CN105574257A - Aircraft double-hinge rudder efficiency calculation method - Google Patents

Aircraft double-hinge rudder efficiency calculation method Download PDF

Info

Publication number
CN105574257A
CN105574257A CN201510932038.7A CN201510932038A CN105574257A CN 105574257 A CN105574257 A CN 105574257A CN 201510932038 A CN201510932038 A CN 201510932038A CN 105574257 A CN105574257 A CN 105574257A
Authority
CN
China
Prior art keywords
rudder
deflection
hinge
formula
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510932038.7A
Other languages
Chinese (zh)
Other versions
CN105574257B (en
Inventor
冯爱庆
李继伟
何大全
张守友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Aircraft Design and Research Institute of AVIC
Original Assignee
Xian Aircraft Design and Research Institute of AVIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aircraft Design and Research Institute of AVIC filed Critical Xian Aircraft Design and Research Institute of AVIC
Priority to CN201510932038.7A priority Critical patent/CN105574257B/en
Publication of CN105574257A publication Critical patent/CN105574257A/en
Application granted granted Critical
Publication of CN105574257B publication Critical patent/CN105574257B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明公开了一种飞机双铰链方向舵效率计算方法。所述飞机双铰链方向舵效率计算方法包括:根据所述第一转角δ1、第二转角δ2,并通过ESDU中估算双缝襟翼偏转引起的零升力系数增量的方法计算得到零迎角时,方向舵偏转δ1,δ2产生的侧力系数CY0W;通过所述CY0W以及公式,计算偏转δ1,δ2时引起的侧力系数增量ΔCY;通过所述ΔCY以及公式,求得侧力系数对方向舵偏度的导数CYδr;通过所述CYδr以及公式,求得偏航力矩对方向舵偏度的导数Cnδr以及滚转力矩对方向舵偏度的导数Clδr。本发明的飞机双铰链方向舵效率计算方法解决了现有飞机无法估算双铰链方向舵效率的缺点,提高了方向舵效率估算数据的使用价值。

The invention discloses a method for calculating the efficiency of an aircraft double-hinge rudder. The method for calculating the efficiency of the double-hinge rudder of the aircraft includes: according to the first rotation angle δ 1 and the second rotation angle δ 2 , and calculating the zero angle of attack by estimating the zero-lift coefficient increment caused by the deflection of the double-slot flap in the ESDU When the rudder deflects δ1 and δ2, the side force coefficient C Y0W is generated; through the C Y0W and the formula, calculate the side force coefficient increment ΔC Y caused by the deflection δ1 and δ2; through the ΔC Y and the formula, obtain the side force coefficient The derivative C Yδr of the force coefficient to the rudder deflection; through the C Yδr and the formula, the derivative C nδr of the yaw moment to the rudder deflection and the derivative C lδr of the rolling moment to the rudder deflection are obtained . The method for calculating the efficiency of double-hinge rudders of the aircraft solves the shortcoming that the existing aircraft cannot estimate the efficiency of double-hinge rudders, and improves the use value of rudder efficiency estimation data.

Description

一种飞机双铰链方向舵效率计算方法A Calculation Method for Aircraft Double Hinge Rudder Efficiency

技术领域technical field

本发明涉及飞机气动特性估算技术领域,特别是涉及一种飞机双铰链方向舵效率计算方法。The invention relates to the technical field of aircraft aerodynamic characteristic estimation, in particular to an aircraft double-hinge rudder efficiency calculation method.

背景技术Background technique

术语解释:Explanation of terms:

ESDU:工程科学数据组织。ESDU: Engineering Science Data Organization.

现有的飞机方向舵效率估算方法体系有《ESDU》、DATACOM、《AirplaneDesign》、《飞机设计手册》、《航空气动力工程计算手册》等。但是这些估算方法仅能估算单铰链方向舵效率,而现有的飞机方向舵,大范围采用双铰链,原有方法无法满足现有飞机设计使用。The existing aircraft rudder efficiency estimation method systems include "ESDU", DATACOM, "AirplaneDesign", "Aircraft Design Manual", "Aerodynamic Engineering Calculation Manual" and so on. However, these estimation methods can only estimate the efficiency of single-hinge rudders, and the existing aircraft rudders use double hinges on a large scale, and the original methods cannot meet the needs of existing aircraft designs.

因此,希望有一种技术方案来克服或至少减轻现有技术的至少一个上述缺陷。Therefore, it is desirable to have a technical solution to overcome or at least alleviate at least one of the above-mentioned drawbacks of the prior art.

