CN105573391B - 太阳阵模拟器的开路电压控制电路及其开路电压控制方法 - Google Patents

太阳阵模拟器的开路电压控制电路及其开路电压控制方法 Download PDF

Info

Publication number
CN105573391B
CN105573391B CN201610124415.9A CN201610124415A CN105573391B CN 105573391 B CN105573391 B CN 105573391B CN 201610124415 A CN201610124415 A CN 201610124415A CN 105573391 B CN105573391 B CN 105573391B
Authority
CN
China
Prior art keywords
digital
current
load
reference value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610124415.9A
Other languages
English (en)
Other versions
CN105573391A (zh
Inventor
张东来
金珊珊
王超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Harbin Institute of Technology
Original Assignee
Shenzhen Graduate School Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Harbin Institute of Technology filed Critical Shenzhen Graduate School Harbin Institute of Technology
Priority to CN201610124415.9A priority Critical patent/CN105573391B/zh
Publication of CN105573391A publication Critical patent/CN105573391A/zh
Application granted granted Critical
Publication of CN105573391B publication Critical patent/CN105573391B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current

Abstract

本发明公开了太阳阵模拟器的开路电压控制电路及其开路电压控制方法,太阳阵模拟器的开路电压控制电路包括:电压源,其输出端连接负载,给负载供电;偏置电阻Rdummy_load,与所述负载并联;模数转换器,连接电压源的输出端;数字处理单元,连接所述模数转换器;以及恒流负载,接地,连接偏置电阻Rdummy_load的输出端和数模转换器;本发明电路结构很简单,控制方式简单,并且实现真正的开路,提高了开路电压的精度。

