CN105576687B - A kind of AC/DC energy storage PCU Power Conditioning Unit and its control method - Google Patents

A kind of AC/DC energy storage PCU Power Conditioning Unit and its control method Download PDF

Info

Publication number
CN105576687B
CN105576687B CN201610105200.2A CN201610105200A CN105576687B CN 105576687 B CN105576687 B CN 105576687B CN 201610105200 A CN201610105200 A CN 201610105200A CN 105576687 B CN105576687 B CN 105576687B
Authority
CN
China
Prior art keywords
phase
energy storage
circuit breaker
bridge
mrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610105200.2A
Other languages
Chinese (zh)
Other versions
CN105576687A (en
Inventor
丁明
吴杰
陈中
朱灿
赵波
张雪松
周金辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
Hefei University of Technology
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology, Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd filed Critical Hefei University of Technology
Priority to CN201610105200.2A priority Critical patent/CN105576687B/en
Publication of CN105576687A publication Critical patent/CN105576687A/en
Application granted granted Critical
Publication of CN105576687B publication Critical patent/CN105576687B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks

Landscapes

  • Inverter Devices (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

本发明公布一种交直流两用储能功率调节装置及其控制方法,包括3n个级联H桥单元、3n个储能单元、交流输出接口电路、直流输出接口电路以及中央控制器单元;通过中央控制器单元控制交流输出接口电路交流断路器和直流输出接口电路直流断路器的开关状态,从而使储能装置工作在储能逆变器模式以接入交流电网,或工作在储能直流变换器模式以接入直流电网;中央控制器单元根据储能装置的工作模式采用相应的控制策略实现功率双向可控流动。本发明能通过控制储能装置的不同工作模式,实现储能系统接入交直流混合微网的灵活配置与管理,更加高效地利用电能在交直流母线之间的转换,提高电能存储、转移的效率,有易于提高交直流混合微网系统的稳定性。

The invention discloses an AC and DC dual-purpose energy storage power regulating device and a control method thereof, including 3n cascaded H-bridge units, 3n energy storage units, an AC output interface circuit, a DC output interface circuit, and a central controller unit; The central controller unit controls the switching status of the AC circuit breaker of the AC output interface circuit and the DC circuit breaker of the DC output interface circuit, so that the energy storage device works in the energy storage inverter mode to connect to the AC grid, or works in the energy storage DC conversion mode The controller mode is used to connect to the DC grid; the central controller unit adopts the corresponding control strategy according to the working mode of the energy storage device to realize the two-way controllable flow of power. The invention can realize the flexible configuration and management of the energy storage system connected to the AC-DC hybrid microgrid by controlling the different working modes of the energy storage device, more efficiently utilize the conversion of electric energy between the AC and DC buses, and improve the efficiency of electric energy storage and transfer. Efficiency, easy to improve the stability of the AC-DC hybrid microgrid system.

Description

一种交直流两用储能功率调节装置及其控制方法An AC and DC dual-purpose energy storage power adjustment device and its control method

技术领域technical field

本发明涉及微网系统中储能技术领域,更具体来说是一种交直流两用储能功率调节装置及其控制方法。The invention relates to the technical field of energy storage in a microgrid system, and more specifically relates to an AC and DC dual-purpose energy storage power regulating device and a control method thereof.

背景技术Background technique

微网作为一种新型能源网络化供应与管理技术,将分布式发电单元、可再生能源、储能装置、负荷、监控保护系统等集成于一体,可有效优化可再生能源运行管理,提高大电网对可再生能源的消纳水平。微网按其结构特点可分为交流微网、直流微网和交直流混合微网。其中,交直流混合微网整合交流微网与直流微网的特点,将交流电源与交流负荷并联于交流母线,将直流电源与直流负荷并联于直流母线,交直流母线通过逆变器连接以交换能量。As a new energy network supply and management technology, microgrid integrates distributed power generation units, renewable energy, energy storage devices, loads, monitoring and protection systems, etc., which can effectively optimize the operation and management of renewable energy and improve the efficiency of large power grids. The level of consumption of renewable energy. Microgrids can be divided into AC microgrids, DC microgrids, and AC-DC hybrid microgrids according to their structural characteristics. Among them, the AC-DC hybrid microgrid integrates the characteristics of the AC microgrid and the DC microgrid. The AC power supply and the AC load are connected in parallel to the AC bus, and the DC power supply and the DC load are connected in parallel to the DC bus. energy.

目前电力系统输配电领域存在交流型分布式发电单元、交流型负荷、交流储能系统、直流型分布式发电单元、直流型负荷、直流型储能单元,使用单一的交流微网或直流微网难以满足电力系统需求,交直流混合微网作为一种兼具两者优点的网络结构,能够很好地适应电力系统的发展需求。At present, there are AC distributed generation units, AC loads, AC energy storage systems, DC distributed generation units, DC loads, and DC energy storage units in the field of power system transmission and distribution, using a single AC microgrid or DC microgrid. It is difficult for the grid to meet the needs of the power system. As a network structure with both advantages, the AC-DC hybrid microgrid can well adapt to the development needs of the power system.

储能系统是微网的重要部分,其独特的双向调节能力使微网的运行具有更大的灵活性和可靠性,对微网的有功/无功平衡、经济调度、故障支撑以及解并列过程的平滑过渡都具有其他电源不可替代的作用。The energy storage system is an important part of the microgrid. Its unique two-way adjustment capability makes the operation of the microgrid more flexible and reliable. The smooth transition has an irreplaceable role for other power sources.

目前现有技术大多在交直流混合微网的交流母线和直流母线两侧分别配置储能系统,并通过相互独立的功率调节装置进行能量转换,运行方式较为单一。交流微网与直流微网间储能系统中的电能需要通过各自独立的功率调节装置和母线互联逆变器进行能量转换,一方面降低了电能的利用效率,另一方面降低了电能转换的响应速度。At present, most of the existing technologies are equipped with energy storage systems on both sides of the AC bus and DC bus of the AC-DC hybrid microgrid, and perform energy conversion through independent power adjustment devices, and the operation mode is relatively simple. The electric energy in the energy storage system between the AC micro-grid and the DC micro-grid needs to be converted through independent power regulation devices and bus interconnection inverters. On the one hand, the utilization efficiency of electric energy is reduced, and on the other hand, the response of electric energy conversion is reduced. speed.

发明内容Contents of the invention

本发明是为了解决传统储能功率调节装置不能同时满足交直流电能转换的问题,提出了一种交直流两用储能功率调节装置及其控制方法,以期能直接与交直流母线连接并灵活实现能量转换,实现储能系统的灵活配置与管理,从而可以更加高效的利用电能在交直流母线之间的转换,提高电能存储、转移的效率,更有益于提高交直流混合微网系统的稳定性。The present invention aims to solve the problem that the traditional energy storage power adjustment device cannot satisfy the AC-DC power conversion at the same time, and proposes an AC-DC dual-purpose energy storage power adjustment device and its control method, in order to be able to be directly connected to the AC-DC bus and flexibly realized Energy conversion realizes flexible configuration and management of the energy storage system, so that the conversion of electric energy between the AC and DC buses can be used more efficiently, the efficiency of electric energy storage and transfer can be improved, and it is more beneficial to improve the stability of the AC-DC hybrid microgrid system .

为解决上述技术问题,本发明所采取的技术方案是:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:

本发明一种交直流两用储能功率调节装置,是应用于交直流混合微网中,其特点是所述储能功率调节装置包括:功率调节主电路和中央控制器单元;The present invention is an AC-DC dual-purpose energy storage power adjustment device, which is applied in an AC-DC hybrid microgrid, and is characterized in that the energy storage power adjustment device includes: a power adjustment main circuit and a central controller unit;

所述功率调节主电路包括3n个级联H桥单元、3n个储能单元、交流输出接口电路和直流输出接口电路;n≥1;1≤i≤n;The power regulation main circuit includes 3n cascaded H-bridge units, 3n energy storage units, an AC output interface circuit and a DC output interface circuit; n≥1; 1≤i≤n;

所述3n个级联H桥单元包括n个a相级联H桥单元(Ha1~Han)、n个b相级联H桥单元(Hb1~Hbn)和n个c相级联H桥单元(Hc1~Hcn);The 3n cascaded H-bridge units include n a-phase cascaded H-bridge units (H a1 ~H an ), n b-phase cascaded H-bridge units (H b1 ~H bn ) and n c-phase cascaded H bridge unit (H c1 ~ H cn );

第i个a相级联H桥单元包括第i个a相全桥逆变器及第i个a相滤波电容(Cai);The i-th a-phase cascaded H-bridge unit includes the i-th a-phase full-bridge inverter and the i-th a-phase filter capacitor (C ai );

第i个b相级联H桥单元包括第i个b相全桥逆变器及第i个b相滤波电容(Cbi);The i-th b-phase cascaded H-bridge unit includes the i-th b-phase full-bridge inverter and the i-th b-phase filter capacitor (C bi );

第i个c相级联H桥单元包括第i个c相全桥逆变器及第i个c相滤波电容(Cci);The i-th c-phase cascaded H-bridge unit includes the i-th c-phase full-bridge inverter and the i-th c-phase filter capacitor (C ci );

所述3n个储能单元包括n个a相储能单元、n个b相储能单元和n个c相储能单元;The 3n energy storage units include n a-phase energy storage units, n b-phase energy storage units and n c-phase energy storage units;

第i个a相储能单元包括:第i个a相储能设备(Vai)及其串联的第i个a相直流断路器(KDCai);The i-th phase-a energy storage unit includes: the i-th phase-a energy storage device (V ai ) and the i-th phase-a DC circuit breaker (K DCai ) connected in series;

第i个b相储能单元包括:第i个b相储能设备(Vbi)及其串联的第i个b相直流断路器(KDCbi);The i-th phase-b energy storage unit includes: the i-th phase-b energy storage device (V bi ) and the i-th phase-b DC circuit breaker (K DCbi ) connected in series;

第i个c相储能单元包括:第i个c相储能设备(Vci)及其串联的第i个c相直流断路器(KDCci);The i-th phase-c energy storage unit includes: the i-th phase-c energy storage device (V ci ) and the i-th phase-c DC circuit breaker (K DCci ) connected in series;

所述交流输出接口电路包括a相交流输出接口电路、b相交流输出接口电路和c相交流输出接口电路;The AC output interface circuit includes a-phase AC output interface circuit, b-phase AC output interface circuit and c-phase AC output interface circuit;

所述a相交流输出接口电路包括:a相交流断路器(KACa)及其串联的a相工频电感(La);The a-phase AC output interface circuit includes: a-phase AC circuit breaker (K ACa ) and its a-phase power frequency inductor (L a ) connected in series;

所述b相交流输出接口电路包括:b相交流断路器(KACb)及其串联的b相工频电感(Lb);The b-phase AC output interface circuit includes: a b-phase AC circuit breaker (K ACb ) and a b-phase power frequency inductor (L b ) connected in series;

所述c相交流输出接口电路包括:c相交流断路器(KACc)及其串联的c相工频电感(Lc);The c-phase AC output interface circuit includes: a c-phase AC circuit breaker (K ACc ) and a c-phase power frequency inductor (L c ) connected in series;

所述直流输出接口电路包括第一直流输出接口电路、第二直流输出接口电路、第三直流输出接口电路、第四直流断路器(KDC4)以及滤波电容(CDC);The DC output interface circuit includes a first DC output interface circuit, a second DC output interface circuit, a third DC output interface circuit, a fourth DC circuit breaker (K DC4 ) and a filter capacitor (C DC );

所述第一直流输出接口电路包括:第一直流断路器(KDC1)及其串联的第一高频电感(L1);The first DC output interface circuit includes: a first DC circuit breaker (K DC1 ) and its first high-frequency inductor (L 1 ) connected in series;

所述第二直流输出接口电路包括:第二直流断路器(KDC2)及其串联的第二高频电感(L2);The second DC output interface circuit includes: a second DC circuit breaker (K DC2 ) and a second high-frequency inductor (L 2 ) connected in series;

所述第三直流输出接口电路包括:第三直流断路器(KDC3)及其串联的第三高频电感(L3);The third DC output interface circuit includes: a third DC circuit breaker (K DC3 ) and a third high-frequency inductor (L 3 ) connected in series;

所述第i个a相全桥逆变器的一侧分别与a相滤波电容(Cai)和第i个a相储能单元并联;One side of the i-th a-phase full-bridge inverter is respectively connected in parallel with the a-phase filter capacitor (C ai ) and the i-th a-phase energy storage unit;

所述第i个a相全桥逆变器的另一侧分别与第i-1个a相全桥逆变器和第i+1个a相全桥逆变器串联,形成a相变换单元后,再分别与所述第一直流输出接口电路以及所述a相交流输出接口电路并联;The other side of the i-th a-phase full-bridge inverter is respectively connected in series with the i-1th a-phase full-bridge inverter and the i+1th a-phase full-bridge inverter to form an a-phase conversion unit Afterwards, they are respectively connected in parallel with the first DC output interface circuit and the a-phase AC output interface circuit;

所述第i个b相全桥逆变器的一侧分别与b相滤波电容(Cbi)和第i个b相储能单元并联;One side of the i-th b-phase full-bridge inverter is respectively connected in parallel with the b-phase filter capacitor (C bi ) and the i-th b-phase energy storage unit;

所述第i个b相全桥逆变器的另一侧分别与第i-1个b相全桥逆变器和第i+1个b相全桥逆变器串联,形成b相变换单元后,再分别与所述第二直流输出接口电路以及所述b相交流输出接口电路并联;The other side of the i-th b-phase full-bridge inverter is respectively connected in series with the i-1th b-phase full-bridge inverter and the i+1th b-phase full-bridge inverter to form a b-phase conversion unit After that, they are respectively connected in parallel with the second DC output interface circuit and the b-phase AC output interface circuit;

所述第i个c相全桥逆变器的一侧分别与c相滤波电容(Cci)和第i个c相储能单元并联;One side of the i-th c-phase full-bridge inverter is respectively connected in parallel with the c-phase filter capacitor (C ci ) and the i-th c-phase energy storage unit;

所述第i个c相全桥逆变器的另一侧分别与第i-1个c相全桥逆变器和第i+1个c相全桥逆变器串联,形成c相变换单元后,再分别与所述第三直流输出接口电路以及所述c相交流输出接口电路并联;The other side of the i-th c-phase full-bridge inverter is respectively connected in series with the i-1th c-phase full-bridge inverter and the i+1th c-phase full-bridge inverter to form a c-phase conversion unit Afterwards, they are respectively connected in parallel with the third DC output interface circuit and the c-phase AC output interface circuit;

所述a相交流输出接口电路与交流电网的a相连接;The a-phase AC output interface circuit is connected to a-phase of the AC grid;

所述b相交流输出接口电路与交流电网的b相连接;The b-phase AC output interface circuit is connected to the b-phase of the AC grid;

所述c相交流输出接口电路与交流电网的c相连接;The c-phase AC output interface circuit is connected to the c-phase of the AC grid;

所述第一直流输出接口电路、所述第二直流输出接口电路、所述第三直流输出接口电路和所述滤波电容并联后与所述第四直流断路器(KDC4)串联,再接入直流电网两侧;The first DC output interface circuit, the second DC output interface circuit, the third DC output interface circuit and the filter capacitor are connected in parallel to the fourth DC circuit breaker (K DC4 ) in series, and then connected to into both sides of the DC grid;

所述中央控制器单元包括采样调理电路、控制单元和PWM调制单元;The central controller unit includes a sampling conditioning circuit, a control unit and a PWM modulation unit;

所述采样调理电路分别采集由交流输出接口电路处的三相电网相电压和三路工频电感电流、直流输出接口电路处的直流电压和三路高频电感电流、3n个储能单元的直流电压所构成的采样信号并传递给所述控制单元;The sampling conditioning circuit respectively collects the phase voltage of the three-phase power grid at the AC output interface circuit, the three-way power frequency inductor current, the DC voltage at the DC output interface circuit, the three-way high-frequency inductor current, and the DC voltage of 3n energy storage units. The sampling signal formed by the voltage is transmitted to the control unit;

所述控制单元根据所述a相交流断路器(KACa)、所述b相交流断路器(KACb)、所述c相交流断路器(KACc)和所述第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)以及第四直流断路器(KDC4)的开关状态判断所述储能功率调节装置的工作模式是储能逆变器模式或储能直流变换器模式,从而根据所接收的采样信号,利用储能逆变器模式策略或储能直流变换器模式策略获得PWM控制信号,并传递给所述PWM调制单元;The control unit is based on the a-phase AC circuit breaker (K ACa ), the b-phase AC circuit breaker (K ACb ), the c-phase AC circuit breaker (K ACc ) and the first DC circuit breaker ( K DC1 ), the second DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) switch states to judge that the working mode of the energy storage power regulating device is energy storage Inverter mode or energy storage DC converter mode, so that according to the received sampling signal, the PWM control signal is obtained by using the energy storage inverter mode strategy or the energy storage DC converter mode strategy, and transmitted to the PWM modulation unit;

所述PWM调制单元根据所述PWM控制信号控制所述3n个级联H桥单元实现功率转换调节。The PWM modulation unit controls the 3n cascaded H-bridge units to implement power conversion regulation according to the PWM control signal.

本发明所述的交直流两用储能功率调节装置的特点也在于:The characteristics of the AC/DC dual-purpose energy storage power regulating device of the present invention are also:

所述储能设备为蓄电池、超级电容、飞轮或超导磁体。The energy storage device is a storage battery, a supercapacitor, a flywheel or a superconducting magnet.

所述控制单元是按如下方式判断储能功率调节装置的工作模式是储能逆变器模式或储能直流变换器模式:The control unit judges whether the working mode of the energy storage power regulating device is the energy storage inverter mode or the energy storage DC converter mode in the following manner:

当所述a相交流断路器(KACa)、b相交流断路器(KACb)和c相交流断路器(KACc)闭合,且所述第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)和第四直流断路器(KDC4)断开,则表示所述储能功率调节装置形成储能逆变器DC/AC结构,从而判断所述储能功率调节装置的工作模式是储能逆变器模式;When the a-phase AC circuit breaker (K ACa ), b-phase AC circuit breaker (K ACb ) and c-phase AC circuit breaker (K ACc ) are closed, and the first DC circuit breaker (K DC1 ), the second If the DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) are disconnected, it means that the energy storage power regulating device forms an energy storage inverter DC/AC structure, Therefore, it is judged that the working mode of the energy storage power regulating device is the energy storage inverter mode;

当所述a相交流断路器(KACa)、b相交流断路器(KACb)和c相交流断路器(KACc)断开,且所述第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)和第四直流断路器(KDC4)闭合,则表示所述储能功率调节装置形成储能直流变换器DC/DC结构,从而判断所述储能功率调节装置的工作模式是储能直流变换器模式。When the a-phase AC circuit breaker (K ACa ), b-phase AC circuit breaker (K ACb ) and c-phase AC circuit breaker (K ACc ) are disconnected, and the first DC circuit breaker (K DC1 ), the first When the second DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) are closed, it means that the energy storage power regulating device forms an energy storage DC converter DC/DC structure, Therefore, it is judged that the working mode of the energy storage power regulating device is the energy storage DC converter mode.

本发明一种交直流两用储能功率调节装置的控制方法的特点是按如下步骤进行:The characteristic of the control method of a kind of AC and DC dual-purpose energy storage power regulating device of the present invention is to carry out according to the following steps:

步骤1、采集a相交流断路器(KACa)、b相交流断路器(KACb)、c相交流断路器(KACc)和第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)以及第四直流断路器(KDC4)的开关状态并进行判断;Step 1. Collect phase a AC circuit breaker (K ACa ), phase b AC circuit breaker (K ACb ), phase c AC circuit breaker (K ACc ), and the first DC circuit breaker (K DC1 ), the second DC circuit breaker (K DC2 ), the switch states of the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) and judge;

若所述a相交流断路器(KACa)、b相交流断路器(KACb)和c相交流断路器(KACc)闭合,且所述第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)和第四直流断路器(KDC4)断开,则表示所述储能功率调节装置工作在储能逆变器模式,并执行步骤2;If the a-phase AC circuit breaker (K ACa ), b-phase AC circuit breaker (K ACb ) and c-phase AC circuit breaker (K ACc ) are closed, and the first DC circuit breaker (K DC1 ), the second If the DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) are disconnected, it means that the energy storage power regulating device is working in the energy storage inverter mode, and executes Step 2;

若所述a相交流断路器(KACa)、b相交流断路器(KACb)和c相交流断路器(KACc)断开,且所述第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)和第四直流断路器(KDC4)闭合,则表示储能功率调节装置工作在储能直流变换器模式,并执行步骤6;If the a-phase AC circuit breaker (K ACa ), b-phase AC circuit breaker (K ACb ) and c-phase AC circuit breaker (K ACc ) are disconnected, and the first DC circuit breaker (K DC1 ), the first When the second DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) are closed, it means that the energy storage power regulating device is working in the energy storage DC converter mode, and step 6 is performed ;

步骤2、采集交流电网的a相相电压Vsa、b相相电压Vsb、c相相电压Vsc和a相电感电流ia、b相电感电流ib、c相电感电流ic;采集n个a相储能单元的电压Va1~Van、n个b相储能单元的电压Vb1~Vbn以及n个c相储能单元的电压Vc1~VcnStep 2. Collect phase a phase voltage V sa , phase b phase voltage V sb , phase c phase voltage V sc , and phase a inductance current i a , phase b inductance current i b , and phase c inductance current ic of the AC grid; Voltages V a1 -V an of n a-phase energy storage units, voltages V b1 -V bn of n b-phase energy storage units, and voltages V c1 -V cn of n c-phase energy storage units;

对a相相电压Vsa、b相相电压Vsb、c相相电压Vsc和a相电感电流ia、b相电感电流ib、c相电感电流ic作abc/dq坐标变换,分别得到电网电压d轴分量Vsd、q轴分量Vsq和电网电流d轴分量id、q轴分量iqMake abc/dq coordinate transformation for phase a phase voltage V sa , phase b phase voltage V sb , phase c phase voltage V sc , phase a inductance current i a , phase b inductance current i b , and phase c inductance current i c , respectively Obtain the grid voltage d-axis component V sd , q-axis component V sq and grid current d-axis component i d , q-axis component i q ;

步骤3、采用功率解耦控制方法,给定有功指令P*、无功指令Q*,按式(1)计算得到给定有功电流指令id *和无功电流指令iq *Step 3. Using the power decoupling control method, given the active command P * and the reactive command Q * , calculate the given active current command i d * and reactive current command i q * according to formula (1):

步骤4、将有功电流指令id *和交流电网侧电流d轴分量id的差值、无功电流指令iq *和交流电网侧电流q轴分量iq的差值,经过有功无功电流解耦控制后得到级联H桥单元交流输出电压的dq轴参考分量ud、uq;将所述dq轴参考分量ud、uq经反坐标变换得到PWM信号产生环节的调制波原始电压信号Uabc *Step 4. The difference between the active current command i d * and the d-axis component i d of the AC grid side current, the difference between the reactive current command i q * and the q-axis component i q of the AC grid side current, through the active and reactive current After decoupling control, the dq axis reference components u d and u q of the AC output voltage of the cascaded H-bridge unit are obtained; the dq axis reference components u d and u q are transformed by inverse coordinates to obtain the original voltage of the modulated wave in the PWM signal generation link signal_abc * ;

步骤5、利用载波相移CPS-SPWM调制方法,按式(2)计算得到PWM信号产生环节的调制波信号uabcStep 5. Utilize the carrier phase shift CPS-SPWM modulation method to calculate the modulated wave signal u abc of the PWM signal generation link according to formula (2):

将所得调制波信号uabc作为n个a相全桥逆变器的正弦调制波,并将所述n个a相全桥逆变器的正弦调制波作为左桥臂的调制波信号,将所述n个a相全桥逆变器的正弦调制波移相180°作为右桥臂的调制波信号;The obtained modulated wave signal u abc is used as the sinusoidal modulated wave of n a-phase full-bridge inverters, and the sinusoidal modulated wave of the n a-phase full-bridge inverters is used as the modulated wave signal of the left bridge arm, and the obtained The sinusoidal modulation wave of n a-phase full-bridge inverters is phase-shifted by 180° as the modulation wave signal of the right bridge arm;

将所得调制波信号uabc滞后120°作为n个b相全桥逆变器的正弦调制波,并将所述n个b相全桥逆变器的正弦调制波作为左桥臂的调制波信号,将所述n个b相全桥逆变器的正弦调制波移相180°作为右桥臂的调制波信号;The resulting modulated wave signal u abc is lagged by 120° as the sinusoidal modulated wave of n b-phase full-bridge inverters, and the sinusoidal modulated wave of the n b-phase full-bridge inverters is used as the modulated wave signal of the left bridge arm , shifting the sinusoidal modulation waves of the n b-phase full-bridge inverters by 180° as the modulation wave signal of the right bridge arm;

将所得调制波信号uabc提前120°作为n个c相全桥逆变器的正弦调制波,并将所述n个c相全桥逆变器的正弦调制波作为左桥臂的调制波信号,将所述n个c相全桥逆变器的正弦调制波移相180°作为右桥臂的调制波信号;Advance the obtained modulated wave signal u abc by 120° as the sinusoidal modulated wave of n c-phase full-bridge inverters, and use the sinusoidal modulated wave of the n c-phase full-bridge inverters as the modulated wave signal of the left bridge arm , shifting the sinusoidal modulation waves of the n c-phase full-bridge inverters by 180° as the modulation wave signal of the right bridge arm;

给定一个全桥逆变器的原始三角载波信号,并将所述原始三角载波信号依次移相π/n个载波周期,从而获得n个全桥逆变器的三角载波信号,并分别作为n个a相全桥逆变器的三角载波信号、n个b相全桥逆变器的三角载波信号和n个c相全桥逆变器的三角载波信号;The original triangular carrier signal of a full-bridge inverter is given, and the original triangular carrier signal is sequentially phase-shifted by π/n carrier cycles, so as to obtain n triangular carrier signals of full-bridge inverters, and respectively serve as n A triangular carrier signal of a-phase full-bridge inverters, a triangular carrier signal of n b-phase full-bridge inverters, and a triangular carrier signal of n c-phase full-bridge inverters;

将所述n个a相全桥逆变器的正弦调制波和所述n个a相全桥逆变器的三角载波信号进行对比,得到n个a相全桥逆变器的PWM驱动信号;Comparing the sinusoidal modulation waves of the n a-phase full-bridge inverters with the triangular carrier signals of the n a-phase full-bridge inverters to obtain the n a-phase full-bridge inverter PWM drive signals;

将所述n个b相全桥逆变器的正弦调制波和所述n个b相全桥逆变器的三角载波信号进行对比,得到n个b相全桥逆变器的PWM驱动信号;Comparing the sinusoidal modulation waves of the n b-phase full-bridge inverters with the triangular carrier signals of the n b-phase full-bridge inverters, obtaining n PWM drive signals of the b-phase full-bridge inverters;

将所述n个c相全桥逆变器的正弦调制波和所述n个c相全桥逆变器的三角载波信号进行对比,得到n个c相全桥逆变器的PWM驱动信号;Comparing the sinusoidal modulation waves of the n c-phase full-bridge inverters with the triangular carrier signals of the n c-phase full-bridge inverters to obtain the n c-phase full-bridge inverter PWM drive signals;

根据所述n个a相全桥逆变器的PWM驱动信号、n个b相全桥逆变器的PWM驱动信号和n个c相全桥逆变器的PWM驱动信号控制储能逆变器功率双向可控流动;Control the energy storage inverter according to the PWM driving signals of the n a-phase full-bridge inverters, the PWM driving signals of the n b-phase full-bridge inverters and the n c-phase full-bridge inverters. Two-way controllable flow of power;

步骤6、采集直流电网电压Vo和第一高频电感电流iL1、第二高频电感电流iL2、第三高频电感电流iL3;采集n个a相储能单元的电压Va1~Van、n个b相储能单元的电压Vb1~Vbn以及n个c相储能单元的电压Vc1~VcnStep 6. Collect the DC grid voltage V o , the first high-frequency inductor current i L1 , the second high-frequency inductor current i L2 , and the third high-frequency inductor current i L3 ; collect the voltages V a1 ~ of n a-phase energy storage units V an , voltages V b1 -V bn of n phase-b energy storage units, and voltages V c1 -V cn of n phase-c energy storage units;

步骤7、控制3n个级联H桥单元中全桥逆变器的右桥臂上管始终关断、下管始终导通,从而使得各相n个级联H桥单元输出能串联于直流电网;Step 7. Control the upper tube of the right bridge arm of the full-bridge inverter in the 3n cascaded H-bridge units to always turn off and the lower tube to always be turned on, so that the output of n cascaded H-bridge units in each phase can be connected in series to the DC power grid ;

步骤8、采用控制储能系统充放电功率方法,给定储能系统功率指令Pref,根据采样所得直流母线电压Vo,通过式(3)计算出储能系统的充放电电流基准值IrefStep 8. Using the method of controlling the charging and discharging power of the energy storage system, given the power command P ref of the energy storage system, according to the DC bus voltage V o obtained by sampling, calculate the reference value I ref of the charging and discharging current of the energy storage system through formula (3) :

步骤9、将储能系统的充放电电流基准值Iref分别与第一高频电感电流iL1、第二高频电感电流iL2、第三高频电感电流iL3相比较,所获得的差值分别经PI环节得到3路通道的调制波信号;Step 9. Comparing the charge and discharge current reference value I ref of the energy storage system with the first high-frequency inductor current i L1 , the second high-frequency inductor current i L2 , and the third high-frequency inductor current i L3 , the obtained difference The values are obtained through the PI link to obtain the modulated wave signals of the three channels;

给定一个原始三角载波,采用三相交错并联控制方式将所述原始三角载波依次移相2π/3相位,从而获得3路通道的三角载波;将3路通道的三角载波分别与3路通道的调制波信号进行对比,产生全桥逆变器的PWM驱动信号,以所述PWM驱动信号控制储能直流变换器功率双向可控流动。Given an original triangular carrier wave, the original triangular carrier wave is sequentially phase-shifted by 2π/3 phases using a three-phase interleaved parallel control method, thereby obtaining triangular carrier waves of 3 channels; The modulated wave signals are compared to generate a PWM driving signal for the full-bridge inverter, and the PWM driving signal is used to control the bidirectional controllable power flow of the energy storage DC converter.

与已有技术相比,本发明的有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:

1、本发明储能功率调节装置使储能系统能够利用一套功率调节装置既连接交流电网,又连接直流电网,根据交直流混合微网系统的运行条件灵活控制储能功率调节装置工作在DC/AC逆变或DC/DC直流变换两种不同运行模式,克服了现有技术需要在交直流混合微网系统的交流母线和直流母线两侧独立配置储能系统及相应功率调节装置的问题,实现了储能系统的灵活配置与管理,提高了电能在交直流母线间的转换效率,提高了交直流混合微网系统的稳定性与可靠性,同时减小了投资成本和设备安装空间,保证了不同运行模式下设备的充分利用。1. The energy storage power adjustment device of the present invention enables the energy storage system to use a set of power adjustment devices to connect to both the AC power grid and the DC power grid, and flexibly control the energy storage power adjustment device to work in DC according to the operating conditions of the AC-DC hybrid micro-grid system. Two different operating modes: /AC inverter or DC/DC conversion, which overcomes the problem that the existing technology needs to independently configure energy storage systems and corresponding power adjustment devices on both sides of the AC bus and DC bus of the AC-DC hybrid microgrid system. It realizes the flexible configuration and management of the energy storage system, improves the conversion efficiency of electric energy between the AC and DC buses, improves the stability and reliability of the AC-DC hybrid micro-grid system, and reduces the investment cost and equipment installation space, ensuring Make full use of the equipment under different operating modes.

2、本发明通过调节交流输出接口电路和直流输出接口电路的断路器开关状态,控制储能功率调节装置在储能逆变器DC/AC结构和储能直流变换器DC/DC结构间灵活切换,克服了传统功率调节装置运行方式单一的问题,实现了功率调节装置运行方式多样化;同时利用断路器开关状态作为储能功率调节装置工作模式的判断依据,判断储能功率调节装置的工作模式是储能逆变器模式或储能直流变换器模式;装置结构切换方法简单灵活,控制判断依据直观可靠,提高了储能功率调节装置的适用性和可操作性。2. The present invention controls the energy storage power adjustment device to flexibly switch between the DC/AC structure of the energy storage inverter and the DC/DC structure of the energy storage DC converter by adjusting the switch state of the circuit breaker of the AC output interface circuit and the DC output interface circuit , to overcome the problem of single operation mode of the traditional power adjustment device, and realize the diversification of the operation mode of the power adjustment device; at the same time, the working mode of the energy storage power adjustment device is judged by using the switch state of the circuit breaker as the basis for judging the working mode of the energy storage power adjustment device It is an energy storage inverter mode or an energy storage DC converter mode; the device structure switching method is simple and flexible, and the control judgment basis is intuitive and reliable, which improves the applicability and operability of the energy storage power adjustment device.

3、本发明在储能逆变器模式下采用功率解耦控制方法和载波相移CPS-SPWM调制方法作为储能功率调节装置的控制方法;功率解耦控制方法实现了对储能逆变器输出功率的快速精确控制;载波相移CPS-SPWM调制方法控制简单,可大幅减小逆变器输出电压谐波,降低了对输出滤波电路的要求。3. The present invention adopts the power decoupling control method and the carrier phase shift CPS-SPWM modulation method as the control method of the energy storage power adjustment device in the energy storage inverter mode; the power decoupling control method realizes the control of the energy storage inverter Fast and precise control of the output power; the carrier phase shift CPS-SPWM modulation method is simple to control, which can greatly reduce the harmonics of the inverter output voltage and reduce the requirements for the output filter circuit.

4、本发明在储能直流变换器模式下采用控制储能系统充放电功率方法和三相交错并联控制方式作为储能功率调节装置的控制方法;控制储能系统充放电功率方法实现了对储能直流变换器输出功率的快速精确控制,使储能功率调节装置适用于平抑可再生能源波动场合;三相交错并联控制方式减小了输出总电流纹波,提高了纹波脉动频率,从而减小了输出滤波电感、电容的参数值,有利于改善电路的动态响应能力,提高了系统效率。4. The present invention adopts the method of controlling the charge and discharge power of the energy storage system and the three-phase interleaved parallel control method as the control method of the energy storage power adjustment device in the mode of the energy storage DC converter; the method of controlling the charge and discharge power of the energy storage system realizes the The fast and precise control of the output power of the DC converter makes the energy storage power adjustment device suitable for the occasion of stabilizing the fluctuation of renewable energy; the three-phase interleaved parallel control mode reduces the total output current ripple and increases the ripple frequency, thereby reducing The parameter values of the output filter inductor and capacitor are reduced, which is conducive to improving the dynamic response capability of the circuit and improving the system efficiency.

附图说明Description of drawings

图1为本发明储能功率调节装置结构示意图;Fig. 1 is a schematic structural diagram of the energy storage power regulating device of the present invention;

图2为本发明储能功率调节装置储能逆变器工作模式拓扑结构示意图;Fig. 2 is a schematic diagram of the topological structure of the working mode of the energy storage inverter of the energy storage power regulating device of the present invention;

图3为本发明储能功率调节装置储能直流变换器工作模式拓扑结构示意图;Fig. 3 is a schematic diagram of the topological structure of the working mode of the energy storage DC converter of the energy storage power regulating device of the present invention;

图4为本发明储能功率调节装置储能逆变器工作模式控制结构示意图;Fig. 4 is a schematic diagram of the working mode control structure of the energy storage inverter of the energy storage power regulating device of the present invention;

图5为本发明储能功率调节装置储能直流变换器工作模式控制结构示意图。Fig. 5 is a schematic diagram of the working mode control structure of the energy storage DC converter of the energy storage power regulating device of the present invention.

具体实施方式Detailed ways

本实施例中,一种交直流两用储能功率调节装置,是应用于交直流混合微网中,主要包括功率调节主电路和中央控制器单元;In this embodiment, an AC-DC dual-purpose energy storage power adjustment device is applied to an AC-DC hybrid microgrid, and mainly includes a power adjustment main circuit and a central controller unit;

如图1所示,功率调节主电路包括6个级联H桥单元、6个储能单元、交流输出接口电路和直流输出接口电路;1≤i≤2;As shown in Figure 1, the power regulation main circuit includes 6 cascaded H-bridge units, 6 energy storage units, AC output interface circuit and DC output interface circuit; 1≤i≤2;

6个级联H桥单元包括2个a相级联H桥单元(Ha1~Ha2)、2个b相级联H桥单元(Hb1~Hb2)和2个c相级联H桥单元(Hc1~Hc2);其中,第i个a相级联H桥单元包括第i个a相全桥逆变器及第i个a相滤波电容(Cai);第i个b相级联H桥单元包括第i个b相全桥逆变器及第i个b相滤波电容(Cbi);第i个c相级联H桥单元包括第i个c相全桥逆变器及第i个c相滤波电容(Cci);The 6 cascaded H-bridge units include 2 a-phase cascaded H-bridge units (H a1 ~H a2 ), 2 b-phase cascaded H-bridge units (H b1 ~H b2 ) and 2 c-phase cascaded H-bridges units (H c1 ~H c2 ); wherein, the i-th a-phase cascaded H-bridge unit includes the i-th a-phase full-bridge inverter and the i-th a-phase filter capacitor (C ai ); the i-th b-phase The cascaded H-bridge unit includes the i-th b-phase full-bridge inverter and the i-th b-phase filter capacitor (C bi ); the i-th c-phase cascaded H-bridge unit includes the i-th c-phase full-bridge inverter and the i-th c-phase filter capacitor (C ci );

6个储能单元包括2个a相储能单元、2个b相储能单元和2个c相储能单元;其中,第i个a相储能单元包括:第i个a相储能设备(Vai)及其串联的第i个a相直流断路器(KDCai);第i个b相储能单元包括:第i个b相储能设备(Vbi)及其串联的第i个b相直流断路器(KDCbi);第i个c相储能单元包括:第i个c相储能设备(Vci)及其串联的第i个c相直流断路器(KDCci);其中储能设备为蓄电池、超级电容、飞轮或超导磁体;The 6 energy storage units include 2 a-phase energy storage units, 2 b-phase energy storage units and 2 c-phase energy storage units; among them, the i-th a-phase energy storage unit includes: the i-th a-phase energy storage device (V ai ) and its i-th phase a DC circuit breaker (K DCai ) in series; the i-th phase b energy storage unit includes: the i-th phase b energy storage device (V bi ) and its i-th b-phase DC circuit breaker (K DCbi ); the i-th c-phase energy storage unit includes: the i-th c-phase energy storage device (V ci ) and the i-th c-phase DC circuit breaker (K DCci ) connected in series; where The energy storage device is a battery, a supercapacitor, a flywheel or a superconducting magnet;

交流输出接口电路包括a相交流输出接口电路、b相交流输出接口电路和c相交流输出接口电路;a相交流输出接口电路包括:a相交流断路器(KACa)及其串联的a相工频电感(La);b相交流输出接口电路包括:b相交流断路器(KACb)及其串联的b相工频电感(Lb);c相交流输出接口电路包括:c相交流断路器(KACc)及其串联的c相工频电感(Lc);The AC output interface circuit includes a-phase AC output interface circuit, b-phase AC output interface circuit and c-phase AC output interface circuit; a-phase AC output interface circuit includes: a-phase AC circuit breaker (K ACa ) and its series a-phase work frequency inductor (L a ); the b-phase AC output interface circuit includes: b-phase AC circuit breaker (K ACb ) and its b-phase power frequency inductor (L b ) connected in series; the c-phase AC output interface circuit includes: c-phase AC breaker device (K ACc ) and its c-phase power frequency inductor (L c ) connected in series;

直流输出接口电路包括第一直流输出接口电路、第二直流输出接口电路、第三直流输出接口电路、第四直流断路器(KDC4)以及滤波电容(CDC);第一直流输出接口电路包括:第一直流断路器(KDC1)及其串联的第一高频电感(L1);第二直流输出接口电路包括:第二直流断路器(KDC2)及其串联的第二高频电感(L2);第三直流输出接口电路包括:第三直流断路器(KDC3)及其串联的第三高频电感(L3);The DC output interface circuit includes a first DC output interface circuit, a second DC output interface circuit, a third DC output interface circuit, a fourth DC circuit breaker (K DC4 ) and a filter capacitor (C DC ); the first DC output interface The circuit includes: a first DC circuit breaker (K DC1 ) and its first high-frequency inductor (L 1 ) in series; the second DC output interface circuit includes: a second DC circuit breaker (K DC2 ) and its second series inductance A high-frequency inductor (L 2 ); the third DC output interface circuit includes: a third DC circuit breaker (K DC3 ) and a third high-frequency inductor (L 3 ) connected in series;

整个功率调节主电路按以下方式连接:The entire power conditioning main circuit is connected as follows:

第i个a相全桥逆变器的一侧分别与a相滤波电容(Cai)和第i个a相储能单元并联;第i个a相全桥逆变器的另一侧分别与第i-1个a相全桥逆变器和第i+1个a相全桥逆变器串联,形成a相变换单元后,再分别与第一直流输出接口电路以及a相交流输出接口电路并联;第i个b相全桥逆变器的一侧分别与b相滤波电容(Cbi)和第i个b相储能单元并联;第i个b相全桥逆变器的另一侧分别与第i-1个b相全桥逆变器和第i+1个b相全桥逆变器串联,形成b相变换单元后,再分别与第二直流输出接口电路以及b相交流输出接口电路并联;第i个c相全桥逆变器的一侧分别与c相滤波电容(Cci)和第i个c相储能单元并联;第i个c相全桥逆变器的另一侧分别与第i-1个c相全桥逆变器和第i+1个c相全桥逆变器串联,形成c相变换单元后,再分别与第三直流输出接口电路以及c相交流输出接口电路并联;One side of the i-th a-phase full-bridge inverter is connected in parallel with the a-phase filter capacitor (C ai ) and the i-th a-phase energy storage unit; the other side of the i-th a-phase full-bridge inverter is respectively connected to The i-1th a-phase full-bridge inverter and the i+1th a-phase full-bridge inverter are connected in series to form an a-phase conversion unit, and then respectively connected to the first DC output interface circuit and the a-phase AC output interface The circuits are connected in parallel; one side of the i-th b-phase full-bridge inverter is connected in parallel with the b-phase filter capacitor (C bi ) and the i-th b-phase energy storage unit respectively; the other side of the i-th b-phase full-bridge inverter The side is connected in series with the i-1th b-phase full-bridge inverter and the i+1th b-phase full-bridge inverter respectively to form a b-phase conversion unit, and then communicates with the second DC output interface circuit and the b-phase respectively The output interface circuits are connected in parallel; one side of the i-th c-phase full-bridge inverter is connected in parallel with the c-phase filter capacitor (C ci ) and the i-th c-phase energy storage unit respectively; the i-th c-phase full-bridge inverter’s The other side is respectively connected in series with the i-1th c-phase full-bridge inverter and the i+1th c-phase full-bridge inverter to form a c-phase conversion unit, and then respectively connected with the third DC output interface circuit and the c-phase The phase AC output interface circuits are connected in parallel;

a相交流输出接口电路与交流电网的a相连接;b相交流输出接口电路与交流电网的b相连接;c相交流输出接口电路与交流电网的c相连接;The a-phase AC output interface circuit is connected to a-phase of the AC grid; the b-phase AC output interface circuit is connected to b-phase of the AC grid; the c-phase AC output interface circuit is connected to c-phase of the AC grid;

第一直流输出接口电路、第二直流输出接口电路、第三直流输出接口电路和滤波电容(CDC)并联后与第四直流断路器(KDC4)串联,再接入直流电网两侧;The first DC output interface circuit, the second DC output interface circuit, the third DC output interface circuit and the filter capacitor (C DC ) are connected in parallel and then connected in series with the fourth DC circuit breaker (K DC4 ), and then connected to both sides of the DC grid;

本实施所示拓扑结构,可通过调节交流输出接口电路和直流输出接口电路的断路器开关状态控制储能功率调节装置在储能逆变器DC/AC结构和储能直流变换器DC/DC结构间灵活切换,实现了储能逆变器功能和储能直流变换器功能集中于一套功率调节装置,使得功率调节装置运行方式多样化;同时储能单元实现分布式运行,便于储能单元实现均衡控制,提高了大规模储能系统的可靠性;储能单元与级联H桥单元构成独立子模块,系统可进行模块化设计,便于储能系统扩展增容。The topological structure shown in this implementation can control the energy storage power adjustment device in the DC/AC structure of the energy storage inverter and the DC/DC structure of the energy storage DC converter by adjusting the switch state of the circuit breaker of the AC output interface circuit and the DC output interface circuit. Flexible switching between energy storage inverters and energy storage DC converters is realized in a set of power regulation devices, which makes the operation mode of power regulation devices diversified; at the same time, energy storage units realize distributed operation, which is convenient for energy storage units to realize Balanced control improves the reliability of large-scale energy storage systems; energy storage units and cascaded H-bridge units form independent sub-modules, and the system can be modularized to facilitate expansion of energy storage systems.

如图1所示,中央控制器单元包括采样调理电路、控制单元和PWM调制单元;As shown in Figure 1, the central controller unit includes a sampling conditioning circuit, a control unit and a PWM modulation unit;

采样调理电路分别采集由交流输出接口电路处的三相电网相电压(Vsa、Vsb、Vsc)和三路工频电感电流(ia、ib、ic)、直流输出接口电路处的直流电压(Vo)和三路高频电感电流(iL1、iL2、iL3)、6个储能单元的直流电压(Va1、Va2、Vb1、Vb2、Vc1、Vc2)所构成的采样信号并传递给控制单元;控制单元根据a相交流断路器(KACa)、b相交流断路器(KACb)、c相交流断路器(KACc)和第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)以及第四直流断路器(KDC4)的开关状态判断储能功率调节装置的工作模式是储能逆变器模式或储能直流变换器模式,从而根据所接收的采样信号,利用储能逆变器模式策略或储能直流变换器模式策略获得PWM控制信号,并传递给PWM调制单元;PWM调制单元根据PWM控制信号控制6个级联H桥单元实现功率转换调节。The sampling and conditioning circuit respectively collects the three-phase grid phase voltage (V sa , V sb , V sc ) at the AC output interface circuit and the three-way power frequency inductor current ( ia , ib , ic ), and the three-phase power frequency inductor current at the DC output interface circuit. DC voltage (V o ) and three high-frequency inductor currents (i L1 , i L2 , i L3 ), DC voltages of six energy storage units (V a1 , V a2 , V b1 , V b2 , V c1 , V c2 ) and transmit the sampling signal to the control unit; the control unit according to the phase a AC circuit breaker (K ACa ), the b phase AC circuit breaker (K ACb ), the c phase AC circuit breaker (K ACc ) and the first DC The switching status of the circuit breaker (K DC1 ), the second DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) is judged. The working mode of the energy storage power regulating device is storage Energy inverter mode or energy storage DC converter mode, so that according to the received sampling signal, use the energy storage inverter mode strategy or energy storage DC converter mode strategy to obtain the PWM control signal, and transmit it to the PWM modulation unit; PWM The modulation unit controls six cascaded H-bridge units to realize power conversion regulation according to the PWM control signal.

在装置工作过程中,控制单元按如下方式判断储能功率调节装置的工作模式是储能逆变器模式或储能直流变换器模式:During the working process of the device, the control unit determines whether the working mode of the energy storage power regulating device is the energy storage inverter mode or the energy storage DC converter mode as follows:

当a相交流断路器(KACa)、b相交流断路器(KACb)和c相交流断路器(KACc)闭合,且第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)和第四直流断路器(KDC4)断开,则表示储能功率调节装置形成储能逆变器DC/AC结构,如图2所示,从而判断储能功率调节装置的工作模式是储能逆变器模式;When the a-phase AC circuit breaker (K ACa ), b-phase AC circuit breaker (K ACb ) and c-phase AC circuit breaker (K ACc ) are closed, and the first DC circuit breaker (K DC1 ), the second DC circuit breaker ( K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) are disconnected, which means that the energy storage power adjustment device forms an energy storage inverter DC/AC structure, as shown in Figure 2, Therefore, it is judged that the working mode of the energy storage power regulating device is the energy storage inverter mode;

当a相交流断路器(KACa)、b相交流断路器(KACb)和c相交流断路器(KACc)断开,且第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)和第四直流断路器(KDC4)闭合,则表示储能功率调节装置形成储能直流变换器DC/DC结构,如图3所示,从而判断储能功率调节装置的工作模式是储能直流变换器模式。When the a-phase AC circuit breaker (K ACa ), b-phase AC circuit breaker (K ACb ) and c-phase AC circuit breaker (K ACc ) are disconnected, and the first DC circuit breaker (K DC1 ), the second DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) are closed, which means that the energy storage power regulator forms a DC/DC structure of the energy storage DC converter, as shown in Figure 3, Therefore, it is judged that the working mode of the energy storage power regulating device is the energy storage DC converter mode.

本实施例中,适用于交直流两用储能功率调节装置的控制方法如图4和图5所示,图4为储能功率调节装置储能逆变器工作模式控制结构示意图,图5为储能功率调节装置储能直流变换器工作模式控制结构示意图,整体控制方法按如下步骤进行:In this embodiment, the control method applicable to the AC and DC dual-purpose energy storage power adjustment device is shown in Figure 4 and Figure 5, Figure 4 is a schematic diagram of the control structure of the energy storage inverter working mode of the energy storage power adjustment device, and Figure 5 is Schematic diagram of the working mode control structure of the energy storage DC converter of the energy storage power regulating device, and the overall control method is carried out as follows:

步骤1、采集a相交流断路器(KACa)、b相交流断路器(KACb)、c相交流断路器(KACc)和第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)以及第四直流断路器(KDC4)的开关状态并进行判断;Step 1. Collect phase a AC circuit breaker (K ACa ), phase b AC circuit breaker (K ACb ), phase c AC circuit breaker (K ACc ), and the first DC circuit breaker (K DC1 ), the second DC circuit breaker (K DC2 ), the switch states of the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) and judge;

若a相交流断路器(KACa)、b相交流断路器(KACb)和c相交流断路器(KACc)闭合,且第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)和第四直流断路器(KDC4)断开,则表示储能功率调节装置工作在储能逆变器模式,并执行步骤2;If the AC circuit breaker of phase a (K ACa ), AC circuit breaker of phase b (K ACb ) and AC circuit breaker of phase c (K ACc ) are closed, and the first DC circuit breaker (K DC1 ), the second DC circuit breaker ( K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) are disconnected, which means that the energy storage power regulating device is working in the energy storage inverter mode, and step 2 is performed;

若a相交流断路器(KACa)、b相交流断路器(KACb)和c相交流断路器(KACc)断开,且第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)和第四直流断路器(KDC4)闭合,则表示储能功率调节装置工作在储能直流变换器模式,并执行步骤6;If the phase a AC circuit breaker (K ACa ), the phase b AC circuit breaker (K ACb ) and the phase c AC circuit breaker (K ACc ) are disconnected, and the first DC circuit breaker (K DC1 ), the second DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) are closed, which means that the energy storage power regulating device is working in the energy storage DC converter mode, and step 6 is performed;

步骤2、采集交流电网的a相相电压Vsa、b相相电压Vsb、c相相电压Vsc和a相电感电流ia、b相电感电流ib、c相电感电流ic;采集2个a相储能单元的电压Va1、Va2、2个b相储能单元的电压Vb1、Vb2以及2个c相储能单元的电压Vc1、Vc2Step 2. Collect phase a phase voltage V sa , phase b phase voltage V sb , phase c phase voltage V sc , and phase a inductance current i a , phase b inductance current i b , and phase c inductance current ic of the AC grid; The voltages V a1 and V a2 of the two a-phase energy storage units, the voltages V b1 and V b2 of the two b-phase energy storage units, and the voltages V c1 and V c2 of the two c-phase energy storage units;

对a相相电压Vsa、b相相电压Vsb、c相相电压Vsc和a相电感电流ia、b相电感电流ib、c相电感电流ic作abc/dq坐标变换,分别得到电网电压d轴分量Vsd、q轴分量Vsq和电网电流d轴分量id、q轴分量iqMake abc/dq coordinate transformation for phase a phase voltage V sa , phase b phase voltage V sb , phase c phase voltage V sc , phase a inductance current i a , phase b inductance current i b , and phase c inductance current i c , respectively Obtain the grid voltage d-axis component V sd , q-axis component V sq and grid current d-axis component i d , q-axis component i q ;

步骤3、级联H桥储能变换器常用功率控制策略有基于有功无功功率解耦控制与基于零序分量分离法的分相控制。基于功率解耦策略可以实现对储能变换器输出功率的快速精确控制,因此本实施例以功率解耦控制作为储能逆变器的基本控制方法。Step 3. Commonly used power control strategies for cascaded H-bridge energy storage converters include active and reactive power decoupling control and phase-separation control based on zero-sequence component separation method. Based on the power decoupling strategy, fast and precise control of the output power of the energy storage converter can be realized. Therefore, in this embodiment, the power decoupling control is used as the basic control method of the energy storage inverter.

采用功率解耦控制方法,给定有功指令P*、无功指令Q*,采用电网电压矢量定向,使得Vsq恒等于零,简化有功无功电流的求解过程。按式(1)计算得到给定有功电流指令id*和无功电流指令iq*:The power decoupling control method is adopted, the active command P* and the reactive command Q* are given, and the grid voltage vector orientation is adopted to make V sq always equal to zero, which simplifies the solution process of active and reactive currents. According to formula (1), the given active current command id* and reactive current command iq* are obtained:

步骤4、将有功电流指令id *和交流电网侧电流d轴分量id的差值、无功电流指令iq *和交流电网侧电流q轴分量iq的差值,经过有功无功电流解耦控制后得到级联H桥单元交流输出电压的dq轴参考分量ud、uq;将dq轴参考分量ud、uq经反坐标变换得到PWM信号产生环节的调制波信号Uabc *Step 4. The difference between the active current command i d * and the d-axis component i d of the AC grid side current, the difference between the reactive current command i q * and the q-axis component i q of the AC grid side current, through the active and reactive current After the decoupling control, the dq axis reference components u d and u q of the AC output voltage of the cascaded H bridge unit are obtained; the dq axis reference components u d and u q are transformed by inverse coordinates to obtain the modulation wave signal U abc * of the PWM signal generation link ;

步骤5、目前级联H桥多电平变换器的PWM调制方式有阶梯脉宽调制、脉冲阶梯调制、多载波SPWM调制、载波相移CPS-SPWM调制、空间矢量SVPWM调制以及错时采样SVPWM调制等多种技术,其中以载波相移CPS-SPWM调制性能优越,控制简单,适用于模块化控制结构,因此本实施例以载波相移CPS-SPWM调制方法作为储能逆变器的脉冲形成方式。Step 5. Currently, the PWM modulation methods of cascaded H-bridge multilevel converters include ladder pulse width modulation, pulse ladder modulation, multi-carrier SPWM modulation, carrier phase shift CPS-SPWM modulation, space vector SVPWM modulation, and time-staggered sampling SVPWM modulation, etc. A variety of technologies, among which the carrier phase shift CPS-SPWM modulation has superior performance, simple control, and is suitable for modular control structures. Therefore, this embodiment uses the carrier phase shift CPS-SPWM modulation method as the pulse formation method of the energy storage inverter.

利用载波相移CPS-SPWM调制方法,按式(2)计算得到PWM信号产生环节的调制波信号uabcUsing the carrier phase shift CPS-SPWM modulation method, the modulation wave signal u abc of the PWM signal generation link is calculated according to formula (2):

将所得调制波信号uabc作为n个a相全桥逆变器的正弦调制波,并将所述n个a相全桥逆变器的正弦调制波作为左桥臂的调制波信号,将所述n个a相全桥逆变器的正弦调制波移相180°作为右桥臂的调制波信号;The obtained modulated wave signal u abc is used as the sinusoidal modulated wave of n a-phase full-bridge inverters, and the sinusoidal modulated wave of the n a-phase full-bridge inverters is used as the modulated wave signal of the left bridge arm, and the obtained The sinusoidal modulation wave of n a-phase full-bridge inverters is phase-shifted by 180° as the modulation wave signal of the right bridge arm;

将所得调制波信号uabc滞后120°作为n个b相全桥逆变器的正弦调制波,并将所述n个b相全桥逆变器的正弦调制波作为左桥臂的调制波信号,将所述n个b相全桥逆变器的正弦调制波移相180°作为右桥臂的调制波信号;The resulting modulated wave signal u abc is lagged by 120° as the sinusoidal modulated wave of n b-phase full-bridge inverters, and the sinusoidal modulated wave of the n b-phase full-bridge inverters is used as the modulated wave signal of the left bridge arm , shifting the sinusoidal modulation waves of the n b-phase full-bridge inverters by 180° as the modulation wave signal of the right bridge arm;

将所得调制波信号uabc提前120°作为n个c相全桥逆变器的正弦调制波,并将所述n个c相全桥逆变器的正弦调制波作为左桥臂的调制波信号,将所述n个c相全桥逆变器的正弦调制波移相180°作为右桥臂的调制波信号;Advance the obtained modulated wave signal u abc by 120° as the sinusoidal modulated wave of n c-phase full-bridge inverters, and use the sinusoidal modulated wave of the n c-phase full-bridge inverters as the modulated wave signal of the left bridge arm , shifting the sinusoidal modulation waves of the n c-phase full-bridge inverters by 180° as the modulation wave signal of the right bridge arm;

给定一个全桥逆变器的原始三角载波信号,并将原始三角载波信号依次移相π/2个载波周期,从而获得2个全桥逆变器的三角载波信号,并分别作为2个a相全桥逆变器的三角载波信号、2个b相全桥逆变器的三角载波信号和2个c相全桥逆变器的三角载波信号;The original triangular carrier signal of a full-bridge inverter is given, and the original triangular carrier signal is sequentially shifted by π/2 carrier cycles, so as to obtain the triangular carrier signals of two full-bridge inverters, and respectively serve as two a The triangular carrier signal of the phase full-bridge inverter, the triangular carrier signal of the 2 b-phase full-bridge inverters and the triangular carrier signal of the 2 c-phase full-bridge inverters;

将2个a相全桥逆变器的正弦调制波和2个a相全桥逆变器的三角载波信号进行对比,得到2个a相全桥逆变器的PWM驱动信号;Comparing the sinusoidal modulation waves of the two a-phase full-bridge inverters with the triangular carrier signals of the two a-phase full-bridge inverters, the PWM driving signals of the two a-phase full-bridge inverters are obtained;

将2个b相全桥逆变器的正弦调制波和2个b相全桥逆变器的三角载波信号进行对比,得到2个b相全桥逆变器的PWM驱动信号;Comparing the sinusoidal modulation waves of the two b-phase full-bridge inverters with the triangular carrier signals of the two b-phase full-bridge inverters, the PWM driving signals of the two b-phase full-bridge inverters are obtained;

将2个c相全桥逆变器的正弦调制波和2个c相全桥逆变器的三角载波信号进行对比,得到2个c相全桥逆变器的PWM驱动信号;Comparing the sinusoidal modulation waves of the two c-phase full-bridge inverters with the triangular carrier signals of the two c-phase full-bridge inverters, the PWM driving signals of the two c-phase full-bridge inverters are obtained;

根据2个a相全桥逆变器的PWM驱动信号、2个b相全桥逆变器的PWM驱动信号和2个c相全桥逆变器的PWM驱动信号控制储能逆变器功率双向可控流动;According to the PWM driving signals of 2 a-phase full-bridge inverters, the PWM driving signals of 2 b-phase full-bridge inverters and the PWM driving signals of 2 c-phase full-bridge inverters, the power of the energy storage inverter is controlled bidirectionally controlled flow;

步骤6、采集直流电网电压Vo和第一高频电感电流iL1、第二高频电感电流iL2、第三高频电感电流iL3;采集2个a相储能单元的电压Va1、Va2、2个b相储能单元的电压Vb1、Vb2以及2个c相储能单元的电压Vc1、Vc2Step 6. Collect the DC grid voltage V o and the first high-frequency inductor current i L1 , the second high-frequency inductor current i L2 , and the third high-frequency inductor current i L3 ; collect the voltages V a1 , V a2 , the voltages V b1 and V b2 of the two b-phase energy storage units, and the voltages V c1 and V c2 of the two c-phase energy storage units;

步骤7、控制6个级联H桥单元中全桥逆变器的右桥臂上管始终关断、下管始终导通,从而使得各相2个级联H桥单元输出能串联于直流电网;Step 7. Control the upper tube of the right bridge arm of the full-bridge inverter in the six cascaded H-bridge units to always turn off and the lower tube to always be turned on, so that the output of the two cascaded H-bridge units in each phase can be connected in series to the DC power grid ;

步骤8、采用控制储能系统充放电功率策略,给定储能系统功率指令Pref,根据采样所得直流母线电压Vo,通过式(3)计算出储能系统的充放电电流基准值IrefStep 8. Using the strategy of controlling the charge and discharge power of the energy storage system, given the power command P ref of the energy storage system, and according to the DC bus voltage V o obtained by sampling, calculate the reference value I ref of the charge and discharge current of the energy storage system through formula (3) :

步骤9、将储能系统的充放电电流基准值Iref分别与第一高频电感电流iL1、第二高频电感电流iL2、第三高频电感电流iL3相比较,所获得的差值分别经PI环节得到3路通道的调制波信号;Step 9. Comparing the charge and discharge current reference value I ref of the energy storage system with the first high-frequency inductor current i L1 , the second high-frequency inductor current i L2 , and the third high-frequency inductor current i L3 , the obtained difference The values are obtained through the PI link to obtain the modulated wave signals of the three channels;

给定一个原始三角载波,采用三相交错并联控制方式将原始三角载波依次移相2π/3相位,从而获得3路通道的三角载波。相较于三相同步并联控制方式,三相交错并联控制方式可减小输出总电流纹波,提高纹波脉动频率,从而减小输出滤波电感、电容的参数值,有利于改善电路的动态响应能力,提高系统效率;Given an original triangular carrier wave, the original triangular carrier wave is sequentially shifted by 2π/3 phases using a three-phase interleaved parallel control method to obtain triangular carrier waves of 3 channels. Compared with the three-phase synchronous parallel control mode, the three-phase interleaved parallel control mode can reduce the total output current ripple and increase the ripple frequency, thereby reducing the parameter values of the output filter inductance and capacitance, which is conducive to improving the dynamic response of the circuit ability to improve system efficiency;

将3路通道的三角载波分别与3路通道的调制波信号进行对比,产生全桥逆变器的PWM驱动信号,以PWM驱动信号控制储能直流变换器功率双向可控流动,可用于平滑可再生能源输出功率波动场合。Comparing the triangular carrier waves of the 3 channels with the modulation wave signals of the 3 channels respectively, the PWM driving signal of the full-bridge inverter is generated, and the PWM driving signal is used to control the power bidirectional controllable flow of the energy storage DC converter, which can be used for smooth and reliable Where the output power of renewable energy fluctuates.

以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求书的保护范围为主。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any changes or substitutions that can be easily conceived by those skilled in the art within the technical scope disclosed in the present invention should be covered. Within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.

Claims (3)

1.一种交直流两用储能功率调节装置,是应用于交直流混合微网中,其特征是所述储能功率调节装置包括:功率调节主电路和中央控制器单元;1. An AC-DC dual-purpose energy storage power adjustment device, which is applied in an AC-DC hybrid microgrid, is characterized in that the energy storage power adjustment device includes: a power adjustment main circuit and a central controller unit; 所述功率调节主电路包括3n个级联H桥单元、3n个储能单元、交流输出接口电路和直流输出接口电路;n≥1;1≤i≤n;The power regulation main circuit includes 3n cascaded H-bridge units, 3n energy storage units, an AC output interface circuit and a DC output interface circuit; n≥1; 1≤i≤n; 所述3n个级联H桥单元包括n个a相级联H桥单元(Ha1~Han)、n个b相级联H桥单元(Hb1~Hbn)和n个c相级联H桥单元(Hc1~Hcn);The 3n cascaded H-bridge units include n a-phase cascaded H-bridge units (H a1 ~H an ), n b-phase cascaded H-bridge units (H b1 ~H bn ) and n c-phase cascaded H bridge unit (H c1 ~ H cn ); 第i个a相级联H桥单元包括第i个a相全桥逆变器及第i个a相滤波电容(Cai);The i-th a-phase cascaded H-bridge unit includes the i-th a-phase full-bridge inverter and the i-th a-phase filter capacitor (C ai ); 第i个b相级联H桥单元包括第i个b相全桥逆变器及第i个b相滤波电容(Cbi);The i-th b-phase cascaded H-bridge unit includes the i-th b-phase full-bridge inverter and the i-th b-phase filter capacitor (C bi ); 第i个c相级联H桥单元包括第i个c相全桥逆变器及第i个c相滤波电容(Cci);The i-th c-phase cascaded H-bridge unit includes the i-th c-phase full-bridge inverter and the i-th c-phase filter capacitor (C ci ); 所述3n个储能单元包括n个a相储能单元、n个b相储能单元和n个c相储能单元;The 3n energy storage units include n a-phase energy storage units, n b-phase energy storage units and n c-phase energy storage units; 第i个a相储能单元包括:第i个a相储能设备(Vai)及其串联的第i个a相直流断路器(KDCai);The i-th phase-a energy storage unit includes: the i-th phase-a energy storage device (V ai ) and the i-th phase-a DC circuit breaker (K DCai ) connected in series; 第i个b相储能单元包括:第i个b相储能设备(Vbi)及其串联的第i个b相直流断路器(KDCbi);The i-th phase-b energy storage unit includes: the i-th phase-b energy storage device (V bi ) and the i-th phase-b DC circuit breaker (K DCbi ) connected in series; 第i个c相储能单元包括:第i个c相储能设备(Vci)及其串联的第i个c相直流断路器(KDCci);The i-th phase-c energy storage unit includes: the i-th phase-c energy storage device (V ci ) and the i-th phase-c DC circuit breaker (K DCci ) connected in series; 所述交流输出接口电路包括a相交流输出接口电路、b相交流输出接口电路和c相交流输出接口电路;The AC output interface circuit includes a-phase AC output interface circuit, b-phase AC output interface circuit and c-phase AC output interface circuit; 所述a相交流输出接口电路包括:a相交流断路器(KACa)及其串联的a相工频电感(La);The a-phase AC output interface circuit includes: a-phase AC circuit breaker (K ACa ) and its a-phase power frequency inductor (L a ) connected in series; 所述b相交流输出接口电路包括:b相交流断路器(KACb)及其串联的b相工频电感(Lb);The b-phase AC output interface circuit includes: a b-phase AC circuit breaker (K ACb ) and a b-phase power frequency inductor (L b ) connected in series; 所述c相交流输出接口电路包括:c相交流断路器(KACc)及其串联的c相工频电感(Lc);The c-phase AC output interface circuit includes: a c-phase AC circuit breaker (K ACc ) and a c-phase power frequency inductor (L c ) connected in series; 所述直流输出接口电路包括第一直流输出接口电路、第二直流输出接口电路、第三直流输出接口电路、第四直流断路器(KDC4)以及滤波电容(CDC);The DC output interface circuit includes a first DC output interface circuit, a second DC output interface circuit, a third DC output interface circuit, a fourth DC circuit breaker (K DC4 ) and a filter capacitor (C DC ); 所述第一直流输出接口电路包括:第一直流断路器(KDC1)及其串联的第一高频电感(L1);The first DC output interface circuit includes: a first DC circuit breaker (K DC1 ) and its first high-frequency inductor (L 1 ) connected in series; 所述第二直流输出接口电路包括:第二直流断路器(KDC2)及其串联的第二高频电感(L2);The second DC output interface circuit includes: a second DC circuit breaker (K DC2 ) and a second high-frequency inductor (L 2 ) connected in series; 所述第三直流输出接口电路包括:第三直流断路器(KDC3)及其串联的第三高频电感(L3);The third DC output interface circuit includes: a third DC circuit breaker (K DC3 ) and a third high-frequency inductor (L 3 ) connected in series; 所述第i个a相全桥逆变器的一侧分别与a相滤波电容(Cai)和第i个a相储能单元并联;One side of the i-th a-phase full-bridge inverter is respectively connected in parallel with the a-phase filter capacitor (C ai ) and the i-th a-phase energy storage unit; 所述第i个a相全桥逆变器的另一侧分别与第i-1个a相全桥逆变器和第i+1个a相全桥逆变器串联,形成a相变换单元后,再分别与所述第一直流输出接口电路以及所述a相交流输出接口电路并联;The other side of the i-th a-phase full-bridge inverter is respectively connected in series with the i-1th a-phase full-bridge inverter and the i+1th a-phase full-bridge inverter to form an a-phase conversion unit Afterwards, they are respectively connected in parallel with the first DC output interface circuit and the a-phase AC output interface circuit; 所述第i个b相全桥逆变器的一侧分别与b相滤波电容(Cbi)和第i个b相储能单元并联;One side of the i-th b-phase full-bridge inverter is respectively connected in parallel with the b-phase filter capacitor (C bi ) and the i-th b-phase energy storage unit; 所述第i个b相全桥逆变器的另一侧分别与第i-1个b相全桥逆变器和第i+1个b相全桥逆变器串联,形成b相变换单元后,再分别与所述第二直流输出接口电路以及所述b相交流输出接口电路并联;The other side of the i-th b-phase full-bridge inverter is respectively connected in series with the i-1th b-phase full-bridge inverter and the i+1th b-phase full-bridge inverter to form a b-phase conversion unit After that, they are respectively connected in parallel with the second DC output interface circuit and the b-phase AC output interface circuit; 所述第i个c相全桥逆变器的一侧分别与c相滤波电容(Cci)和第i个c相储能单元并联;One side of the i-th c-phase full-bridge inverter is respectively connected in parallel with the c-phase filter capacitor (C ci ) and the i-th c-phase energy storage unit; 所述第i个c相全桥逆变器的另一侧分别与第i-1个c相全桥逆变器和第i+1个c相全桥逆变器串联,形成c相变换单元后,再分别与所述第三直流输出接口电路以及所述c相交流输出接口电路并联;The other side of the i-th c-phase full-bridge inverter is respectively connected in series with the i-1th c-phase full-bridge inverter and the i+1th c-phase full-bridge inverter to form a c-phase conversion unit Afterwards, they are respectively connected in parallel with the third DC output interface circuit and the c-phase AC output interface circuit; 所述a相交流输出接口电路与交流电网的a相连接;The a-phase AC output interface circuit is connected to a-phase of the AC grid; 所述b相交流输出接口电路与交流电网的b相连接;The b-phase AC output interface circuit is connected to the b-phase of the AC grid; 所述c相交流输出接口电路与交流电网的c相连接;The c-phase AC output interface circuit is connected to the c-phase of the AC grid; 所述第一直流输出接口电路、所述第二直流输出接口电路、所述第三直流输出接口电路和所述滤波电容并联后与所述第四直流断路器(KDC4)串联,再接入直流电网两侧;The first DC output interface circuit, the second DC output interface circuit, the third DC output interface circuit and the filter capacitor are connected in parallel to the fourth DC circuit breaker (K DC4 ) in series, and then connected to into both sides of the DC grid; 所述中央控制器单元包括采样调理电路、控制单元和PWM调制单元;The central controller unit includes a sampling conditioning circuit, a control unit and a PWM modulation unit; 所述采样调理电路分别采集由交流输出接口电路处的三相电网相电压和三路工频电感电流、直流输出接口电路处的直流电压和三路高频电感电流、3n个储能单元的直流电压所构成的采样信号并传递给所述控制单元;The sampling conditioning circuit respectively collects the phase voltage of the three-phase power grid at the AC output interface circuit, the three-way power frequency inductor current, the DC voltage at the DC output interface circuit, the three-way high-frequency inductor current, and the DC voltage of 3n energy storage units. The sampling signal formed by the voltage is transmitted to the control unit; 所述控制单元根据所述a相交流断路器(KACa)、所述b相交流断路器(KACb)、所述c相交流断路器(KACc)和所述第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)以及第四直流断路器(KDC4)的开关状态判断所述储能功率调节装置的工作模式是储能逆变器模式或储能直流变换器模式,从而根据所接收的采样信号,利用储能逆变器模式策略或储能直流变换器模式策略获得PWM控制信号,并传递给所述PWM调制单元;The control unit is based on the a-phase AC circuit breaker (K ACa ), the b-phase AC circuit breaker (K ACb ), the c-phase AC circuit breaker (K ACc ) and the first DC circuit breaker ( K DC1 ), the second DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) switch states to judge that the working mode of the energy storage power regulating device is energy storage Inverter mode or energy storage DC converter mode, so that according to the received sampling signal, the PWM control signal is obtained by using the energy storage inverter mode strategy or the energy storage DC converter mode strategy, and transmitted to the PWM modulation unit; 所述PWM调制单元根据所述PWM控制信号控制所述3n个级联H桥单元实现功率转换调节;The PWM modulation unit controls the 3n cascaded H-bridge units according to the PWM control signal to realize power conversion regulation; 所述控制单元是按如下方式判断储能功率调节装置的工作模式是储能逆变器模式或储能直流变换器模式:The control unit judges whether the working mode of the energy storage power regulating device is the energy storage inverter mode or the energy storage DC converter mode in the following manner: 当所述a相交流断路器(KACa)、b相交流断路器(KACb)和c相交流断路器(KACc)闭合,且所述第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)和第四直流断路器(KDC4)断开,则表示所述储能功率调节装置形成储能逆变器DC/AC结构,从而判断所述储能功率调节装置的工作模式是储能逆变器模式;When the a-phase AC circuit breaker (K ACa ), b-phase AC circuit breaker (K ACb ) and c-phase AC circuit breaker (K ACc ) are closed, and the first DC circuit breaker (K DC1 ), the second If the DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) are disconnected, it means that the energy storage power regulating device forms an energy storage inverter DC/AC structure, Therefore, it is judged that the working mode of the energy storage power regulating device is the energy storage inverter mode; 当所述a相交流断路器(KACa)、b相交流断路器(KACb)和c相交流断路器(KACc)断开,且所述第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)和第四直流断路器(KDC4)闭合,则表示所述储能功率调节装置形成储能直流变换器DC/DC结构,从而判断所述储能功率调节装置的工作模式是储能直流变换器模式。When the a-phase AC circuit breaker (K ACa ), b-phase AC circuit breaker (K ACb ) and c-phase AC circuit breaker (K ACc ) are disconnected, and the first DC circuit breaker (K DC1 ), the first When the second DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) are closed, it means that the energy storage power regulating device forms an energy storage DC converter DC/DC structure, Therefore, it is judged that the working mode of the energy storage power regulating device is the energy storage DC converter mode. 2.根据权利要求1所述的交直流两用储能功率调节装置,其特征在于:所述储能设备为蓄电池、超级电容、飞轮或超导磁体。2. The AC and DC energy storage power regulating device according to claim 1, wherein the energy storage device is a storage battery, a supercapacitor, a flywheel or a superconducting magnet. 3.一种根据权利要求1或2所述的交直流两用储能功率调节装置的控制方法,其特征是按如下步骤进行:3. A control method for the AC/DC dual-purpose energy storage power regulating device according to claim 1 or 2, characterized in that the following steps are performed: 步骤1、采集a相交流断路器(KACa)、b相交流断路器(KACb)、c相交流断路器(KACc)和第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)以及第四直流断路器(KDC4)的开关状态并进行判断;Step 1. Collect phase a AC circuit breaker (K ACa ), phase b AC circuit breaker (K ACb ), phase c AC circuit breaker (K ACc ), and the first DC circuit breaker (K DC1 ), the second DC circuit breaker (K DC2 ), the switch states of the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) and judge; 若所述a相交流断路器(KACa)、b相交流断路器(KACb)和c相交流断路器(KACc)闭合,且所述第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)和第四直流断路器(KDC4)断开,则表示所述储能功率调节装置工作在储能逆变器模式,并执行步骤2;If the a-phase AC circuit breaker (K ACa ), b-phase AC circuit breaker (K ACb ) and c-phase AC circuit breaker (K ACc ) are closed, and the first DC circuit breaker (K DC1 ), the second If the DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) are disconnected, it means that the energy storage power regulating device is working in the energy storage inverter mode, and executes Step 2; 若所述a相交流断路器(KACa)、b相交流断路器(KACb)和c相交流断路器(KACc)断开,且所述第一直流断路器(KDC1)、第二直流断路器(KDC2)、第三直流断路器(KDC3)和第四直流断路器(KDC4)闭合,则表示储能功率调节装置工作在储能直流变换器模式,并执行步骤6;If the a-phase AC circuit breaker (K ACa ), b-phase AC circuit breaker (K ACb ) and c-phase AC circuit breaker (K ACc ) are disconnected, and the first DC circuit breaker (K DC1 ), the first When the second DC circuit breaker (K DC2 ), the third DC circuit breaker (K DC3 ) and the fourth DC circuit breaker (K DC4 ) are closed, it means that the energy storage power regulating device is working in the energy storage DC converter mode, and step 6 is performed ; 步骤2、采集交流电网的a相相电压Vsa、b相相电压Vsb、c相相电压Vsc和a相电感电流ia、b相电感电流ib、c相电感电流ic;采集n个a相储能单元的电压Va1~Van、n个b相储能单元的电压Vb1~Vbn以及n个c相储能单元的电压Vc1~VcnStep 2. Collect phase a phase voltage V sa , phase b phase voltage V sb , phase c phase voltage V sc , and phase a inductance current i a , phase b inductance current i b , and phase c inductance current ic of the AC grid; Voltages V a1 -V an of n a-phase energy storage units, voltages V b1 -V bn of n b-phase energy storage units, and voltages V c1 -V cn of n c-phase energy storage units; 对a相相电压Vsa、b相相电压Vsb、c相相电压Vsc和a相电感电流ia、b相电感电流ib、c相电感电流ic作abc/dq坐标变换,分别得到电网电压d轴分量Vsd、q轴分量Vsq和电网电流d轴分量id、q轴分量iqMake abc/dq coordinate transformation for phase a phase voltage V sa , phase b phase voltage V sb , phase c phase voltage V sc , phase a inductance current i a , phase b inductance current i b , and phase c inductance current i c , respectively Obtain the grid voltage d-axis component V sd , q-axis component V sq and grid current d-axis component i d , q-axis component i q ; 步骤3、采用功率解耦控制方法,给定有功指令P*、无功指令Q*,按式(1)计算得到给定有功电流指令id *和无功电流指令iq *Step 3. Using the power decoupling control method, given the active command P * and the reactive command Q * , calculate the given active current command i d * and reactive current command i q * according to formula (1): <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>i</mi> <mi>d</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msup> <mi>P</mi> <mo>*</mo> </msup> <mo>/</mo> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>i</mi> <mi>q</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msup> <mi>Q</mi> <mo>*</mo> </msup> <mo>/</mo> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>d</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msubsup><mi>i</mi><mi>d</mi><mo>*</mo></msubsup><mo>=</mo><msup><mi>P</mi><mo>*</mo></msup><mo>/</mo><msub><mi>V</mi><mrow><mi>s</mi><mi>d</mi></mrow></msub></mrow></mtd></mtr><mtr><mtd><mrow><msubsup><mi>i</mi><mi>q</mi><mo>*</mo></msubsup><mo>=</mo><msup><mi>Q</mi><mo>*</mo></msup><mo>/</mo><msub><mi>V</mi><mrow><mi>s</mi><mi>d</mi></mrow></msub></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow> 步骤4、将有功电流指令id *和交流电网侧电流d轴分量id的差值、无功电流指令iq *和交流电网侧电流q轴分量iq的差值,经过有功无功电流解耦控制后得到级联H桥单元交流输出电压的dq轴参考分量ud、uq;将所述dq轴参考分量ud、uq经反坐标变换得到PWM信号产生环节的调制波原始电压信号Uabc *Step 4. The difference between the active current command i d * and the d-axis component i d of the AC grid side current, the difference between the reactive current command i q * and the q-axis component i q of the AC grid side current, through the active and reactive current After decoupling control, the dq axis reference components u d and u q of the AC output voltage of the cascaded H-bridge unit are obtained; the dq axis reference components u d and u q are transformed by inverse coordinates to obtain the original voltage of the modulated wave in the PWM signal generation link signal_abc * ; 步骤5、利用载波相移CPS-SPWM调制方法,按式(2)计算得到PWM信号产生环节的调制波信号uabcStep 5. Utilize the carrier phase shift CPS-SPWM modulation method to calculate the modulated wave signal u abc of the PWM signal generation link according to formula (2): <mrow> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> </msub> <mfrac> <mrow> <mn>3</mn> <msubsup> <mi>U</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>c</mi> </mrow> <mo>*</mo> </msubsup> </mrow> <mrow> <msub> <mi>V</mi> <mrow> <mi>a</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>a</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>b</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>b</mi> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>...</mo> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>n</mi> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>u</mi><mrow><mi>a</mi><mi>b</mi><mi>c</mi></mrow></msub><mfrac><mrow><mn>3</mn><msubsup><mi>U</mi><mrow><mi>a</mi><mi>b</mi><mi>c</mi></mrow><mo>*</mo></msubsup></mrow><mrow><msub><mi>V</mi><mrow><mi>a</mi><mn>1</mn></mrow></msub><mo>+</mo><mo>...</mo><mo>+</mo><msub><mi>V</mi><mrow><mi>a</mi><mi>n</mi></mrow></msub><mo>+</mo><msub><mi>V</mi><mrow><mi>b</mi><mn>1</mn></mrow></msub><mo>+</mo><mo>...</mo><mo>+</mo><msub><mi>V</mi><mrow><mi>b</mi><mi>n</mi></mrow></msub><mo>+</mo><msub><mi>V</mi><mrow><mi>c</mi><mn>1</mn></mrow></msub><mo>+</mo><mo>...</mo><mo>+</mo><msub><mi>V</mi><mrow><mi>c</mi><mi>n</mi></mrow></msub></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow> 将所得调制波信号uabc作为n个a相全桥逆变器的正弦调制波,并将所述n个a相全桥逆变器的正弦调制波作为左桥臂的调制波信号,将所述n个a相全桥逆变器的正弦调制波移相180°作为右桥臂的调制波信号;The obtained modulated wave signal u abc is used as the sinusoidal modulated wave of n a-phase full-bridge inverters, and the sinusoidal modulated wave of the n a-phase full-bridge inverters is used as the modulated wave signal of the left bridge arm, and the obtained The sinusoidal modulation wave of n a-phase full-bridge inverters is phase-shifted by 180° as the modulation wave signal of the right bridge arm; 将所得调制波信号uabc滞后120°作为n个b相全桥逆变器的正弦调制波,并将所述n个b相全桥逆变器的正弦调制波作为左桥臂的调制波信号,将所述n个b相全桥逆变器的正弦调制波移相180°作为右桥臂的调制波信号;The resulting modulated wave signal u abc is lagged by 120° as the sinusoidal modulated wave of n b-phase full-bridge inverters, and the sinusoidal modulated wave of the n b-phase full-bridge inverters is used as the modulated wave signal of the left bridge arm , shifting the sinusoidal modulation waves of the n b-phase full-bridge inverters by 180° as the modulation wave signal of the right bridge arm; 将所得调制波信号uabc提前120°作为n个c相全桥逆变器的正弦调制波,并将所述n个c相全桥逆变器的正弦调制波作为左桥臂的调制波信号,将所述n个c相全桥逆变器的正弦调制波移相180°作为右桥臂的调制波信号;Advance the obtained modulated wave signal u abc by 120° as the sinusoidal modulated wave of n c-phase full-bridge inverters, and use the sinusoidal modulated wave of the n c-phase full-bridge inverters as the modulated wave signal of the left bridge arm , shifting the sinusoidal modulation waves of the n c-phase full-bridge inverters by 180° as the modulation wave signal of the right bridge arm; 给定一个全桥逆变器的原始三角载波信号,并将所述原始三角载波信号依次移相π/n个载波周期,从而获得n个全桥逆变器的三角载波信号,并分别作为n个a相全桥逆变器的三角载波信号、n个b相全桥逆变器的三角载波信号和n个c相全桥逆变器的三角载波信号;The original triangular carrier signal of a full-bridge inverter is given, and the original triangular carrier signal is sequentially phase-shifted by π/n carrier cycles, so as to obtain n triangular carrier signals of full-bridge inverters, and respectively serve as n A triangular carrier signal of a-phase full-bridge inverters, a triangular carrier signal of n b-phase full-bridge inverters, and a triangular carrier signal of n c-phase full-bridge inverters; 将所述n个a相全桥逆变器的正弦调制波和所述n个a相全桥逆变器的三角载波信号进行对比,得到n个a相全桥逆变器的PWM驱动信号;Comparing the sinusoidal modulation waves of the n a-phase full-bridge inverters with the triangular carrier signals of the n a-phase full-bridge inverters to obtain the n a-phase full-bridge inverter PWM drive signals; 将所述n个b相全桥逆变器的正弦调制波和所述n个b相全桥逆变器的三角载波信号进行对比,得到n个b相全桥逆变器的PWM驱动信号;Comparing the sinusoidal modulation waves of the n b-phase full-bridge inverters with the triangular carrier signals of the n b-phase full-bridge inverters, obtaining n PWM drive signals of the b-phase full-bridge inverters; 将所述n个c相全桥逆变器的正弦调制波和所述n个c相全桥逆变器的三角载波信号进行对比,得到n个c相全桥逆变器的PWM驱动信号;Comparing the sinusoidal modulation waves of the n c-phase full-bridge inverters with the triangular carrier signals of the n c-phase full-bridge inverters to obtain the n c-phase full-bridge inverter PWM drive signals; 根据所述n个a相全桥逆变器的PWM驱动信号、n个b相全桥逆变器的PWM驱动信号和n个c相全桥逆变器的PWM驱动信号控制储能逆变器功率双向可控流动;Control the energy storage inverter according to the PWM driving signals of the n a-phase full-bridge inverters, the PWM driving signals of the n b-phase full-bridge inverters and the n c-phase full-bridge inverters. Two-way controllable flow of power; 步骤6、采集直流电网电压Vo和第一高频电感电流iL1、第二高频电感电流iL2、第三高频电感电流iL3;采集n个a相储能单元的电压Va1~Van、n个b相储能单元的电压Vb1~Vbn以及n个c相储能单元的电压Vc1~VcnStep 6. Collect the DC grid voltage V o , the first high-frequency inductor current i L1 , the second high-frequency inductor current i L2 , and the third high-frequency inductor current i L3 ; collect the voltages V a1 ~ of n a-phase energy storage units V an , voltages V b1 -V bn of n phase-b energy storage units, and voltages V c1 -V cn of n phase-c energy storage units; 步骤7、控制3n个级联H桥单元中全桥逆变器的右桥臂上管始终关断、下管始终导通,从而使得各相n个级联H桥单元输出能串联于直流电网;Step 7. Control the upper tube of the right bridge arm of the full-bridge inverter in the 3n cascaded H-bridge units to always turn off and the lower tube to always be turned on, so that the output of n cascaded H-bridge units in each phase can be connected in series to the DC power grid ; 步骤8、采用控制储能系统充放电功率方法,给定储能系统功率指令Pref,根据采样所得直流母线电压Vo,通过式(3)计算出储能系统的充放电电流基准值IrefStep 8. Using the method of controlling the charging and discharging power of the energy storage system, given the power command P ref of the energy storage system, according to the DC bus voltage V o obtained by sampling, calculate the reference value I ref of the charging and discharging current of the energy storage system through formula (3) : <mrow> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mrow> <mn>3</mn> <msub> <mi>V</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>I</mi><mrow><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mo>=</mo><mfrac><msub><mi>P</mi><mrow><mi>r</mi><mi>e</mi><mi>f</mi></mrow></msub><mrow><mn>3</mn><msub><mi>V</mi><mn>0</mn></msub></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow> 步骤9、将储能系统的充放电电流基准值Iref分别与第一高频电感电流iL1、第二高频电感电流iL2、第三高频电感电流iL3相比较,所获得的差值分别经PI环节得到3路通道的调制波信号;Step 9. Comparing the charge and discharge current reference value I ref of the energy storage system with the first high-frequency inductor current i L1 , the second high-frequency inductor current i L2 , and the third high-frequency inductor current i L3 , the obtained difference The values are obtained through the PI link to obtain the modulated wave signals of the three channels; 给定一个原始三角载波,采用三相交错并联控制方式将所述原始三角载波依次移相2π/3相位,从而获得3路通道的三角载波;将3路通道的三角载波分别与3路通道的调制波信号进行对比,产生全桥逆变器的PWM驱动信号,以所述PWM驱动信号控制储能直流变换器功率双向可控流动。Given an original triangular carrier wave, the original triangular carrier wave is sequentially phase-shifted by 2π/3 phases using a three-phase interleaved parallel control method, thereby obtaining triangular carrier waves of 3 channels; The modulated wave signals are compared to generate a PWM driving signal for the full-bridge inverter, and the PWM driving signal is used to control the bidirectional controllable power flow of the energy storage DC converter.
CN201610105200.2A 2016-02-25 2016-02-25 A kind of AC/DC energy storage PCU Power Conditioning Unit and its control method Expired - Fee Related CN105576687B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610105200.2A CN105576687B (en) 2016-02-25 2016-02-25 A kind of AC/DC energy storage PCU Power Conditioning Unit and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610105200.2A CN105576687B (en) 2016-02-25 2016-02-25 A kind of AC/DC energy storage PCU Power Conditioning Unit and its control method

Publications (2)

Publication Number Publication Date
CN105576687A CN105576687A (en) 2016-05-11
CN105576687B true CN105576687B (en) 2018-03-09

Family

ID=55886521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610105200.2A Expired - Fee Related CN105576687B (en) 2016-02-25 2016-02-25 A kind of AC/DC energy storage PCU Power Conditioning Unit and its control method

Country Status (1)

Country Link
CN (1) CN105576687B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106385193B (en) * 2016-10-11 2018-12-18 华北电力大学 The changeable low-voltage direct side topology of electric power electric transformer alternating current-direct current capacity
CN107026474B (en) * 2017-05-12 2019-10-11 合肥工业大学 A Power Balance Control Method for Reducing DC Voltage Fluctuation of Cascaded H-Bridge Inverters
CN108400607A (en) * 2018-01-19 2018-08-14 许继电源有限公司 A kind of power grid energy-storage system and its energy storage device balance control method
CN115021302B (en) * 2022-08-09 2022-11-22 四川大学 Control method of megawatt-level hybrid energy storage device with power quality control function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746771A (en) * 1993-07-30 1995-02-14 Technical Asoshieeto:Kk Automatic charger
CN103208920B (en) * 2012-01-13 2016-06-22 三垦电气株式会社 DC converter
CN204947739U (en) * 2015-09-23 2016-01-06 山东圣阳电源股份有限公司 A kind of tandem type battery energy storage system

Also Published As

Publication number Publication date
CN105576687A (en) 2016-05-11

Similar Documents

Publication Publication Date Title
CN109245123B (en) Multi-machine parallel virtual synchronous control system and method for cascade type energy storage system
CN203071836U (en) Mixed microgrid system and AC/DC coupler thereof
CN102427245B (en) Movable model device of system of offshore wind power synchronized through flexible DC (Direct Current) power transmission
CN108667036A (en) A control method for a V2G converter of an electric vehicle
CN106972603A (en) The V2G chargers and its control method of a kind of use High Frequency Link matrix converter
CN110341728A (en) A through-type traction power supply system for electrified railway
CN110943469B (en) Single-stage energy storage converter and control method thereof
CN101976879A (en) Mobile emergency power supply based on system converter
CN205693374U (en) The Bidirectional charging-discharging device that a kind of electrical network is mutual with electric automobile energy
CN106936148B (en) A photovoltaic-energy storage conversion system and its control method
CN109103935B (en) A seamless switching control method for off-grid and grid-connected three-phase energy storage converters
CN114944658B (en) A multi-form energy storage composite device topology and multi-power flow and voltage support control method thereof
CN108879765A (en) Prevent the bidirectional power converter control method of micro-capacitance alternating current bus current distortion
CN105576687B (en) A kind of AC/DC energy storage PCU Power Conditioning Unit and its control method
CN104882893A (en) Electric energy quality comprehensive control method and device with short circuit current limiting function
CN106786691A (en) A kind of three level intelligent chargers with reactive-load compensation and reactive power detection compensation method
CN105391047B (en) A kind of vehicular DC micro power grid system and control method
CN102545675A (en) Hybrid series H-bridge multi-level grid-connected inverter direct current bus voltage control method
CN108767902A (en) A kind of electricity generation system interface converter control method based on coupling virtual impedance
Guo et al. A virtual inertia control strategy for dual active bridge DC-DC converter
CN113922691A (en) KVCS alternating current-direct current conversion energy storage converter
Zhang et al. Three-Level PWM rectifier based high efficiency batteries charger for EV
Alam et al. Advancing v2g technology: Design of an adaptive bi-directional three phase afe converter for high-power applications
Jia et al. A novel boost four-leg converter for electric vehicle applications
CN103187729B (en) Method and device for eliminating harmonic wave of photovoltaic grid connected charging system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180309

Termination date: 20210225

CF01 Termination of patent right due to non-payment of annual fee