发明内容Contents of the invention

本发明的目的在于提供一种飞机双铰链方向舵效率计算方法来克服或至少减轻现有技术的中的至少一个上述缺陷。The object of the present invention is to provide a method for calculating the efficiency of an aircraft double-hinge rudder to overcome or at least alleviate at least one of the above-mentioned defects in the prior art.

为实现上述目的,本发明提供一种飞机双铰链方向舵效率计算方法,所述飞机包括方向舵,所述方向舵包括与垂尾铰接的第一部分以及与所述第一部分铰接的第二部分,所述第一部分能够相对所述垂尾绕所述铰接处转动,其转动角度称为第一转角δ1;所述第二部分能够相对所述第一部分绕所述铰接处转动,其转动角度称为第二转角δ2;所述飞机双铰链方向舵效率计算方法包括:根据所述第一转角δ1、第二转角δ2,并通过ESDU中估算双缝襟翼偏转引起的零升力系数增量的方法计算得到零迎角时,方向舵偏转δ1,δ2产生的侧力系数CY0W;通过所述CY0W以及公式,计算偏转δ1,δ2时引起的侧力系数增量ΔCY;通过所述ΔCY以及公式,求得侧力系数对方向舵偏度的导数CYδr;通过所述CYδr以及公式,求得偏航力矩对方向舵偏度的导数Cnδr以及滚转力矩对方向舵偏度的导数ClδrIn order to achieve the above object, the present invention provides a method for calculating the efficiency of an aircraft double-hinge rudder. The aircraft includes a rudder, and the rudder includes a first part hinged with the vertical tail and a second part hinged with the first part. One part can rotate around the hinge relative to the vertical tail, and its rotation angle is called the first rotation angle δ 1 ; the second part can rotate around the hinge relative to the first part, and its rotation angle is called the second rotation angle. Rotation angle δ 2 ; the calculation method for the efficiency of the double-hinge rudder of the aircraft includes: according to the first rotation angle δ 1 and the second rotation angle δ 2 , and through the method of estimating the zero-lift coefficient increment caused by the deflection of the double-slot flap in the ESDU When the zero angle of attack is obtained, the side force coefficient C Y0W produced by the rudder deflection δ1 and δ2; through the C Y0W and the formula, calculate the side force coefficient increment ΔC Y caused by the deflection δ1 and δ2; through the ΔC Y and the formula , to obtain the derivative C Yδr of the lateral force coefficient to the rudder deflection; through the above C Yδr and the formula, obtain the derivative C nδr of the yaw moment to the rudder deflection and the derivative C lδr of the rolling moment to the rudder deflection .

优选地,通过所述CY0W以及公式,计算偏转δ1,δ2时引起的侧力系数增量ΔCY具体的计算公式为:Preferably, through the C Y0W and the formula, the specific calculation formula for calculating the lateral force coefficient increment ΔC Y caused by the deflection δ1 and δ2 is:

ΔC Y = ( Φ o - Φ i ) ( Δc t c - K δ c t c ) * a 1 * α + C Y 0 W , 其中, ΔC Y = ( Φ o - Φ i ) ( Δ c t c - K δ c t c ) * a 1 * α + C Y 0 W , in,

Δc t c - K δ c t c = χ t s + c t 1 ′ + c t 2 ′ - c c - ( 1 - cosδ 1 ) c t 1 + [ 1 - cos ( δ 1 + δ 2 ) ] c t 2 ′ c ; 其中, Δ c t c - K δ c t c = χ t the s + c t 1 ′ + c t 2 ′ - c c - ( 1 - cosδ 1 ) c t 1 + [ 1 - cos ( δ 1 + δ 2 ) ] c t 2 ′ c ; in,

a1为垂尾的升力线斜率;α为攻角弧度;Φo为外侧部分展长修正因子;Φi为内侧部分展长修正因子;c′t1为垂尾与第一部分连接位置处至第一部分的远离机体端部的一端的距离;χts为垂尾的机头至机尾方向的尺寸;c′t2为第一部分与第二部分连接处至第二部分的远离第一部分的一端的距离;ct1为第一部分的机头至机尾方向的尺寸;c为垂尾至第一部分远离垂尾的一端的机头至机尾方向的尺寸。a 1 is the lift line slope of the vertical tail; α is the radian of the angle of attack; Φ o is the expansion correction factor of the outer part; Φ i is the expansion correction factor of the inner part; χ ts is the dimension from the nose to the tail of the vertical tail; c′ t2 is the distance from the connection between the first part and the second part to the end of the second part far away from the first part ; c t1 is the dimension from the nose to the tail of the first part; c is the dimension from the vertical tail to the end of the first part away from the vertical tail from the nose to the tail.