Description

太阳阵模拟器的开路电压控制电路及其开路电压控制方法
技术领域
本发明涉及电压控制领域,尤其涉及电流型输出的太阳阵模拟器开路电压控制电路和开路电压的控制方法。
背景技术
对于线性方案实现的太阳能阵列模拟器,为了满足设定的开路电压输出,已有的控制方法有在输出端添加额外的电压内环,让模拟器的输出端电压和电流信息均参与控制,从而实现开路电压可调稳定输出的目的;另外一种方法则是在不同的设定开路电压条件下,通过时时改变电流源供电的母线电平值,来实现期望开路电压输出的目的。
采用添加电压内环的控制方式需要数字控制单元采样多个模拟量信号参与数字闭环,从而降低了模拟器整机的动态性能,并且控制方式比较复杂。采用改变母线电平的方式来实现开路电压连续可调的方法,不能使电流源做到完全意义上的开路状态,即模拟器在带载很轻时等效为近似开路状态,并且采用该种控制方式需要提供功率母线电平的电源输出大范围连续可调的高精度电压输出,输出开路电压的精度取决于可调母线电源的输出电压精度,从而导致输出开路电压的精度特性不够理想。
发明内容
本发明的目的是提供太阳阵模拟器的开路电压控制电路,电路结构简单,控制方式简单,实现真正的开路,提高开路电压的精度。
本发明的技术方案是太阳阵模拟器的开路电压控制电路,包括:
电压源,其输出端连接负载,给负载供电;
偏置电阻Rdummy_load,位于所述电压源和负载之间,与所述负载并联;
模数转换器,连接电压源的输出端,采集所述输出端的输出电压,经过模数转换后输出电压数字信号;
数字处理单元,连接所述模数转换器,将所述电压数字信号处理后,输出目标工作电流数字基准值;
数模转换器,连接数字处理单元,将目标工作电流数字基准值转换成目标工作电流模拟基准值;以及
恒流负载,接地,连接偏置电阻Rdummy_load的输出端和数模转换器,在目标工作电流模拟基准值的控制下,恒定流经偏置电阻Rdummy_load的电流和对外输出电流总和;
其中,所述数字处理单元包括:
第一运算器,分别连接存储器和所述模数转换器,将接收到的电压数字信号对应存储器中的I-V数据表格,查到负载的工作电流基准值;
存储器,存储有I-V数据表格;
第二运算器,连接所述模数转换器,接收所述电压数字信号,计算后输出偏置电阻的偏置电流基准值;以及
加法器,连接第一运算器和第二运算器,将所述负载的工作电流基准值和所述偏置电阻的偏置电流基准值求和,输出目标输出工作电流基准值到所述数模转换器。
将太阳阵模拟器输出端电压进行采样后,通过模数转换器将输出端电压采样信号转化为电压数字信号,该电压数字信号需要完成两个部分内容,其一是进行I-V工作基准表格查找,给出当前工作点条件下的所需负载的工作电流基准值;其二部分功能是通过第二运算器的计算,得到并联添加的偏置电阻的偏置电流基准值;并且将负载的工作电流基准值和偏置电阻的偏置电流基准值进行数字求和,得到恒流负载工作的目标输出工作电流基准值;最终通过数模转换电器转换,给出恒流负载的目标工作电流模拟基准值。在开路条件下,负载没有电流经过,负载两端也没有电压,只有电流从偏置电阻Rdummy_load中流过,因此,输出端电压采样信号的就是偏置电阻Rdummy_load的电压信号,由于开路时,模数转换器输出端的总电流就是流经偏置电阻Rdummy_load的电流,也是流过恒流负载的电流,控制了流过恒流负载的电流,也就控制了偏置电阻Rdummy_load的电流,偏置电阻Rdummy_load的阻值是固定了,因此最终就控制了偏置电阻Rdummy_load两端的电压,即太阳阵模拟器电压源输出端的开路电压。
本发明仅仅在太阳阵模拟器的电压源输出端并联了一个偏置电阻,然后通过模拟信号与数字信号的转换,结合恒流负载,实现了对太阳阵模拟器的开路电压控制。电路结构很简单,控制方式简单,并且实现真正的开路,提高了开路电压的精度。
进一步地,所述恒流负载包括:
第一数字放大器A1,正极连接所述数模转换器,负极连接MOS管的源极,输出端连接MOS管的栅极;
MOS管,漏极连接偏置电阻Rdummy_load的输出端;以及
恒流电阻RS,输入端了连接MOS管的源极,输出端接地。
数模转换器通过目标工作电流模拟基准值控制第一数字放大器A1,最终控制了进入MOS管漏极的电流。
