CN105576685A - 新能源微电网储能系统 - Google Patents

新能源微电网储能系统 Download PDF

Info

Publication number
CN105576685A
CN105576685A CN201610093479.7A CN201610093479A CN105576685A CN 105576685 A CN105576685 A CN 105576685A CN 201610093479 A CN201610093479 A CN 201610093479A CN 105576685 A CN105576685 A CN 105576685A
Authority
CN
China
Prior art keywords
energy storage
controller
storage system
grid
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610093479.7A
Other languages
English (en)
Inventor
田丽
王春亭
聂启燕
凤志民
吴道林
李从飞
邓多成
严晨曦
王军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Polytechnic University
Original Assignee
Anhui Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Polytechnic University filed Critical Anhui Polytechnic University
Priority to CN201610093479.7A priority Critical patent/CN105576685A/zh
Publication of CN105576685A publication Critical patent/CN105576685A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/383
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

本发明公开了一种新能源微电网储能系统,包括光伏发电单元、混合储能装置、负荷和电源控制系统,光伏发电单元包括光伏阵列和发电控制器,光伏阵列经发电控制器与直流母线连接,并通过并网逆变器接入电网,混合储能装置包括锂电池储能系统和超级电容储能系统,锂电池和超级电容器各自通过DC/DC双向变换器并入系统母线,负荷经DC/DC控制器或者AC/DC控制器并入系统母线,电源控制系统连接光伏发电单元和混合储能装置,控制混合储能装置的充放电过程。系统通过电源控制系统对微电网的各模块的工作电压和电流进行采集,调控储能系统的充放电过程,提高了微电网接入电网的稳定性,减小网络损耗。

Description

新能源微电网储能系统
技术领域
本发明属于移动储能技术领域,具体涉及一种新能源微电网储能系统。
背景技术
新能源微电网发电具有小型化、模块化、地域分布较为广泛以及靠近需求侧等特点,具有能源利用率较高、低污染、安装灵活、便于电力调度及可增加电力系统可靠和灵活性,被作为大电网运行的有效补充和强力支撑。但是,新能源微电网发电的应用对电网的潮流方向产生一定影响。传统电网的潮流流向是单一方向,即发电厂母线指向负荷,而新能源微电网电源接入后,电网潮流可能出现双向流动;新能源微电网电源具有间歇性、不确定性等问题,其接入后,会对整个电网的稳定性、网络损耗及电能质量等产生较大影响。新能源发电功率具有波动性和不确定性,需要利用储能系统进行功率调控。
发明内容
根据以上现有技术的不足,本发明所要解决的技术问题是提出一种新能源微电网储能系统,通过锂电池和超级电容混合储能系统,解决了微电网接入电网对电网的冲击,造成电网稳定性差、网络损耗的问题。
为了解决上述技术问题,本发明采用的技术方案为:一种新能源微电网储能系统,包括光伏发电单元、混合储能装置、负荷和电源控制系统,光伏发电单元包括光伏阵列和发电控制器,光伏阵列经发电控制器与直流母线连接,并通过并网逆变器接入电网,混合储能装置包括锂电池储能系统和超级电容储能系统,锂电池和超级电容器各自通过DC/DC双向变换器并入系统母线,负荷经DC/DC控制器或者AC/DC控制器并入系统母线,电源控制系统连接光伏发电单元和混合储能装置,控制混合储能装置的充放电过程。所述电源控制系统包括第一中央管理单元、第一控制器、第二控制器、储能控制器和参数采样单元,第一中央管理单元通过储能控制器分别连接至第一控制器和第二控制器,储能控制器连接混合储能系统,第一控制器连接并网逆变器,第二控制器连接发电控制器。所述储能控制器包括第二中央管理单元、第三控制器和第四控制器,第三控制器连接锂电池储能系统,第四控制器连接超级电容储能系统。所述采样单元包括电压参数采样单元和电流参数采样单元,所述电压采样参数包括光伏电池出口工作电压、系统母线电压、超级电容器出口侧电压,电流采样参数包括光伏阵列输出电流、超级电容器输出电流及锂电池输出电流。所述电流采样单元采用霍尔电流传感器。所述DC/DC双向变换器采用2个绝缘栅双极型晶体管集成的半桥模块。
本发明有益效果是:通过电源控制系统对微电网的各模块的工作电压和电流进行采集,调控储能系统的充放电过程,提高了微电网接入电网的稳定性,减小网络损耗。
附图说明
下面对本说明书附图所表达的内容及图中的标记作简要说明:
图1是本发明的具体实施方式的混合储能系统的结构图。
图2是本发明的具体实施方式的混合储能系统电源控制结构图。
具体实施方式
下面对照附图,通过对实施例的描述,本发明的具体实施方式如所涉及的各构件的形状、构造、各部分之间的相互位置及连接关系、各部分的作用及工作原理、制造工艺及操作使用方法等,作进一步详细的说明,以帮助本领域技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。
本发明提供的新能源微电网储能系统包括光伏发电单元、混合储能装置、负荷和电源控制系统,光伏发电单元包括光伏阵列和发电控制器,光伏阵列经发电控制器与直流母线连接;混合储能装置包括锂电池储能系统和超级电容储能系统,锂电池和超级电容器各自通过DC/DC双向变换器并入系统母线,混合储能装置作为平衡节点,起到调整直流母线电压,维持系统功率平衡的作用。直流负荷直接或经DC/DC控制器并入系统母线,交流负荷经AC/DC控制器并入系统母线,根据负荷性质确定减载时切除负荷的顺序。
如图1,为本发明的混合储能系统的结构图,DC/DC双向变换器是混合储能系统的核心,是实现混合储能系统能量管理的关键。由于降压/升压(Buck/Boost)双向变换器仅有2个功率半导体器件(集成在一个绝缘栅双极晶体管(IGBT)半桥模块中),不包含变压器,结构紧凑,体积较小,工作效率较高。
如图2,为本发明混合储能电源控制结构,间歇式电源的控制可以分为2个层次:系统级的第一中央管理单元的控制和本地的控制器,本地控制器包括第一控制器和第二控制器和储能控制器,中央管理单元依据所采集的数据,结合相关运行标准和系统的运行状况做出该间歇式电源的运行决策,并以控制指令的方式进行控制。第一控制器连接并网逆变器,根据中央管理单元的指令调节间歇式电源输出功率P0的大小;第二控制器连接至发电控制器,使光伏阵列发电装置工作在最大效率跟踪模式,提高光伏发电效率。
储能控制器用于控制混合储能系统的能量管理,储能控制器同电源控制器,包括两个层次,即第二中央管理单元和混合储能系统的本地控制,混合储能系统的本地控制包括第三控制器和第四控制器,第三控制器用于控制锂电池储能系统的能源管理,第四控制器用于控制超级电容储能系统的能源管理。
第二中央管理单元控制以锂电池储能系统为核心,结合间歇式电源的运行状态,通过控制间歇式电源的输出功率P0的大小,间接控制流经混合储能系统的功率P1的大小。当锂电池的储能量过低时,第二中央管理单元根据光伏电源输出功率P2的大小调节P0,结合本地控制,对锂电池进行充电,在必要时可以使并网逆变器运行在整流状态下,从电网吸收电能给锂电池充电,从而保证混合储能系统的储能量维持在合理的水平,确保间歇式电源的正常运行。
电源控制系统还包括各参数采集模块,光伏电池出口的工作电压检测是为提供计算依据;系统母线电压检测能够向超级电容器储能正常动作提供工作阈值;超级电容器出口侧电压采样是向锂电池储能提供工作阈值。同时,系统各部分地电压检测也是作为软件保护参考定值设置的重要依据。
同时,电源控制系统还需对光伏阵列输出电流、超级电容器输出电流及锂电池输出电流进行检测,需采集电流值,进行系统软件保护设置。电流采样过程对采样精度和实时性要求较高,本发明选择霍尔电流传感器对各电流值进行采样。
超级电容承担储能负荷重的频繁波动部分,充分发挥了超级电容器大功率输出能力强,循环寿命长,响应速度快的优势,而且能有效地回避超级电容器储存能量低的不足,锂电池储能系统承担储能负荷中的平滑部分,可以降低频繁充电造成的小循环充放电现象,改善锂电池的充放电过程。本发明的储能系统充放电控制过程如下:
(1)第一层区
该层区工作时,a1Udcr<ΔUdc<b1Udcr,其中,Udcr为直流母线电压额定值,ΔUdc为系统母线电压,光伏发电单元处于MPPT控制,当光伏输出功率和负荷消耗功率出现微小波动时,为防止超级电容器和锂电池在充电和放电间频繁切换,设置该层区为混合储能系统的不工作区。由于没有稳压单元控制,微电网母线电压能够在可承受范围内小幅值变化。
(2)第二层区
当系统母线电压持续增高,系统进入第二层区运行,此时,b1Udcr<ΔUdc<b2Udcr。该层区下,光伏发电单元继续进行MPPT控制,混合储能系统开始投入工作。
微电网系统母线电压偏高,内部能量出现剩余,混合储能系统可以吸收功率起到调整母线电压的作用,保证系统能量平衡。由混合储能系统控制策略可知,超级电容器储能最先动作,工作在充电控制中。随着超级电容器不断充电,其端电压上升到Usc3时,锂电池储能也开始进行充电,此时,二者同时动作,保证系统稳定运行。
(3)第三层区
当超级电容器充电致其端电压上升到最大限值Usc4,锂电池剩余容量达SOCbmax时,即混合储能系统失去调节能力,直流母线电压会继续上升,当ΔUdc>b2Udcr时,系统运行进入第三层区。此时,光伏发电单元提供的功率大于负荷消耗的功率,微电网母线电压偏高。为平衡系统内部能量流动,光伏发电单元需减少能量的提供,将从MPPT控制转变为恒压控制。光伏发电单元不再最大可能性地提供最大能量,而是通过减少能量输出保持系统母线电压恒定。
(4)第四层区
当系统母线电压持续减小,系统开始进入第四层区工作,此时,a2Udcr<ΔUdc≤a1Udcr。该层区下,光伏发电单元依据保持处于MPPT模式下,混合储能系统将投入工作,根据下垂特性调整直流母线电压。
该层区,系统功率不足,直流母线电压偏低,混合储能系统需通过释放功率补充系统稳定运行所需功率。同样,超级电容器储能最先动作并开始工作,通过放电为系统提供缺额能量。随着放电超级电容器出口电压下降到Usc3后,锂电池储能开始动作,工作在放电模式。
(5)第五层区
当超级电容器放电致其端电压下降到最小工作电压Usc1,锂电池剩余容量达SOCbmin时,混合储能系统即失去调节能力,直流母线电压会继续降低,当ΔUdc≤a2Udcr时,系统运行进入第五层区。
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (6)