优选地,所述通过所述ΔCY以及公式,求得侧力系数对方向舵偏度的导数CYδr具体的计算公式为:Preferably, the specific calculation formula for obtaining the derivative C Yδr of the side force coefficient to the rudder deflection through the ΔC Y and the formula is:

CYδr=-ΔCYJBJTαδΔΦSF/(SWδ),其中,C Yδr = -ΔC Y J B J T α δ ΔΦS F /(S W δ), where,

JB为机身影响修正因子;JT为垂尾端板效应修正因子;SF为垂尾面积;ΔΦ非全展长修正因子;SW为机翼面积;δ为方向舵当量偏转角;αδ为控制效率因子。J B is the fuselage effect correction factor; J T is the vertical tail end plate effect correction factor; S F is the vertical tail area; ΔΦ non-full span length correction factor; S W is the wing area; δ is the rudder equivalent deflection angle; δ is the control efficiency factor.

优选地,通过所述CYδr以及公式,求得偏航力矩对方向舵偏度的导数Cnδr以及滚转力矩对方向舵偏度的导数Clδr具体的计算公式为:Preferably, through the C Yδr and the formula, the derivative C nδr of the yaw moment to the rudder deflection and the derivative C lδr of the roll moment to the rudder deflection are obtained . The specific calculation formula is:

Cnδr=-CYδr(lRcosα+ZRsinα)/b;C nδr = -C Yδr (l R cos α + Z R sin α)/b;

Clδr=CYδr(ZRcosα-lRsinα)/b;其中,C lδr = C Yδr (Z R cosα-l R sinα)/b; where,

lR为平行于机身纵轴力臂;zR为垂直于机身纵轴力臂;b为机翼展长;α为攻角。l R is the moment arm parallel to the longitudinal axis of the fuselage; z R is the moment arm perpendicular to the longitudinal axis of the fuselage; b is the span length of the wing; α is the angle of attack.

本发明的飞机双铰链方向舵效率计算方法解决了现有飞机无法估算双铰链方向舵效率的缺点,提高了方向舵效率估算数据的使用价值。The method for calculating the efficiency of double-hinge rudders of the aircraft solves the shortcoming that the existing aircraft cannot estimate the efficiency of double-hinge rudders, and improves the use value of rudder efficiency estimation data.

附图说明Description of drawings

图1是根据本发明第一实施例的采用飞机双铰链方向舵效率计算方法进行计算的飞机的垂尾部分的结构示意图。Fig. 1 is a structural schematic diagram of the vertical tail part of an aircraft calculated by using the aircraft double hinge rudder efficiency calculation method according to the first embodiment of the present invention.

具体实施方式detailed description

为使本发明实施的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行更加详细的描述。在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施例是本发明一部分实施例,而不是全部的实施例。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。下面结合附图对本发明的实施例进行详细说明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the technical solutions in the embodiments of the present invention will be described in more detail below in conjunction with the drawings in the embodiments of the present invention. In the drawings, the same or similar reference numerals denote the same or similar elements or elements having the same or similar functions throughout. The described embodiments are some, but not all, embodiments of the invention. The embodiments described below by referring to the figures are exemplary and are intended to explain the present invention and should not be construed as limiting the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention. Embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.

在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。In describing the present invention, it is to be understood that the terms "central", "longitudinal", "transverse", "front", "rear", "left", "right", "vertical", "horizontal", The orientations or positional relationships indicated by "top", "bottom", "inner", "outer", etc. are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying the Means that a device or element must have a specific orientation, be constructed and operate in a specific orientation, and therefore should not be construed as limiting the scope of the invention.

飞机包括方向舵,方向舵包括与垂尾铰接的第一部分以及与第一部分铰接的第二部分,第一部分能够相对垂尾绕铰接处转动,其转动角度称为第一转角δ1;第二部分能够相对第一部分绕铰接处转动,其转动角度称为第二转角δ2The aircraft includes a rudder, and the rudder includes a first part hinged with the vertical tail and a second part hinged with the first part, the first part can rotate around the hinge relative to the vertical tail, and its rotation angle is called the first rotation angle δ 1 ; the second part can be relatively The first part rotates around the hinge, and its rotation angle is called the second rotation angle δ 2 .

飞机双铰链方向舵效率具体体现为:侧力系数对方向舵偏度的导数CYδr、偏航力矩对方向舵偏度的导数Cnδr以及滚转力矩对方向舵偏度的导数ClδrThe efficiency of aircraft double-hinge rudder is embodied as follows: the derivative C Yδr of the side force coefficient to the rudder deflection, the derivative C nδr of the yaw moment to the rudder deflection, and the derivative C lδr of the roll moment to the rudder deflection .

本发明的飞机双铰链方向舵效率计算方法包括:根据第一转角δ1、第二转角δ2,并通过ESDU中估算双缝襟翼偏转引起的零升力系数增量的方法计算得到零迎角时,方向舵偏转δ1,δ2产生的侧力系数CY0W;通过CY0W以及公式,计算偏转δ1,δ2时引起的侧力系数增量ΔCY;通过ΔCY以及公式,求得侧力系数对方向舵偏度的导数CYδr;通过CYδr以及公式,求得偏航力矩对方向舵偏度的导数Cnδr以及滚转力矩对方向舵偏度的导数ClδrThe calculation method of aircraft double hinge rudder efficiency of the present invention includes: according to the first rotation angle δ 1 and the second rotation angle δ 2 , and by estimating the zero-lift coefficient increment caused by the deflection of the double-slot flap in the ESDU to calculate the zero angle of attack time , the side force coefficient C Y0W produced by rudder deflection δ1, δ2; through C Y0W and the formula, calculate the side force coefficient increment ΔC Y caused by the deflection δ1, δ2; Derivative C Yδr of degree; through C Yδr and the formula, the derivative C nδr of yaw moment to rudder deflection and the derivative C lδr of rolling moment to rudder deflection are obtained .

具体地,在本实施例中,通过CY0W以及公式,计算偏转δ1,δ2时引起的侧力系数增量ΔCY具体的计算公式为:Specifically, in this embodiment, through C Y0W and the formula, the specific calculation formula for calculating the lateral force coefficient increment ΔC Y caused by the deflection δ1 and δ2 is:

ΔC Y = ( Φ o - Φ i ) ( Δc t c - K δ c t c ) * a 1 * α + C Y 0 W , 其中, ΔC Y = ( Φ o - Φ i ) ( Δ c t c - K δ c t c ) * a 1 * α + C Y 0 W , in,

Δc t c - K δ c t c = χ t s + c t 1 ′ + c t 2 ′ - c c - ( 1 - cosδ 1 ) c t 1 + [ 1 - c o s ( δ 1 + δ 2 ) ] c t 2 ′ c ; 其中, Δ c t c - K δ c t c = χ t the s + c t 1 ′ + c t 2 ′ - c c - ( 1 - cosδ 1 ) c t 1 + [ 1 - c o the s ( δ 1 + δ 2 ) ] c t 2 ′ c ; in,

a1为垂尾的升力线斜率;α为攻角弧度;Φo为外侧部分展长修正因子;Φi为内侧部分展长修正因子;c′t1为垂尾与第一部分连接位置处至第一部分的远离机体端部的一端的距离;χts为垂尾的机头至机尾方向的尺寸;c′t2为第一部分与第二部分连接处至第二部分的远离第一部分的一端的距离;ct1为第一部分的机头至机尾方向的尺寸;c为垂尾至第一部分远离垂尾的一端的机头至机尾方向的尺寸。a 1 is the lift line slope of the vertical tail; α is the radian of the angle of attack; Φ o is the expansion correction factor of the outer part; Φ i is the expansion correction factor of the inner part; χ ts is the dimension from the nose to the tail of the vertical tail; c′ t2 is the distance from the connection between the first part and the second part to the end of the second part far away from the first part ; c t1 is the dimension from the nose to the tail of the first part; c is the dimension from the vertical tail to the end of the first part away from the vertical tail from the nose to the tail.

在本实施例中,通过ΔCY以及公式,求得侧力系数对方向舵偏度的导数CYδr具体的计算公式为:In this embodiment, through ΔC Y and the formula, the specific calculation formula for obtaining the derivative C Yδr of the lateral force coefficient to the rudder deflection is:

CYδr=-ΔCYJBJTαδΔΦSF/(SWδ),其中,C Yδr = -ΔC Y J B J T α δ ΔΦS F /(S W δ), where,

JB为机身影响修正因子;JT为垂尾端板效应修正因子;SF为垂尾面积;ΔΦ非全展长修正因子;SW为机翼面积;δ为方向舵当量偏转角;αδ为控制效率因子。J B is the fuselage effect correction factor; J T is the vertical tail end plate effect correction factor; S F is the vertical tail area; ΔΦ non-full span length correction factor; S W is the wing area; δ is the rudder equivalent deflection angle; δ is the control efficiency factor.