进一步地,模数转换器通过差分采样电路连接电压源的输出端;所述差分采样电路包括:
第二数字放大器A2,输出端连接所述模数转换器,正极连接第二电阻R2,负极连接第三电阻R3
第一电阻R1,一端接地,另一端连接第二数字放大器A2的正极;
第二电阻R2,连接电压源的输出端;
第三电阻R3,连接电压源的输出端;以及
第四电阻R4,连接第二数字放大器A2的负极和输出端。
本发明的另一个技术方案是太阳阵模拟器的开路电压控制电路的控制方法,该方法包括如下步骤:
S1、对太阳阵模拟器电压源的输出电压进行差分采样,得到电压采样信号;
S2、模数转换器将所述电压采样信号转换为电压数字信号;
S3、数字处理器将电压数字信号进行处理,得到目标工作电流数字基准值;
S4、模数转换器将目标工作电流数字基准值转换成目标工作电流模拟基准值;以及
S5、目标工作电流模拟基准值通过数模转换器输入恒流负载,控制恒流负载的电流。
进一步地,步骤S3包括如下步骤:
S301、数字处理单元内的第一运算器利用存储器中的I-V数据表格,查到对应电压数字信号的负载的工作电流基准值;
S302、数字处理单元内的第二运算器接收所述电压数字信号,计算后输出偏置电阻的偏置电流基准值;以及
S303、数字处理单元内的加法器将负载的工作电流基准值的偏置电阻的偏置电流基准值求和,得到目标工作电流数字基准值。
进一步地,偏置电阻的偏置电流基准值满足如下公式:
式中,为偏置电阻的偏置电流基准值,U* o_sa为模数转换器转换后的电压数字信号,为偏置电阻Rdummy_load折算后的数字量。
进一步地,所述目标工作电流数字基准值满足如下公式:
式中,为恒流负载的目标工作电流数字基准值,为负载的工作电流基准值,为偏置电阻的偏置电流基准值。
进一步地,恒流负载的电流满足如下公式:
式中,Itot为恒流负载的电流值,UItot_ref为目标工作电流模拟基准值,Rs为恒流电阻的采样电阻值。
有益效果:本发明在线性电流源方案的基础上通过在太阳阵模拟器输出端添加假负载的偏置电阻Rdummy_load,并且通过数字处理器同时修正恒流负载的目标工作电流模拟基准值,如此可以满足电流型太阳阵模拟器可以实现真正意义上的开路工况,并且满足较高的输出开路电压精度。该方法实现方法简单,直接采用数字方式实现,并且不影响原来的数字I-V电流闭环,保证了太阳阵模拟器输出较高的动态特性;省去了数字处理器进行负载电压内环的闭环设计,并且较简单的实现输出开路电压的精度。
附图说明
图1是本发明的电路结构示意图;
图2是本发明的电路结构图;
图3是本发明的工作流程图。
图中标记:1-电压源;2-负载;3-模数转换器;4-数字处理单元;5-存储器;6-第一运算器;7-第二运算器;8-加法器;9-数模转换器;10-恒流负载。
具体实施方式
下面结合附图,对本发明的较优的实施例作进一步的详细说明:
结合图1和图2,太阳阵模拟器的开路电压控制电路,包括:
电压源1,其输出端连接负载2,给负载2供电;
偏置电阻Rdummy_load,位于所述电压源1和负载2之间,与所述负载2并联;
模数转换器3,连接电压源1的输出端,采集所述输出端的输出电压,经过模数转换后输出电压数字信号;
数字处理单元4,连接所述模数转换器3,将所述电压数字信号处理后,输出目标工作电流数字基准值;
数模转换器9,连接数字处理单元4,将目标工作电流数字基准值转换成目标工作电流模拟基准值;以及
恒流负载10,接地,连接偏置电阻Rdummy_load的输出端和数模转换器9,在目标工作电流模拟基准值的控制下,恒定流经偏置电阻Rdummy_load的电流和对外输出电流总和;
其中,所述数字处理单元4包括:
第一运算器6,分别连接存储器5和所述模数转换器3,将接收到的电压数字信号对应存储器5中的I-V数据表格,查到负载2的工作电流基准值;
存储器5,存储有I-V数据表格;
第二运算器7,连接所述模数转换器3,接收所述电压数字信号,计算后输出偏置电阻的偏置电流基准值;以及
加法器8,连接第一运算器6和第二运算器7,将所述负载2的工作电流基准值和所述偏置电阻的偏置电流基准值求和,输出目标输出工作电流基准值到所述数模转换器9。