1.一种新能源微电网储能系统,其特征在于,包括光伏发电单元、混合储能装置、负荷和电源控制系统,光伏发电单元包括光伏阵列和发电控制器,光伏阵列经发电控制器与直流母线连接,并通过并网逆变器接入电网,混合储能装置包括锂电池储能系统和超级电容储能系统,锂电池和超级电容器各自通过DC/DC双向变换器并入系统母线,负荷经DC/DC控制器或者AC/DC控制器并入系统母线,电源控制系统连接光伏发电单元和混合储能装置,控制混合储能装置的充放电过程。
2.根据权利要求1所述的新能源微电网储能系统,其特征在于,所述电源控制系统包括第一中央管理单元、第一控制器、第二控制器、储能控制器和参数采样单元,第一中央管理单元通过储能控制器分别连接至第一控制器和第二控制器,储能控制器连接混合储能系统,第一控制器连接并网逆变器,第二控制器连接发电控制器。
3.根据权利要求2所述的新能源微电网储能系统,其特征在于,所述储能控制器包括第二中央管理单元、第三控制器和第四控制器,第三控制器连接锂电池储能系统,第四控制器连接超级电容储能系统。
4.根据权利要求2所述的新能源微电网储能系统,其特征在于,所述采样单元包括电压参数采样单元和电流参数采样单元,所述电压采样参数包括光伏电池出口工作电压、系统母线电压、超级电容器出口侧电压,电流采样参数包括光伏阵列输出电流、超级电容器输出电流及锂电池输出电流。
5.根据权利要求2所述的新能源微电网储能系统,其特征在于,所述电流采样单元采用霍尔电流传感器。
6.根据权利要求1所述的新能源微电网储能系统,其特征在于,所述DC/DC双向变换器采用2个绝缘栅双极型晶体管集成的半桥模块。
CN201610093479.7A 2016-02-19 2016-02-19 新能源微电网储能系统 Pending CN105576685A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610093479.7A CN105576685A (zh) 2016-02-19 2016-02-19 新能源微电网储能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610093479.7A CN105576685A (zh) 2016-02-19 2016-02-19 新能源微电网储能系统

Publications (1)

Publication Number Publication Date
CN105576685A true CN105576685A (zh) 2016-05-11

Family

ID=55886519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610093479.7A Pending CN105576685A (zh) 2016-02-19 2016-02-19 新能源微电网储能系统

Country Status (1)

Country Link
CN (1) CN105576685A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099965A (zh) * 2016-06-28 2016-11-09 太原理工大学 交流微电网并网状态下复杂混合储能系统的协调控制方法
CN107017617A (zh) * 2017-05-26 2017-08-04 太原理工大学 改进的直流微电网中混合储能系统自适应下垂控制方法
CN108400612A (zh) * 2018-01-29 2018-08-14 国网甘肃省电力公司金昌供电公司 一种提高间歇式新能源消纳能力的电网系统
CN109698523A (zh) * 2019-03-08 2019-04-30 四川长虹集能阳光科技有限公司 光伏储能逆变系统
CN110311396A (zh) * 2019-07-30 2019-10-08 太原理工大学 一种交直流混合微电网混合储能容量优化配置方法
CN113595119A (zh) * 2021-07-30 2021-11-02 西安热工研究院有限公司 一种火电混合储能高穿低穿协调控制系统
CN115528667A (zh) * 2022-11-28 2022-12-27 西华大学 一种直流微电网集群控制系统及其多级协同控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110266871A1 (en) * 2010-05-03 2011-11-03 Jan Thisted Power Interchange system for interchanging electric energy between a battery and an electric grid, method for interchanging electric energy between a battery and an electric grid and application of the power interchange system
CN103390900A (zh) * 2013-07-22 2013-11-13 上海电力学院 一种分布式光伏储能系统及能量管理方法
CN103441531A (zh) * 2013-09-10 2013-12-11 上海电力学院 一种区域高渗透率光伏储能系统及其能量管理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110266871A1 (en) * 2010-05-03 2011-11-03 Jan Thisted Power Interchange system for interchanging electric energy between a battery and an electric grid, method for interchanging electric energy between a battery and an electric grid and application of the power interchange system
CN103390900A (zh) * 2013-07-22 2013-11-13 上海电力学院 一种分布式光伏储能系统及能量管理方法
CN103441531A (zh) * 2013-09-10 2013-12-11 上海电力学院 一种区域高渗透率光伏储能系统及其能量管理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孟润泉 等: "直流微网混合储能控制及系统分层协调控制策略", 《高电压技术》 *
张国驹: "平抑间歇式电源功率波动的混合储能系统设计", 《电力系统自动化》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099965A (zh) * 2016-06-28 2016-11-09 太原理工大学 交流微电网并网状态下复杂混合储能系统的协调控制方法
CN106099965B (zh) * 2016-06-28 2018-12-25 太原理工大学 交流微电网并网状态下复杂混合储能系统的协调控制方法
CN107017617A (zh) * 2017-05-26 2017-08-04 太原理工大学 改进的直流微电网中混合储能系统自适应下垂控制方法
CN107017617B (zh) * 2017-05-26 2019-07-26 太原理工大学 改进的直流微电网中混合储能系统自适应下垂控制方法
CN108400612A (zh) * 2018-01-29 2018-08-14 国网甘肃省电力公司金昌供电公司 一种提高间歇式新能源消纳能力的电网系统
CN109698523A (zh) * 2019-03-08 2019-04-30 四川长虹集能阳光科技有限公司 光伏储能逆变系统
CN110311396A (zh) * 2019-07-30 2019-10-08 太原理工大学 一种交直流混合微电网混合储能容量优化配置方法
CN110311396B (zh) * 2019-07-30 2024-03-19 太原理工大学 一种交直流混合微电网混合储能容量优化配置方法
CN113595119A (zh) * 2021-07-30 2021-11-02 西安热工研究院有限公司 一种火电混合储能高穿低穿协调控制系统
CN115528667A (zh) * 2022-11-28 2022-12-27 西华大学 一种直流微电网集群控制系统及其多级协同控制方法

Similar Documents

Publication Publication Date Title
CN105576685A (zh) 新能源微电网储能系统
CN101309017B (zh) 一种基于超级电容器蓄电池混合储能的风力发电、光伏发电互补供电系统
CN108808652A (zh) 一种直流微电网的混合储能系统分层控制方法
CN104810858A (zh) 一种光储微电网并网发电系统的控制方法
CN202586481U (zh) 微电网智能平衡充电供电系统
CN104022528A (zh) 一种基于多元复合储能的微网系统协调控制方法
CN105743127A (zh) 一种户用新能源发电智能控制系统及控制方法
CN107579698A (zh) 一种光伏电站储能方法
CN101673963A (zh) 基于两重直流母线控制的通信基站用风光互补发电系统
CN109698495B (zh) 一种基于超级电容的直流微电网系统
CN101702610A (zh) 基于超级电容器和蓄电池混合储能的双馈风力发电机励磁系统
CN105591383B (zh) 一种直流微网变功率控制装置及控制方法
CN105186660A (zh) 离网型风电制氢转换系统
CN103236747A (zh) 一种光伏电源混合储能系统
CN108347063A (zh) 一种基于超级电容储能的船舶光伏并网发电系统
CN105552944A (zh) 一种包含储能和能量路由器的网络系统及能量调节方法
CN105896603A (zh) 一种风光储联合发电系统及方法
CN102510086A (zh) 多象限光伏储能、逆变一体化装置
CN110912242A (zh) 含混合储能直流微电网的大扰动暂态稳定协调控制方法
CN110336268A (zh) 用于储能双向变换器的充放电控制方法
CN104993506A (zh) 一种分布式发电系统的混合储能装置
CN205385293U (zh) 新能源微电网储能系统
CN108418245B (zh) 一种简化的直流微电网联络线恒功率控制方法
CN102005807B (zh) 一种利用超级电容器储能系统调控光伏发电系统的方法
CN103337868A (zh) 一种抑制光伏发电输出功率波动的方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160511

RJ01 Rejection of invention patent application after publication