在本实施例中,通过所述CYδr以及公式,求得偏航力矩对方向舵偏度的导数Cnδr以及滚转力矩对方向舵偏度的导数Clδr具体的计算公式为:In this embodiment, through the C Yδr and the formula, the derivative C nδr of the yaw moment to the rudder deflection and the derivative C lδr of the roll moment to the rudder deflection are obtained . The specific calculation formula is:

Cnδr=-CYδr(lRcosα+ZRsinα)/b;C nδr = -C Yδr (l R cos α + Z R sin α)/b;

Clδr=CYδr(ZRcosα-lRsinα)/b;其中,C lδr = C Yδr (Z R cosα-l R sinα)/b; where,

lR为平行于机身纵轴力臂;zR为垂直于机身纵轴力臂;b为机翼展长;α为攻角。l R is the moment arm parallel to the longitudinal axis of the fuselage; z R is the moment arm perpendicular to the longitudinal axis of the fuselage; b is the span length of the wing; α is the angle of attack.

本发明的飞机双铰链方向舵效率计算方法解决了现有飞机无法估算双铰链方向舵效率的缺点,提高了方向舵效率估算数据的使用价值。The method for calculating the efficiency of double-hinge rudders of the aircraft solves the shortcoming that the existing aircraft cannot estimate the efficiency of double-hinge rudders, and improves the use value of rudder efficiency estimation data.

下面以图表的方式将上述叙述中所需要的符号定义列出:The symbol definitions required in the above description are listed below in the form of a chart:

在本实施例中,CY0W估算:In this example, C YOW estimates:

CC YY 00 WW == χχ tt sthe s ++ cc tt 11 ,, ++ cc tt 22 ,, cc (( JJ tt 11 ** ΔCΔC LL 11 ++ JJ tt 22 ** ΔCΔC LL 22 )) ** aa 11 // 22 ππ

其中:in:

c’t1=ct1-Δct1 c' t1 = c t1 -Δc t1

c’t2=ct2-Δct2 c' t2 =c t2 -Δc t2

下面以举例的方式对本发明进行阐述。可以理解的是,该阐述并不构成对本发明的任何限制。The present invention is illustrated below by way of examples. It should be understood that this description does not constitute any limitation to the present invention.

以某型号双铰链方向舵效率估算为例,其方向舵前后舵面偏角δ1=δ2=10°。已知参数:Taking the efficiency estimation of a certain type of double-hinge rudder as an example, the deflection angle of the front and rear rudder surfaces of the rudder is δ 12 =10°. Known parameters:

通过ESDU中估算单铰链方向舵效率的方法,可以估算如下参数:Through the method of estimating single-hinge rudder efficiency in ESDU, the following parameters can be estimated:

参考ESDU中估算双缝襟翼偏转引起的零升力系数增量的方法,计算得出CY0W=0.5,从而由式(1)为:Referring to the method of estimating the zero-lift coefficient increment caused by the deflection of the double-slot flap in ESDU, it is calculated that C Y0W = 0.5, so the formula (1) is:

ΔCY=(0.9-0.05)(-0.005-0.02)*2.5*α+0.5=-0.053125*α+0.5;ΔC Y =(0.9-0.05)(-0.005-0.02)*2.5*α+0.5=-0.053125*α+0.5;

通过上述的公式得到:Obtained by the above formula:

LL YY δδ rr == -- (( -- 0.0531250.053125 ** αα ++ 0.50.5 )) ** 0.8680.868 ** 1.21.2 ** 0.80.8 ** 0.80.8 ** 0.20.2 // δδ == 0.0070820.007082 ** αα -- 0.06670.0667 δδ

CC nno δδ rr == -- 0.0070820.007082 ** αα -- 0.06670.0667 δδ ** [[ 0.50.5 cc oo sthe s (( 180180 ** αα // ππ )) ++ 0.10.1 sthe s ii nno (( 180180 ** αα // ππ )) ]]

CC ll δδ rr == 0.0070820.007082 ** αα -- 0.06670.0667 δδ ** [[ 0.10.1 cc oo sthe s (( 180180 ** αα // ππ )) -- 0.50.5 sinsin (( 180180 ** αα // ππ )) ]]

注:CY0W是前后舵面偏角δ1、δ2的函数,故对于某一特定型号的双铰链方向舵,其效率为δ1、δ2及α的函数;δ的取值与δ1、δ2有关,在本次估算的型号中,规定δ=δ1=δ2Note: C Y0W is a function of the front and rear rudder deflection angles δ 1 , δ 2 , so for a certain type of double hinge rudder, its efficiency is a function of δ 1 , δ 2 and α; the value of δ is related to δ 1 , δ 2 is related, and in the model estimated this time, it is stipulated that δ=δ 12 .

试验结果如下:The test results are as follows:

α(°)α(°) CYδr C Yδr Cnδr C nδr Clδr C lδr -2-2 -0.0066-0.0066 0.0033370.003337 -0.00806-0.00806 00 -0.00655-0.00655 0.0033160.003316 -0.00701-0.00701 22 -0.00651-0.00651 0.0032950.003295 -0.000596-0.000596 44 -0.00634-0.00634 0.0032670.003267 -0.00043-0.00043 66 -0.00613-0.00613 0.0032480.003248 -0.00039-0.00039 88 -0.00593-0.00593 0.0032160.003216 -0.00026-0.00026

计算结果如下:The calculation results are as follows:

α(°)α(°) CYδr C Yδr Cnδr C nδr Clδr C lδr -2-2 -0.006695-0.006695 0.0033220.003322 -0.000786-0.000786 00 -0.00667-0.00667 0.0033350.003335 -0.0006675 -->-0.0006675 --> 22 -0.00665-0.00665 0.0033440.003344 -0.00055-0.00055 44 -0.00662-0.00662 0.0033480.003348 -0.00043-0.00043 66 -0.0066-0.0066 0.0033490.003349 -0.00031-0.00031 88 -0.00657-0.00657 0.0033450.003345 -0.00019-0.00019

通过上述的表可以看出,实验结果与本发明的飞机双铰链方向舵效率计算方法的计算结果基本一致。As can be seen from the above table, the experimental results are basically consistent with the calculation results of the aircraft double-hinge rudder efficiency calculation method of the present invention.

最后需要指出的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be pointed out that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them. Although the present invention has been described in detail with reference to the aforementioned embodiments, those of ordinary skill in the art should understand that: it can still modify the technical solutions described in the aforementioned embodiments, or perform equivalent replacements for some of the technical features; and these The modification or replacement does not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.

Claims (4)

1.一种飞机双铰链方向舵效率计算方法,所述飞机包括方向舵,所述方向舵包括与垂尾铰接的第一部分以及与所述第一部分铰接的第二部分,所述第一部分能够相对所述垂尾绕所述铰接处转动,其转动角度称为第一转角δ1;所述第二部分能够相对所述第一部分绕所述铰接处转动,其转动角度称为第二转角δ2;其特征在于,所述飞机双铰链方向舵效率计算方法包括:1. A method for calculating the efficiency of an aircraft double-hinge rudder, said aircraft comprising a rudder, said rudder comprising a first part hinged with a vertical tail and a second part hinged with said first part, said first part being able to The tail rotates around the hinge, and its rotation angle is called the first rotation angle δ 1 ; the second part can rotate around the hinge relative to the first part, and its rotation angle is called the second rotation angle δ 2 ; its characteristics In that, the method for calculating the efficiency of the double-hinge rudder of the aircraft includes: 根据所述第一转角δ1、第二转角δ2,并通过ESDU中估算双缝襟翼偏转引起的零升力系数增量的方法计算得到零迎角时,方向舵偏转δ1,δ2产生的侧力系数CY0WAccording to the first rotation angle δ 1 and the second rotation angle δ 2 , and by estimating the zero-lift coefficient increment caused by the double-slot flap deflection in the ESDU, the side force generated by the rudder deflection δ1 and δ2 is calculated at zero angle of attack Coefficient C Y0W ; 通过所述CY0W以及公式,计算偏转δ1,δ2时引起的侧力系数增量ΔCYThrough the C Y0W and the formula, calculate the lateral force coefficient increment ΔC Y caused by the deflection δ1, δ2; 通过所述ΔCY以及公式,求得侧力系数对方向舵偏度的导数CYδrThrough the ΔC Y and the formula, the derivative C Yδr of the lateral force coefficient to the rudder deflection is obtained; 通过所述CYδr以及公式,求得偏航力矩对方向舵偏度的导数Cnδr以及滚转力矩对方向舵偏度的导数ClδrThrough the C Yδr and the formula, the derivative C nδr of the yaw moment with respect to the rudder deflection and the derivative C lδr of the roll moment with respect to the rudder deflection are obtained . 2.如权利要求1所述的飞机双铰链方向舵效率计算方法,其特征在于,通过所述CY0W以及公式,计算偏转δ1,δ2时引起的侧力系数增量ΔCY具体的计算公式为:2. aircraft double-hinge rudder efficiency calculation method as claimed in claim 1, is characterized in that, by described C Y0W and formula, calculate deflection δ1, the specific calculation formula of the lateral force coefficient increment ΔC Y that causes when δ2 is: ΔC Y = ( Φ o - Φ i ) ( Δc t c - K δ c t c ) * a 1 * α + C Y 0 W , 其中, ΔC Y = ( Φ o - Φ i ) ( Δ c t c - K δ c t c ) * a 1 * α + C Y 0 W , in, Δc t c - K δ c t c = χ t s + c t 1 ′ + c t 2 ′ - c c - ( 1 - cosδ 1 ) c t 1 + [ 1 - cos ( δ 1 + δ 2 ) ] c t 2 ′ c ; 其中, Δ c t c - K δ c t c = χ t the s + c t 1 ′ + c t 2 ′ - c c - ( 1 - cosδ 1 ) c t 1 + [ 1 - cos ( δ 1 + δ 2 ) ] c t 2 ′ c ; in, a1为垂尾的升力线斜率;α为攻角弧度;Φo为外侧部分展长修正因子;Φi为内侧部分展长修正因子;c′t1为垂尾与第一部分连接位置处至第一部分的远离机体端部的一端的距离;χts为垂尾的机头至机尾方向的尺寸;c′t2为第一部分与第二部分连接处至第二部分的远离第一部分的一端的距离;ct1为第一部分的机头至机尾方向的尺寸;c为垂尾至第一部分远离垂尾的一端的机头至机尾方向的尺寸。a 1 is the lift line slope of the vertical tail; α is the radian of the angle of attack; Φ o is the expansion correction factor of the outer part; Φ i is the expansion correction factor of the inner part; χ ts is the dimension from the nose to the tail of the vertical tail; c′ t2 is the distance from the connection between the first part and the second part to the end of the second part far away from the first part ; c t1 is the dimension from the nose to the tail of the first part; c is the dimension from the vertical tail to the end of the first part away from the vertical tail from the nose to the tail. 3.如权利要求1所述的飞机双铰链方向舵效率计算方法,其特征在于,所述通过所述ΔCY以及公式,求得侧力系数对方向舵偏度的导数CYδr具体的计算公式为:3. aircraft double-hinge rudder efficiency calculation method as claimed in claim 1, is characterized in that, described by described ΔC Y and formula, obtains side force coefficient to the derivative C Yδr concrete calculation formula of rudder deflection: CYδr=-ΔCYJBJTαδΔΦSF/(SWδ),其中,C Yδr = -ΔC Y J B J T α δ ΔΦS F /(S W δ), where, JB为机身影响修正因子;JT为垂尾端板效应修正因子;SF为垂尾面积;ΔΦ非全展长修正因子;SW为机翼面积;δ为方向舵当量偏转角;αδ为控制效率因子。J B is the fuselage effect correction factor; J T is the vertical tail end plate effect correction factor; S F is the vertical tail area; ΔΦ non-full span length correction factor; S W is the wing area; δ is the rudder equivalent deflection angle; δ is the control efficiency factor. 4.如权利要求3所述的飞机双铰链方向舵效率计算方法,其特征在于,通过所述CYδr以及公式,求得偏航力矩对方向舵偏度的导数Cnδr以及滚转力矩对方向舵偏度的导数Clδr具体的计算公式为:4. aircraft double hinge rudder efficiency calculation method as claimed in claim 3, is characterized in that, by described C Y δr and formula, obtain yaw moment to the derivative C n δr of rudder deflection and rolling moment to rudder deflection The specific calculation formula of the derivative C lδr is: Cnδr=-CYδr(lRcosα+ZRsinα)/b;C nδr = -C Yδr (l R cos α + Z R sin α)/b; Clδr=CYδr(ZRcosα-lRsinα)/b;其中,C lδr = C Yδr (Z R cosα-l R sinα)/b; where, lR为平行于机身纵轴力臂;zR为垂直于机身纵轴力臂;b为机翼展长;α为攻角。l R is the moment arm parallel to the longitudinal axis of the fuselage; z R is the moment arm perpendicular to the longitudinal axis of the fuselage; b is the span length of the wing; α is the angle of attack.
CN201510932038.7A 2015-12-12 2015-12-12 A calculation method of aircraft double hinge rudder efficiency Active CN105574257B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510932038.7A CN105574257B (en) 2015-12-12 2015-12-12 A calculation method of aircraft double hinge rudder efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510932038.7A CN105574257B (en) 2015-12-12 2015-12-12 A calculation method of aircraft double hinge rudder efficiency

Publications (2)

Publication Number Publication Date
CN105574257A true CN105574257A (en) 2016-05-11
CN105574257B CN105574257B (en) 2019-02-12

Family

ID=55884387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510932038.7A Active CN105574257B (en) 2015-12-12 2015-12-12 A calculation method of aircraft double hinge rudder efficiency

Country Status (1)