将太阳阵模拟器输出端电压进行采样后,通过模数转换器3将输出端电压采样信号转化为电压数字信号,该电压数字信号需要完成两个部分内容,其一是进行I-V工作基准表格查找,给出当前工作点条件下的所需负载2的工作电流基准值;其二部分功能是通过第二运算器7的计算,得到并联添加的偏置电阻的偏置电流基准值;并且将负载2的工作电流基准值和偏置电阻的偏置电流基准值进行数字求和,得到恒流负载10工作的目标输出工作电流基准值;最终通过数模转换电器转换,给出恒流负载10的目标工作电流模拟基准值。在开路条件下,负载2没有电流经过,负载2两端也没有电压,只有电流从偏置电阻Rdummy_load中流过,因此,输出端电压采样信号的就是偏置电阻Rdummy_load的电压信号,由于开路时,模数转换器3输出端的总电流就是流经偏置电阻Rdummy_load的电流,也是流过恒流负载10的电流,控制了流过恒流负载10的电流,也就控制了偏置电阻Rdummy_load的电流,偏置电阻Rdummy_load的阻值是固定了,因此最终就控制了偏置电阻Rdummy_load两端的电压,即太阳阵模拟器电压源1输出端的开路电压。
本发明仅仅在太阳阵模拟器的电压源1输出端并联了一个偏置电阻,然后通过模拟信号与数字信号的转换,结合恒流负载10,实现了对太阳阵模拟器的开路电压控制。电路结构很简单,控制方式简单,并且实现真正的开路,提高了开路电压的精度。
结合图2,所述恒流负载10包括:
第一数字放大器A1,正极连接所述数模转换器9,负极连接MOS管的源极,输出端连接MOS管的栅极;
MOS管,漏极连接偏置电阻Rdummy_load的输出端;以及
恒流电阻RS,输入端了连接MOS管的源极,输出端接地。
数模转换器9通过目标工作电流模拟基准值控制第一数字放大器A1,最终控制了进入MOS管漏极的电流。
结合图2,模数转换器3通过差分采样电路连接电压源1的输出端;所述差分采样电路包括:
第二数字放大器A2,输出端连接所述模数转换器3,正极连接第二电阻R2,负极连接第三电阻R3
第一电阻R1,一端接地,另一端连接第二数字放大器A2的正极;
第二电阻R2,连接电压源1的输出端;
第三电阻R3,连接电压源1的输出端;以及
第四电阻R4,连接第二数字放大器A2的负极和输出端。
结合图1至3,太阳阵模拟器的开路电压控制电路的控制方法,该方法包括如下步骤:
S1、对太阳阵模拟器电压源1的输出电压进行差分采样,得到电压采样信号;
S2、模数转换器3将所述电压采样信号转换为电压数字信号;
S3、数字处理器将电压数字信号进行处理,得到目标工作电流数字基准值;
S4、模数转换器3将目标工作电流数字基准值转换成目标工作电流模拟基准值;以及
S5、目标工作电流模拟基准值通过数模转换器9输入恒流负载10,控制恒流负载10的电流。
结合图1至3,步骤S3包括如下步骤:
S301、数字处理单元4内的第一运算器6利用存储器5中的I-V数据表格,查到对应电压数字信号的负载2的工作电流基准值;
S302、数字处理单元4内的第二运算器7接收所述电压数字信号,计算后输出偏置电阻的偏置电流基准值;以及
S303、数字处理单元4内的加法器8将负载2的工作电流基准值的偏置电阻的偏置电流基准值求和,得到目标工作电流数字基准值。
优选地,偏置电阻的偏置电流基准值满足如下公式:
式中,为偏置电阻的偏置电流基准值,U* o_sa为模数转换器3转换后的电压数字信号,为偏置电阻Rdummy_load折算后的数字量。
优选地,所述目标工作电流数字基准值满足如下公式:
式中,为恒流负载10的目标工作电流数字基准值,为负载2的工作电流基准值,为偏置电阻的偏置电流基准值。
优选地,恒流负载10的电流满足如下公式:
式中,Itot为恒流负载10的电流值,UItot_ref为目标工作电流模拟基准值,Rs为恒流电阻的采样电阻值。
本发明在线性电流源方案的基础上通过在太阳阵模拟器输出端添加假负载的偏置电阻Rdummy_load,并且通过数字处理器同时修正恒流负载10的目标工作电流模拟基准值,如此可以满足电流型太阳阵模拟器可以实现真正意义上的开路工况,并且满足较高的输出开路电压精度。该方法实现方法简单,直接采用数字方式实现,并且不影响原来的数字I-V电流闭环,保证了太阳阵模拟器输出较高的动态特性;省去了数字处理器进行负载2电压内环的闭环设计,并且较简单的实现输出开路电压的精度。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

1.太阳阵模拟器的开路电压控制电路,其特征在于,包括:
电压源,其输出端连接负载,给负载供电;
偏置电阻Rdummy_load,位于所述电压源和负载之间,与所述负载并联;
模数转换器,连接电压源的输出端,采集所述输出端的输出电压,经过模数转换后输出电压数字信号;
数字处理单元,连接所述模数转换器,将所述电压数字信号处理后,输出目标工作电流数字基准值;
数模转换器,连接数字处理单元,将目标工作电流数字基准值转换成目标工作电流模拟基准值;以及
恒流负载,接地,连接偏置电阻Rdummy_load的输出端和数模转换器,在目标工作电流模拟基准值的控制下,恒定流经偏置电阻Rdummy_load的电流和对外输出电流总和;
其中,所述数字处理单元包括:
第一运算器,分别连接存储器和所述模数转换器,将接收到的电压数字信号对应存储器中的I-V数据表格,查到负载的工作电流基准值;
存储器,存储有I-V数据表格;
第二运算器,连接所述模数转换器,接收所述电压数字信号,计算后输出偏置电阻的偏置电流基准值;以及
加法器,连接第一运算器和第二运算器,将所述负载的工作电流基准值和所述偏置电阻的偏置电流基准值求和,输出目标输出工作电流基准值到所述数模转换器。
2.根据权利要求1所述的太阳阵模拟器的开路电压控制电路,其特征在于,所述恒流负载包括:
第一数字放大器A1,正极连接所述数模转换器,负极连接M0S管的源极,输出端连接MOS管的栅极;
MOS管,漏极连接偏置电阻Rdummy_load的输出端;以及
恒流电阻RS,输入端了连接M0S管的源极,输出端接地。
3.根据权利要求2所述的太阳阵模拟器的开路电压控制电路,其特征在于,模数转换器通过差分采样电路连接电压源的输出端;所述差分采样电路包括:
第二数字放大器A2,输出端连接所述模数转换器,正极连接第二电阻R2,负极连接第三电阻R3
第一电阻R1,一端接地,另一端连接第二数字放大器A2的正极;
第二电阻R2,连接电压源的输出端;
第三电阻R3,连接电压源的输出端;以及
第四电阻R4,连接第二数字放大器A2的负极和输出端。
4.太阳阵模拟器的开路电压控制方法,用于控制权利要求1至3中任意一项所述的太阳阵模拟器的开路电压控制电路,其特征在于,该方法包括如下步骤:
S1、对太阳阵模拟器电压源的输出电压进行差分采样,得到电压采样信号;
S2、模数转换器将所述电压采样信号转换为电压数字信号;
S3、数字处理器将电压数字信号进行处理,得到目标工作电流数字基准值;
S4、模数转换器将目标工作电流数字基准值转换成目标工作电流模拟基准值;以及
S5、目标工作电流模拟基准值通过数模转换器输入恒流负载,控制恒流负载的电流。
5.根据权利要求4所述的太阳阵模拟器的开路电压控制方法,其特征在于,步骤S3包括如下步骤:
S301、数字处理单元内的第一运算器利用存储器中的I-V数据表格,查到对应电压数字信号的负载的工作电流基准值;
S302、数字处理单元内的第二运算器接收所述电压数字信号,计算后输出偏置电阻的偏置电流基准值;以及
S303、数字处理单元内的加法器将负载的工作电流基准值的偏置电阻的偏置电流基准值求和,得到目标工作电流数字基准值。
6.根据权利要求5所述的太阳阵模拟器的开路电压控制方法,其特征在于:偏置电阻的偏置电流基准值满足如下公式:
U I b i a s _ r e f * = f ( U o _ s a * ) = U o _ s a * R d u m m y _ l o a d * ,
式中,为偏置电阻的偏置电流基准值,为模数转换器转换后的数字电压数字信号,为偏置电阻Rdummy_load折算后的数字量。
7.根据权利要求5所述的太阳阵模拟器的开路电压控制方法,其特征在于,所述目标工作电流数字基准值满足如下公式:
U I t o t _ r e f * = U I o _ r e f * + U I b i a s _ r e f * ,
式中,为恒流负载的目标工作电流数字基准值,为负载的工作电流数字基准值,为偏置电阻的偏置电流基准值。
8.根据权利要求4所述的太阳阵模拟器的开路电压控制方法,其特征在于,恒流负载的电流满足如下公式:
I t o t = U I t o t _ r e f R s ,
式中,Itot为恒流负载的电流值,UItot_ref为目标工作电流模拟基准值,Rs为恒流电阻的采样电阻值。
CN201610124415.9A 2016-03-04 2016-03-04 太阳阵模拟器的开路电压控制电路及其开路电压控制方法 Active CN105573391B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610124415.9A CN105573391B (zh) 2016-03-04 2016-03-04 太阳阵模拟器的开路电压控制电路及其开路电压控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610124415.9A CN105573391B (zh) 2016-03-04 2016-03-04 太阳阵模拟器的开路电压控制电路及其开路电压控制方法

Publications (2)

Publication Number Publication Date
CN105573391A CN105573391A (zh) 2016-05-11
CN105573391B true CN105573391B (zh) 2017-06-30

Family

ID=55883643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610124415.9A Active CN105573391B (zh) 2016-03-04 2016-03-04 太阳阵模拟器的开路电压控制电路及其开路电压控制方法

Country Status (1)

Country Link
CN (1) CN105573391B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478700A (zh) * 2020-03-19 2020-07-31 中国计量科学研究院 约瑟夫森子结阵单元模拟器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981989B (zh) * 2017-03-24 2019-04-02 哈尔滨工业大学深圳研究生院 线性功率级的多路并联型压控电流源及太阳能阵列模拟器
CN107037760B (zh) * 2017-05-19 2019-07-26 北京东方计量测试研究所 一种输入电流型模拟电阻器及电阻控制方法
CN107037852B (zh) * 2017-06-06 2021-01-15 哈尔滨工业大学深圳研究生院 线性压控电流源拓扑结构及太阳阵模拟器
CN110703836B (zh) * 2019-10-17 2020-10-09 深圳市航天新源科技有限公司 电流输出型太阳阵模拟器开路电压控制电路及其控制方法
CN111323623B (zh) * 2020-03-19 2020-11-13 中国计量科学研究院 约瑟夫森阵列模拟系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1834825A (zh) * 2005-03-18 2006-09-20 大动力公司 数字双回路输出电压调节
CN103699204A (zh) * 2013-11-28 2014-04-02 青岛歌尔声学科技有限公司 一种系统功耗调节电路、方法以及电子设备
CN205427679U (zh) * 2016-03-04 2016-08-03 哈尔滨工业大学深圳研究生院 太阳阵模拟器的开路电压控制电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207239A (ja) * 2008-02-26 2009-09-10 Sharp Corp 太陽電池用充電制御装置
JP2013206352A (ja) * 2012-03-29 2013-10-07 Denso Wave Inc 最大電力点検出方法、および最大電力点検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1834825A (zh) * 2005-03-18 2006-09-20 大动力公司 数字双回路输出电压调节
CN103699204A (zh) * 2013-11-28 2014-04-02 青岛歌尔声学科技有限公司 一种系统功耗调节电路、方法以及电子设备
CN205427679U (zh) * 2016-03-04 2016-08-03 哈尔滨工业大学深圳研究生院 太阳阵模拟器的开路电压控制电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478700A (zh) * 2020-03-19 2020-07-31 中国计量科学研究院 约瑟夫森子结阵单元模拟器
CN111478700B (zh) * 2020-03-19 2020-12-04 中国计量科学研究院 约瑟夫森子结阵单元模拟器

Also Published As

Publication number Publication date
CN105573391A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN105573391B (zh) 太阳阵模拟器的开路电压控制电路及其开路电压控制方法
Kuai et al. An electronic load for testing photovoltaic panels
Belmili et al. Design and development of a data acquisition system for photovoltaic modules characterization
CN201229513Y (zh) 一种低压差线性稳压器
CN102298110A (zh) 太阳能电池电气特性的测量方法及装置
Rivai et al. Binary‐based tracer of photovoltaic array characteristics
CN108334700A (zh) 一种分数阶忆容器的等效电路
CN207515919U (zh) 一种温度检测电路
US10063084B2 (en) Apparatus for digital battery charger and associated methods
Nagayoshi et al. Novel PV array/module IV curve simulator circuit
CN108733118A (zh) 一种高电源抑制比快速响应ldo
CN109343433B (zh) 一种高精度高分辨率可编程电源电路
CN205427679U (zh) 太阳阵模拟器的开路电压控制电路
CN201867672U (zh) 用于移动终端中的ldo电路
CN101949966A (zh) 一种能精确检测充电电流的移动终端
CN201813361U (zh) 一种adc模块的校准装置及移动终端
CN105703711A (zh) 开关型电压源与线性电流源结合的太阳阵模拟器
CN102545907B (zh) 数模转换器
CN107394856B (zh) 一种并行电池充电电路及其充电方法
CN205430175U (zh) 开关型电压源与线性电流源结合的太阳阵模拟器
CN204697045U (zh) 气敏传感器的数据读出电路和检测装置
CN202043061U (zh) 一种光伏电池伏安特性模拟电源装置
CN102122186B (zh) 大功率负压数控恒流模块
CN214227880U (zh) 一种大电流电池供电设备
KR101247358B1 (ko) 태양전지 출력특성 측정용 부하장치 및 측정 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant