENSOR SYSTEMS AND APPLICATIONS II》 *
李永倩等: "Mach-Zehnder 干涉仪差分检测布里渊温度和应变同时传感系统", 《华北电力大学学报》 *
杨志等: "分布式光纤布里渊散射温度传感实验系统", 《光子学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631814A (zh) * 2017-09-14 2018-01-26 电子科技大学 光自相干传感光路结构、频移变化检测方法和传感装置
CN107631814B (zh) * 2017-09-14 2020-09-01 电子科技大学 光自相干传感光路结构、频移变化检测方法和传感装置
CN109163749A (zh) * 2018-09-30 2019-01-08 中国电子科技集团公司第三十四研究所 一种非平衡光纤m-z干涉仪、其调节平台和制作方法
CN109163749B (zh) * 2018-09-30 2024-03-01 中国电子科技集团公司第三十四研究所 一种非平衡光纤m-z干涉仪、其调节平台和制作方法

Also Published As

Publication number Publication date
CN105588587B (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
CN108007550B (zh) 一种改进的pgc调制解调检测方法
CN105323001B (zh) 一种otdr光信号接收电路
CN104568219A (zh) 一种基于单通带微波光子滤波器的温度测量装置及方法
CN104677396A (zh) 动态分布式布里渊光纤传感装置及方法
CN103162724A (zh) 基于动态扫描的光纤光栅传感解调仪及方法
CN108362388B (zh) 一种双通道差分激光器相位噪声的测量方法
CN105157733B (zh) 一种改进的生成载波相位pgc解调方法
CN107036734A (zh) 一种全分布式光纤温度或应变的传感方法与传感器
CN105547336B (zh) 基于光电振荡环路的光纤光栅传感解调装置和方法
CN106338549B (zh) 一种多通道光纤环声发射检测系统及解调方法
CN103968934B (zh) 基于光电振荡器的振动信息获取方法
CN106404215A (zh) 基于布里渊散射的分布式光纤传感系统的设计
CN105356945A (zh) 一种外差式光纤水听器系统
CN105806468A (zh) 一种光纤光栅振动传感器及其检测装置
CN104567959A (zh) 基于双通道非平衡干涉仪的大动态干涉型光纤传感器
CN102778613A (zh) Pin-fet光接收组件性能指标测试方法
CN105136909A (zh) 一种基于阵列波导光栅的多通道声发射传感解调系统
CN103697922A (zh) 一种光纤f-p腔传感器的高速解调系统
CN101799610B (zh) 外差式相位干涉型光纤传感器的正交解调装置
CN105588587A (zh) 基于自动电平控制的自发布里渊散射信号提取装置及方法
CN105044568B (zh) 自适应型变压器局部放电的光纤超声检测系统及检测方法
CN108955939B (zh) 一种光纤光栅温度传感解调系统
CN105953725B (zh) 一种相位载波式激光干涉信号闭环解调方法
CN108344515B (zh) 一种双通道激光器相位噪声的测量装置
CN103727969A (zh) 基于延时脉冲拉曼放大分布式传感系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190226

Address after: 266555 No. 98 Xiangjiang Road, Huangdao District, Qingdao City, Shandong Province

Patentee after: China Electronics Technology Instrument and Meter Co., Ltd.

Address before: 266555 No. 98 Xiangjiang Road, Qingdao economic and Technological Development Zone, Shandong

Patentee before: The 41st Institute of CETC

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171024

Termination date: 20201211