Country Link
CN (1) CN105574257B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105819001A (en) * 2016-05-12 2016-08-03 中国航空工业集团公司西安飞机设计研究所 Determination method for horizontal tail installation angle of horizontal tail fixed airplane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070278353A1 (en) * 2006-05-30 2007-12-06 Israel Aerospace Industries Ltd Wings for aircraft
EP2183156A2 (en) * 2007-07-27 2010-05-12 Airbus Operations S.L. Aircraft tail assembly
CN102239083A (en) * 2008-12-04 2011-11-09 空中客车运作有限公司 Aircraft directional control and stabilizing surface
CN103577701A (en) * 2013-11-13 2014-02-12 中国航空工业集团公司西安飞机设计研究所 Method for computing control surface hinge moment coefficient when airplane incidence angle, sideslip angle and rudder deflection angle are all zero degree
CN105138828A (en) * 2015-08-13 2015-12-09 中国航空工业集团公司西安飞机设计研究所 Double-hinge control surface hinge moment derivative estimation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070278353A1 (en) * 2006-05-30 2007-12-06 Israel Aerospace Industries Ltd Wings for aircraft
EP2183156A2 (en) * 2007-07-27 2010-05-12 Airbus Operations S.L. Aircraft tail assembly
CN102239083A (en) * 2008-12-04 2011-11-09 空中客车运作有限公司 Aircraft directional control and stabilizing surface
CN103577701A (en) * 2013-11-13 2014-02-12 中国航空工业集团公司西安飞机设计研究所 Method for computing control surface hinge moment coefficient when airplane incidence angle, sideslip angle and rudder deflection angle are all zero degree
CN105138828A (en) * 2015-08-13 2015-12-09 中国航空工业集团公司西安飞机设计研究所 Double-hinge control surface hinge moment derivative estimation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
阮文斌 等: "基于全局灵敏度分析的侧向气动导数不确定性对侧向飞行载荷的影响", 《航空学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105819001A (en) * 2016-05-12 2016-08-03 中国航空工业集团公司西安飞机设计研究所 Determination method for horizontal tail installation angle of horizontal tail fixed airplane
CN105819001B (en) * 2016-05-12 2019-05-24 中国航空工业集团公司西安飞机设计研究所 A kind of horizontal tail setting angle of horizontal tail fastening aircraft determines method

Also Published As

Publication number Publication date
CN105574257B (en) 2019-02-12

Similar Documents

Publication Publication Date Title
Tomac et al. Predictions of stability and control for a flying wing
CN104331084A (en) Pneumatic rudder deflection range calculation method based on direction rudder roll control strategy
CN103577701B (en) Control surface hinge moment coefficient computational methods when aircraft angle of attack, yaw angle and angle of rudder reflection are zero degree
CN105574257A (en) Aircraft double-hinge rudder efficiency calculation method
CN105865741B (en) Simple method for measuring deflection angle of transverse airflow of wind tunnel test section
BR112015010864A2 (en) computer readable system, method and means for running software in accordance with health data standards, quality control protocols and device operating systems
Pattinson et al. High fidelity simulation of the folding wing tip for loads alleviaton
CN106695796A (en) Portable laser scanning measuring arm hand-eye calibration method based on RANSAC
CN105138828B (en) A kind of double-strand chain control surface hinge moment derivative evaluation method
CN114611420A (en) Evaluation and Correction Method of Unsteady Aerodynamic Calculation Accuracy
Kalehbasti et al. Wedge disclinations in the shell of a core–shell nanowire within the surface/interface elasticity
Rose et al. Influence of aeroelastic control reversal problem in the airplane lateral stability modes
CN110626519A (en) A Method for Controlling the Scale of Aircraft Surface Defects with Reduced Effects on Flow Transition
CN106394870A (en) Control surface for an aircraft
CN104155983B (en) Crosslinking impact assessment method for aerodynamic coupling property between aircraft attitude movement channels
US20210070420A1 (en) Transonic airfoil, wing, and aircraft
CN110697070A (en) Novel lifting body standard model design method suitable for plane-symmetric layout aircraft
Chapman Some effects of leading-edge sweep on boundary-layer transition at supersonic speeds
REN et al. Experimental study on the buffet phenomenon of NACA0012 airfoil
CN206235281U (en) Segmented clamp for measuring insulator rib groove internal diameter
CN107487438A (en) A kind of high-lift airfoil
Bagade et al. DNS of low Reynolds number aerodynamics in the presence of free stream turbulence
CN110160738B (en) Fairing device, design method and wing-body fusion device for airfoil wind tunnel test
CN204188450U (en) A kind of cylindrical shape fuselage strength test transition section
CN205055436U (en) A connection structure for control surface of model aircraft

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant