CN1055792C - Cadmium telluride solar cell with transition layer - Google Patents

Cadmium telluride solar cell with transition layer Download PDF

Info

Publication number
CN1055792C
CN1055792C CN95111437A CN95111437A CN1055792C CN 1055792 C CN1055792 C CN 1055792C CN 95111437 A CN95111437 A CN 95111437A CN 95111437 A CN95111437 A CN 95111437A CN 1055792 C CN1055792 C CN 1055792C
Authority
CN
China
Prior art keywords
cadmium telluride
zinc telluridse
transition zone
transition layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN95111437A
Other languages
Chinese (zh)
Other versions
CN1120246A (en
Inventor
冯良桓
蔡亚平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Union University
Original Assignee
Sichuan Union University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Union University filed Critical Sichuan Union University
Priority to CN95111437A priority Critical patent/CN1055792C/en
Publication of CN1120246A publication Critical patent/CN1120246A/en
Application granted granted Critical
Publication of CN1055792C publication Critical patent/CN1055792C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a cadmium telluride solar cell with a transition layer, which belongs to a structural design of solar cells with semiconductor films. The present invention is characterized in that a transition layer (B) which is not blended with zinc telluride, tightly blended with zinc telluride or is both superposed is added between cadmium telluride (P) and a back contact layer [p type doping zinc telluride (Z) or a conducting back electrode (M)]. The blending density can be uniform and can also be variable along with the variation of the thickness of the transition layer, and the thickness is larger than 20A. The transition layer can improve the lattice matching between two original adjacent layers, prevent the dopant atoms or metal atoms in the back contact layer from carrying out diffusion to the cadmium telluride, and block leak channels of the cadmium telluride; finally, the photoelectric conversion efficiency and the stability of the cell are improved.

Description

Cadmium-Te solar battery with transition zone
The invention belongs to a kind of structural design of semiconductor film solar cell.
Cadmium telluride (CdTe) solar cell is a kind of compound semiconductor film solar cell.Its basic structure is: nesa coating (T)/n-type cadmium sulfide (C)/p-type cadmium telluride (P)/conduction back electrode (M), as shown in Figure 1.The conduction back electrode graphite electrode of mixing copper commonly used.Yet, owing to be difficult to form good Ohmic contact between p-N-type semiconductor N and the conductive electrode, thus the photoelectric conversion efficiency of this class battery suppressed.This has become the key issue that this class battery of development need solve.
No. 4977.097 patents of U.S. Ethylmercurichlorendimide Tyke (Ametek) company nineteen ninety application, and U.S. regenerative resource National Laboratory (NREL), Colorado School of Mines (CSM) all proposed a kind ofly to add the solar battery structure of one deck P-type zinc telluridse film (Z) as back contact between p-type cadmium-telluride layer (P) and conduction back electrode, as shown in Figure 2.The dopant of this layer zinc telluridse film is copper or nitrogen, and normal concentration of dopant atoms is in the 3%-8% scope, and thickness is 250A-1200A.Though the solar cell performance of this structure is greatly improved: fill factor, curve factor improves about 10%, and open circuit voltage improves about 3%, and also there is obvious deficiency in this structure:
1. the adding of dopant in the zinc telluridse makes the mismatch aggravation of the lattice and the adjacent cadmium telluride of zinc telluridse, and between forms higher interfacial state, thereby has reduced the performance of solar cell.
2. the dopant atom in the zinc telluridse, or the copper atom in the graphite electrode can cause battery performance to decline and fall quickly to the cadmium telluride diffusion.
3. because cadmium telluride is a polycrystal film, have a large amount of grain boundaries and local micropore.They can form small leak channel, and the zinc telluridse of high electrical conductivity can not play modification to these defectives, thereby this class battery still has less bypass resistance, and this has just suppressed fill factor, curve factor and open circuit voltage, thereby has also constrained photoelectric efficiency.
Purpose of the present invention is exactly in order to eliminate above-mentioned defective, further improves the structural design of this class solar cell, makes the bypass resistance that obtains through higher, improves fill factor, curve factor and open circuit voltage, thereby obtains higher photoelectric conversion efficiency and stability.
For realizing the object of the invention, technical scheme of the present invention is to be provided with to undope or doping content is lower than 3% zinc telluridse transition zone, and this transition zone in solar battery structure is: be added between cadmium telluride and the zinc telluridse back contact or be added in cadmium telluride and the conduction back electrode between replace back contact.
Adopt structural design of the present invention, the depletion region of solar cell is widened, the interface is brought back to life and is reduced, and stops up the leakage current passage.Measure from battery performance and to show as: bypass resistance is from less than 400 Ω cm 2Bring up to 800 Ω cm 2More than, improving fill factor, curve factor more than 5%, open circuit voltage also increases.Provide the typical consequence that records below:
Sample changeover efficient fill factor, curve factor open circuit voltage short-circuit current density
No transition zone 11.2% 65% 760MV 21.2mA/cm 2
Transition zone 12.2% 73.18% 795MV 20.8mA/cm are arranged 2
In addition, transition zone of the present invention can stop that the dopant atom of P-type zinc telluridse spreads to cadmium telluride, thus slowed down this battery use for a long time or deposit after decline and fall, promptly improved stability.
Fig. 3, Fig. 4 are the solar cell junction compositions with transition zone.
Below in conjunction with drawings and Examples in detail the present invention is described in detail.
Structure of the present invention is shown in Fig. 3,4.Based on the protosun battery, between P-type cadmium telluride (P) and P-type zinc telluridse (Z), add tellurium transition zone (B) (Fig. 3), or between P-type cadmium telluride (P) and conduction back electrode (M), add zinc telluridse transition zone (B) (Fig. 4).As the back of the body touch the layer P-type zinc telluridse film, the dopant atom concentration of general normal doping is in the 3%-8% scope.The zinc telluridse transition zone that the present invention adds then is plain zinc telluridse, also can be low-doped zinc telluridse.Low-doped dopant atom concentration is lower than 3%.When the low-doped zinc telluridse transition zone of preparation, the concentration of dopant in whole transition zone can be uniformly, promptly selects a doping content of determining; Also can change, and two kinds of situations can be arranged; Being concentration of dopant can be increased to normal doped level (being linear change) from 0 at the thickness direction of transition zone, also can be the fluctuations (curved variation) of being less than or equal to normal dopant concentration level.
According to the needs of practical application, zinc telluridse is crossed liquid layer and can be made of separately respectively undope layer or low doped layer, also can constitute with undope district and doped regions superposition.Particularly add under the situation of transition zone (B), adopt the transition zone of superposition more suitable at (P) and (M).
The thickness of transition zone (B) should be advisable with 100A~800A greater than 20A, but also has good effect greater than 1000A.
The dopant of zinc telluridse transition zone is copper or nitrogen, or other can provide the dopant of acceptor atom.
The preparation of zinc telluridse transition zone and preparation as the P-type zinc telluridse of back contact can be adopted identical equipment and essentially identical technology.
The effect of transition zone of the present invention is: 1. transitional function.This layer and cadmium telluride adjacent, doping content is low, even is 0, makes distortion of lattice little, can good coupling be arranged with the cadmium telluride lattice; With normal doping zinc telluridse adjacent, close with it doping content is also arranged, also have excellent lattice matching between the two.Since transition zone itself undope or low-doped, perhaps it has comprised enough thick undoping or doped regions, thereby can stop effectively and spread dopant atom, particularly copper atom in the back contact (P-type zinc telluridse or conductive electrode) to cadmium telluride.3. because of the conductivity of transition zone own is very low, or include the low conductivity part of adequate thickness, as the zinc telluridse that undopes, its conductivity is than low about 4~5 magnitudes of normal doping zinc telluridse.Therefore, it can play a part well to stop up to leak electricity in the cadmium telluride and passes through.Bypass resistance is improved, thereby help the raising of fill factor, curve factor and open circuit voltage.4. for photovoltaic effect, progressive junction is used sharp than abrupt junction.Transition zone of the present invention forms progressive junction exactly, thereby helps the collection of photo-generated carrier, thereby reaches the basic goal that improves photoelectric conversion efficiency.
The sample that adopts in the embodiment of the invention is nesa coating/cadmium sulfide/cadmium telluride structure (TCO/Cds/CdTe).Through annealing in process, through the oxide layer of removing the cadmium telluride surface of corrosion, can prepare solar cell again.
Embodiment one:
Use radio frequency sputtering method: target is that purity reaches 59 zinc telluridse, and sample temperature is a room temperature, and sputter gas is an argon, air pressure 15 milli torrs, radio-frequency power is 40~50W, treat that all working parameter adjustment is good after, open the dividing plate of target and sample room, the zinc telluridse transition zone (B) that undopes of deposition 200A.Introduce nitrogen then in sputtering chamber, its nitrogen is 2%~5% with the air pressure ratio of argon, prepares nitrogen doped P-type zinc telluridse back contact (Z) again, the about 600A of thickness.
Embodiment two:
Use vacuum vapor deposition method: evaporation source is respectively purity and reaches 59 copper and zinc telluridse.Sample temperature is a room temperature, and base vacuum is 2 * 10 -6Torr.To the heating of zinc telluridse evaporation source, adjust evaporation rate in 2-6A/ scope second earlier, open the dividing plate between evaporation source and the sample, on sample, deposit one deck 100A zinc telluridse.To the heating of copper evaporation source, because the increase gradually of copper evaporation rate, depositing doping content increases gradually, the P-type zinc telluridse layer of the about 500A of thickness immediately.The above-mentioned two-layer transition zone of the present invention (B) that constituted.At last, can choose the evaporation rate of two kinds of evaporation sources, select 8A/ second as zinc telluridse, copper selects 0.2A/ second, and it is about 6% to deposit copper atom concentration, the P-type zinc telluridse back contact (Z) of the about 500A of thickness.
Embodiment three:
Method with embodiment two: the first deposition 50A zinc telluridse layer that undopes.Turn off the dividing plate between sample and evaporation source,, and adjust the evaporation rate of copper and zinc telluridse evaporation source again to copper evaporation source heating, as the optional 8A/ of zinc telluridse second, the optional 0.1A/ of copper second.Open dividing plate, it is about 3% to deposit copper atom concentration again, the P-type zinc telluridse back contact (Z) of the about 600A of thickness, also direct depositing electrically conductive back electrode (M).

Claims (3)

1. cadmium-Te solar battery, its structure is nesa coating (T)/n-type cadmium sulfide (C)/p-type cadmium telluride (P)/p-type zinc telluridse (Z) back contact/conduction back electrode (M), it is characterized in that having and undope or doping content is lower than 3% zinc telluridse transition zone (B), this transition zone in solar battery structure is: be added between cadmium telluride (P) and the zinc telluridse back contact (Z) or be added in cadmium telluride (P) and conduction back electrode (M) between replace back contact (Z).
2. solar cell as claimed in claim 1, the doping content that it is characterized in that the zinc telluridse transition zone are uniformly or change.
3. solar cell as claimed in claim 1 or 2 is characterized in that the zinc telluridse transition zone is made of with the doped region superposition the district that undopes.
CN95111437A 1995-07-20 1995-07-20 Cadmium telluride solar cell with transition layer Expired - Lifetime CN1055792C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN95111437A CN1055792C (en) 1995-07-20 1995-07-20 Cadmium telluride solar cell with transition layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN95111437A CN1055792C (en) 1995-07-20 1995-07-20 Cadmium telluride solar cell with transition layer

Publications (2)

Publication Number Publication Date
CN1120246A CN1120246A (en) 1996-04-10
CN1055792C true CN1055792C (en) 2000-08-23

Family

ID=5078731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95111437A Expired - Lifetime CN1055792C (en) 1995-07-20 1995-07-20 Cadmium telluride solar cell with transition layer

Country Status (1)

Country Link
CN (1) CN1055792C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITLU20050002A1 (en) * 2005-02-08 2006-08-09 Solar Systems & Equipments Srl A NEW PROCESS FOR THE TREATMENT IN CHLORINE ENVIRONMENT OF SOLID FILM CELLS OF CdTe / CdS without the use of CdC12.
CN101017857B (en) * 2006-05-31 2010-04-14 成都加佳好科技有限公司 Te solar battery composed of non-planar battery chip
CN201024842Y (en) * 2007-03-29 2008-02-20 深圳市瑞华建设股份有限公司 Solar energy photovoltaic cell hollow glass assembly
JP5042363B2 (en) * 2007-06-28 2012-10-03 ソーラー システムズ アンド エクイップメンツ エス.アール.エル. Method for forming non-rectifying back contact in CDTE / CDS thin film solar cell
CN101702417B (en) * 2009-10-28 2011-02-02 润峰电力有限公司 Technological process for manufacturing cadmium telluride film solar cells
US20110265874A1 (en) * 2010-04-29 2011-11-03 Primestar Solar, Inc. Cadmium sulfide layers for use in cadmium telluride based thin film photovoltaic devices and methods of their manufacture
CN101950769B (en) * 2010-06-29 2012-02-15 上海大学 Method for preparing back electrode of CdTe thin film solar cell
CN102244110B (en) * 2011-06-24 2012-09-05 四川大学 CdTe solar cell by using V-Se film as back contact layer
CN104124290B (en) * 2014-07-24 2017-01-11 四川大学 Cadmium telluride solar cell with Te-Ti-Cu pre-set layer
CN109494273B (en) * 2018-09-30 2020-05-22 四川大学 Double-sided three-terminal cadmium telluride solar cell
CN115064605A (en) * 2022-05-17 2022-09-16 中国建材国际工程集团有限公司 Cadmium telluride thin film solar cell with transition layer and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977097A (en) * 1986-10-21 1990-12-11 Ametek, Inc. Method of making heterojunction P-I-N photovoltaic cell
US5393675A (en) * 1993-05-10 1995-02-28 The University Of Toledo Process for RF sputtering of cadmium telluride photovoltaic cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4977097A (en) * 1986-10-21 1990-12-11 Ametek, Inc. Method of making heterojunction P-I-N photovoltaic cell
US5393675A (en) * 1993-05-10 1995-02-28 The University Of Toledo Process for RF sputtering of cadmium telluride photovoltaic cell

Also Published As

Publication number Publication date
CN1120246A (en) 1996-04-10

Similar Documents

Publication Publication Date Title
US6344608B2 (en) Photovoltaic element
Basol Electrodeposited CdTe and HgCdTe solar cells
US7071496B2 (en) Electronic device and method for manufacturing the same
US4217148A (en) Compensated amorphous silicon solar cell
EP0304145B1 (en) Thin film solar cell including a spatially modulated intrinsic layer
US5603778A (en) Method of forming transparent conductive layer, photoelectric conversion device using the transparent conductive layer, and manufacturing method for the photoelectric conversion device
US4200473A (en) Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer
US4612411A (en) Thin film solar cell with ZnO window layer
CN1055792C (en) Cadmium telluride solar cell with transition layer
GB2066858A (en) Gradient doping in amorphous silicon
WO2011049933A1 (en) Back contact buffer layer for thin-film solar cells
CN102244110B (en) CdTe solar cell by using V-Se film as back contact layer
US5104455A (en) Amorphous semiconductor solar cell
Ferekides et al. RF sputtered back contacts for CdTe/CdS thin film solar cells
US20130146133A1 (en) Thin film photovoltaic solar cell device
Carlson Factors influencing the efficiency of amorphous silicon solar cells
CN109004045B (en) Cadmium telluride solar cell and preparation method thereof
CN209561423U (en) A kind of cadmium-Te solar battery back contact structure
Nouhi et al. High‐efficiency CdTe thin‐film solar cells using metalorganic chemical vapor deposition techniques
CN109801980B (en) Cadmium telluride thin film solar cell and preparation method thereof
Haneman et al. Solar energy converston by photoelectrochemical cells
CN109768096A (en) A kind of cadmium-Te solar battery back contact structure
CN112071948A (en) Preparation method of solar chip and solar chip
CN110797428A (en) Heterojunction solar cell
Carlson Photovoltaics V: amorphous silicon cells: A highly homogeneous amorphous semiconductor material promises low-cost solar cells

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Expiration termination date: 20150720

Granted publication date: 20000823

EXPY Termination of patent right or utility model