CN105571545B - A kind of five-axis linkage machine tools axis of rotation geometric parameter measurement method - Google Patents

A kind of five-axis linkage machine tools axis of rotation geometric parameter measurement method Download PDF

Info

Publication number
CN105571545B
CN105571545B CN201510856867.1A CN201510856867A CN105571545B CN 105571545 B CN105571545 B CN 105571545B CN 201510856867 A CN201510856867 A CN 201510856867A CN 105571545 B CN105571545 B CN 105571545B
Authority
CN
China
Prior art keywords
axis
point
machine tool
probe
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510856867.1A
Other languages
Chinese (zh)
Other versions
CN105571545A (en
Inventor
陈吉红
凌文锋
顾潇
蒋威
彭锦群
卢圣勇
李雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Wuhan Huazhong Numerical Control Co Ltd
Original Assignee
Huazhong University of Science and Technology
Wuhan Huazhong Numerical Control Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, Wuhan Huazhong Numerical Control Co Ltd filed Critical Huazhong University of Science and Technology
Priority to CN201510856867.1A priority Critical patent/CN105571545B/en
Publication of CN105571545A publication Critical patent/CN105571545A/en
Application granted granted Critical
Publication of CN105571545B publication Critical patent/CN105571545B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

本发明公开了一种基于触发式测头五轴联动机床回转轴线几何参数测量方法,属于数控系统、机床结构参数测量领域,包括仪器安装、参数设置、碰撞采集和RTCP参数计算步骤。通过数控系统,驱动测头探针与标准球进行碰撞并锁存碰撞点机床坐标,根据坐标计算各个示教点相对应的标准球球心坐标,使用最小二乘数据处理方法,对各个标准球球心坐标拟合主动旋转轴与从动旋转轴轴线方向与空间位置,得到RTCP参数。本发明方法可完成五轴联动机床回转轴线几何参数(即RTCP参数)自动精密测量,实现旋转刀具中心点精确控制。

The invention discloses a method for measuring the geometric parameters of the rotation axis of a five-axis linkage machine tool based on a trigger type probe, belonging to the field of numerical control systems and machine tool structure parameter measurement, and includes the steps of instrument installation, parameter setting, collision acquisition and RTCP parameter calculation. Through the numerical control system, drive the probe probe to collide with the standard ball and lock the machine tool coordinates of the collision point, calculate the center coordinates of the standard ball corresponding to each teaching point according to the coordinates, and use the least squares data processing method to calculate the coordinates of each standard ball The coordinates of the center of the sphere are fitted to the axis direction and spatial position of the active rotation axis and the driven rotation axis to obtain the RTCP parameters. The method of the invention can complete the automatic and precise measurement of the geometric parameters (ie RTCP parameters) of the rotary axis of the five-axis linkage machine tool, and realize the precise control of the center point of the rotary tool.

Description

一种五轴联动机床回转轴线几何参数测量方法A method for measuring the geometric parameters of the rotary axis of a five-axis linkage machine tool

技术领域technical field

本发明涉及数控系统、机床结构参数测量技术领域,以实现一种五轴联动机床回转轴线几何参数测量方法。The invention relates to the technical field of numerical control system and machine tool structural parameter measurement, and aims to realize a method for measuring the geometric parameter of the rotary axis of a five-axis linkage machine tool.

背景技术Background technique

旋转刀具中心控制RTCP(Rotational Tool Center Point)技术,是五轴联动数控系统极其重要的功能,RTCP功能可以直接编程刀具中心点的轨迹,使得数控程序独立于具体的机床结构,数控系统会自动计算并保持刀具中心总始终在编程轨迹上,由旋转轴运动引起的非线性误差都会被直线轴的运动所补偿。五轴机床不具备RTCP功能时,旋转轴运动时刀具围绕旋转轴中心旋转,刀具中心点在工件坐标系中发生变化。Rotary tool center control RTCP (Rotational Tool Center Point) technology is an extremely important function of the five-axis linkage CNC system. The RTCP function can directly program the trajectory of the tool center point, making the CNC program independent of the specific machine tool structure. The CNC system will automatically calculate And keep the tool center always on the programmed track, the non-linear error caused by the movement of the rotary axis will be compensated by the movement of the linear axis. When the five-axis machine tool does not have the RTCP function, the tool rotates around the center of the rotary axis when the rotary axis moves, and the tool center point changes in the workpiece coordinate system.

五轴机床回转轴线几何参数即RTCP参数的测量精度高低决定了RTCP功能的好坏。传统手工测量方法使用检棒、百分表和方规测量RTCP参数。其缺陷和局限性如下:The measurement accuracy of the geometric parameters of the rotary axis of the five-axis machine tool, that is, the RTCP parameters, determines the quality of the RTCP function. Traditional manual measurement methods use dipsticks, dial gauges and square gauges to measure RTCP parameters. Its flaws and limitations are as follows:

1)未测量主动轴与从动轴轴线方向,默认两轴线与相应坐标轴平行,且相互正交,这是手工测量方法的前提。但是在实际中,两轴线不一定与坐标轴平行,也不一定相互正交,此测量前提是无法保证的,这样便会带来测量误差。1) The axis directions of the driving shaft and the driven shaft are not measured, and the default two axes are parallel to the corresponding coordinate axes and orthogonal to each other, which is the premise of the manual measurement method. However, in practice, the two axes are not necessarily parallel to the coordinate axes, nor are they necessarily orthogonal to each other. This measurement premise cannot be guaranteed, which will cause measurement errors.

2)一般的检棒球头圆度以及球头球心与主轴回转轴线同心度精度低,并不适用于高精测量场合,使得测量产生误差。2) The general inspection of the roundness of the baseball head and the concentricity of the center of the ball head and the axis of rotation of the spindle has low accuracy, which is not suitable for high-precision measurement occasions, resulting in errors in measurement.

3)双转台结构测量时要求主动轴能在正向或者负向旋转90°,并非所有机床具备这个角度行程。3) The measurement of the double turntable structure requires that the driving shaft can rotate 90° in the positive or negative direction, and not all machine tools have this angular stroke.

4)操作步骤繁琐,自动化程度低,测量结果好坏往往与机床测试人员经验有很大关系。4) The operation steps are cumbersome, the degree of automation is low, and the quality of the measurement results often has a lot to do with the experience of the machine tool testers.

为解决手工测量精度缺陷和使用局限性,最大限度实现测量的自动化,实现旋转刀具中心点精确控制,需要寻求一种更好的测量方法。In order to solve the defects of manual measurement accuracy and use limitations, realize the automation of measurement to the greatest extent, and realize the precise control of the center point of the rotating tool, it is necessary to seek a better measurement method.

发明内容Contents of the invention

为解决手工测量五轴机床RTCP参数精度缺陷和场合使用局限性,本发明提供一种五轴联动机床回转轴线几何参数测量方法,实现RTCP参数的自动测量。In order to solve the defect of manual measurement of RTCP parameters of a five-axis machine tool and the limitations of occasions, the invention provides a method for measuring the geometric parameters of the rotation axis of a five-axis linkage machine tool to realize automatic measurement of RTCP parameters.

本发明使用触发式测头和标准球作为测量仪器,基于HNC8二次开发五轴机床几何参数自动测量功能界面。HNC8是武汉华中数控股份有限公司研发的高档型数控系统,并提供了二次开发平台,用于各类复杂的功能和专用界面开发。数控系统为用户配备了强有力的类似于高级语言的宏程序功能,用户可以使用宏变量进行算术运算、逻辑运算和循环以及子程序操作。The invention uses a trigger type measuring head and a standard ball as a measuring instrument, and secondarily develops a functional interface for automatic measurement of geometric parameters of a five-axis machine tool based on the HNC8. HNC8 is a high-end CNC system developed by Wuhan Huazhong Numerical Control Co., Ltd., and provides a secondary development platform for the development of various complex functions and special interfaces. The numerical control system is equipped with a powerful macro program function similar to high-level language for users. Users can use macro variables to perform arithmetic operations, logic operations, loops and subroutine operations.

为实现上述目的,本发明提供一种五轴联动机床回转轴线几何参数测量方法,包括以下步骤:In order to achieve the above purpose, the present invention provides a method for measuring the geometric parameters of the rotary axis of a five-axis linkage machine tool, which includes the following steps:

S1:仪器安装,根据机床结构类型,安装触发式测头和标准球,并用杠杆表对测头探针进行主轴同心校准;S1: Instrument installation, according to the structure type of the machine tool, install the trigger probe and the standard ball, and use the lever meter to calibrate the spindle concentricity of the probe probe;

S2:参数设置,在数控系统上设置测量参数,包括测量类型、旋转轴显示顺序、旋转轴名、安全高度、定位速度、中间速度、触发速度、标准球半径、刀具长度和刀具半径10个基本参数以及8个主动轴示教点和8个从动轴示教点,所述示教点是用来确定标准球与测头相对位置,并进行碰撞的基准点;S2: Parameter setting, set measurement parameters on the CNC system, including measurement type, display order of rotary axis, name of rotary axis, safety height, positioning speed, intermediate speed, trigger speed, standard ball radius, tool length and tool radius 10 basic Parameters and 8 teaching points of the driving axis and 8 teaching points of the driven axis, the teaching points are used to determine the relative position of the standard ball and the measuring head, and the reference point for collision;

S3:碰撞采集,通过数控系统,根据步骤S2确定的10个基本参数以及8个主动轴示教点和8个从动轴示教点坐标,驱动测头探针与标准球进行碰撞并锁存碰撞时机床坐标系下的坐标X、Y、Z,各个示教点碰撞4次;碰撞过程如下:S3: Collision acquisition, through the numerical control system, according to the 10 basic parameters determined in step S2 and the coordinates of 8 teaching points of the driving axis and 8 teaching points of the driven axis, the probe probe of the probe is driven to collide with the standard ball and latched The coordinates X, Y, and Z in the machine tool coordinate system at the time of collision, and each teaching point collides 4 times; the collision process is as follows:

测头探针在Z轴负方向与标准球顶点进行碰撞锁存机床坐标点1,在X轴正方向与标准球赤道碰撞锁存机床坐标点2,在X轴负方向与标准球赤道碰撞锁存机床坐标点3,在Y轴正或负方向与标准球赤道碰撞锁存机床坐标点4;The probe probe collides with the vertex of the standard sphere in the negative direction of the Z axis to lock the machine tool coordinate point 1, collides with the equator of the standard sphere in the positive direction of the X axis and locks the machine tool coordinate point 2, and collides with the equator of the standard sphere in the negative direction of the X axis to lock Save the machine tool coordinate point 3, and collide with the standard sphere equator in the positive or negative direction of the Y axis to lock the machine tool coordinate point 4;

或者,测头探针在Z负方向与标准球顶点进行碰撞锁存机床坐标点1,在Y轴正方向与标准球赤道碰撞锁存机床坐标点2,在Y轴负方向与标准球赤道碰撞锁存机床坐标点3,在X轴正或负方向与标准球赤道碰撞锁存机床坐标点4;Or, the probe probe collides with the vertex of the standard sphere in the negative direction of Z to lock the machine coordinate point 1, collides with the equator of the standard sphere in the positive direction of the Y axis and locks the machine coordinate point 2, and collides with the equator of the standard sphere in the negative direction of the Y axis. Latch the machine tool coordinate point 3, and latch the machine tool coordinate point 4 by colliding with the standard sphere equator in the positive or negative direction of the X axis;

S4:RTCP参数计算,根据锁存的碰撞点坐标,计算各个示教点相对应的标准球球心坐标;使用最小二乘数据处理方法,对各个标准球球心坐标拟合主动旋转轴与从动旋转轴轴线方向与空间位置,得到RTCP参数,所述RTCP参数包括主动轴轴线方向矢量、从动轴轴线方向矢量、主动轴轴线偏移矢量和从动轴轴线偏移矢量。S4: RTCP parameter calculation, according to the latched coordinates of the collision point, calculate the coordinates of the center of the standard ball corresponding to each teaching point; use the least square data processing method to fit the coordinates of the center of each standard ball to the active rotation axis and the slave The axis direction and spatial position of the driving rotating shaft are used to obtain RTCP parameters, and the RTCP parameters include the direction vector of the axis of the driving shaft, the direction vector of the axis of the driven shaft, the offset vector of the axis of the driving shaft and the offset vector of the axis of the driven shaft.

进一步的,所述的几何参数测量方法的步骤S1中,对于双摆头和混合型结构机床采用主轴装夹标准球而工作台放置测头的安装方式,对于双转台类型机床采用主轴装夹测头而转台放置标准球的安装方式。Further, in the step S1 of the geometric parameter measurement method, for the double-oscillating-head and mixed-type machine tools, the standard ball is mounted on the spindle and the measuring head is placed on the workbench; The installation method of placing the standard ball on the turntable.

进一步的,所述的几何参数测量方法的步骤S2的示教点选取过程中,主动旋转轴或从动旋转轴在保持任一角度,在Z方向测头探针与标准球最高点附近刚好接触时,此时机床坐标系下的五个轴坐标即为示教点坐标;在主动旋转轴行程范围,均匀获取8个主动轴示教点;在从动旋转轴行程范围,均匀获取8个从动轴示教点。Further, during the selection process of the teaching point in step S2 of the geometric parameter measurement method, the active rotation axis or the driven rotation axis maintains any angle, and the probe probe in the Z direction is just in contact with the highest point of the standard ball At this time, the coordinates of the five axes in the machine tool coordinate system are the coordinates of the teaching points; in the travel range of the active rotation axis, 8 teaching points of the driving axis are evenly obtained; in the travel range of the driven rotation axis, 8 Moving axis teaching point.

进一步的,所述的几何参数测量方法,根据8个主动轴示教点和8个从动轴示教点,采用最小二乘法分别拟合出标准球球心坐标,计算RTCP参数方法如下:Further, in the geometric parameter measurement method, according to 8 teaching points of the driving axis and 8 teaching points of the driven axis, the coordinates of the center of the standard ball are respectively fitted by the least square method, and the method of calculating the RTCP parameters is as follows:

根据主动轴轴线参数L1(V1,D1)与从动轴轴线参数L2(V2,D2),计算直线L1与直线L2之间公垂线段L3(T1,T2),点T1为L3在L1上的垂足,点T2为L3在L2上的垂足;According to the driving shaft axis parameter L1 (V1, D1) and the driven shaft axis parameter L2 (V2, D2), calculate the common vertical segment L3 (T1, T2) between the straight line L1 and the straight line L2, and the point T1 is the point of L3 on L1 Pedestal foot, point T2 is the vertical foot of L3 on L2;

其中:L1(V1,D1)是由方向矢量V1和D1确定的直线,L2(V2,D2)是由方向矢量V2和D2确定的直线;D1是由主动轴示教点拟合的轨迹圆圆心,其位于主动轴轴线上,V1为所述轨迹圆平面法矢,是主动轴轴线的方向;D2是由从动轴示教点拟合的轨迹圆圆心,是从动轴轴线上的一点,V2为所述轨迹圆平面法矢,是从动轴轴线的方向;Among them: L1(V1, D1) is a straight line determined by the direction vectors V1 and D1, L2(V2, D2) is a straight line determined by the direction vectors V2 and D2; D1 is the center of the trajectory circle fitted by the teaching point of the active axis , which is located on the axis of the driving shaft, V1 is the normal vector of the trajectory circle plane, and is the direction of the axis of the driving shaft; D2 is the center of the trajectory circle fitted by the teaching point of the driven shaft, and is a point on the axis of the driven shaft, V2 is the normal vector of the trajectory circle plane, which is the direction of the axis of the driven shaft;

最后,得到的RTCP参数分别为:主动轴轴线方向矢量V1、从动轴轴线方向矢量V2、主动轴轴线偏移矢量(T2-T1)、从动轴轴线偏移矢量T1;上述矢量均以机床坐标原点为基准。Finally, the obtained RTCP parameters are: axis direction vector V1 of the driving axis, axis direction vector V2 of the driven axis, offset vector (T2-T1) of the axis of the driving axis, and axis offset vector T1 of the driven axis; The origin of the coordinates is the datum.

进一步的,所述的几何参数测量方法中,测量参数的赋值、碰撞锁存和计算,可利用数控系统G代码实现。所述碰撞动作是采集所需坐标数据的基础,这些数据最终用来计算RTCP参数。碰撞原理在于,测头探针刚好触碰标准球并开始产生微小形变时,测头发出触发信号,机床控制测头探针立即返回,并锁存测头探针刚好触碰标准球时的机床坐标。Further, in the geometric parameter measurement method, the assignment, collision latch and calculation of the measurement parameters can be realized by using the G code of the numerical control system. The collision action is the basis for collecting required coordinate data, and these data are finally used to calculate RTCP parameters. The principle of collision is that when the probe probe just touches the standard ball and begins to produce a small deformation, the probe sends a trigger signal, the machine tool controls the probe probe to return immediately, and latches the machine tool when the probe probe just touches the standard ball. coordinate.

所述的几何参数测量方法,计算RTCP参数关键在于标准球球心计算和球心圆拟合,原理如下:In the geometric parameter measurement method, the key to calculating the RTCP parameters lies in the calculation of the center of the standard sphere and the fitting of the center of the sphere. The principle is as follows:

1)球心计算1) Calculation of the center of the sphere

根据步骤S3中主动轴示教点处碰撞锁存的机床坐标系下4个空间坐标点求取主动轴示教点处标准球球心坐标Bai(X,Y,Z)(i=1,2…8),公式如下:According to the 4 spatial coordinate points in the machine coordinate system of the collision latch at the teaching point of the active axis in step S3 Calculate the coordinates Ba i (X, Y, Z) (i=1,2...8) of the center of the standard sphere at the teaching point of the driving axis, the formula is as follows:

(X-X1)2+(Y-Y1)2+(Z-Z1)2=(X-X2)2+(Y-Y2)2+(Z-Z2)2 (X-X1) 2 +(Y-Y1) 2 +(Z-Z1) 2 =(X-X2) 2 +(Y-Y2) 2 +(Z-Z2) 2

(X-X1)2+(Y-Y1)2+(Z-Z1)2=(X-X3)2+(Y-Y3)2+(Z-Z3)2 (X-X1) 2 +(Y-Y1) 2 +(Z-Z1) 2 =(X-X3) 2 +(Y-Y3) 2 +(Z-Z3) 2

(X-X1)2+(Y-Y1)2+(Z-Z1)2=(X-X4)2+(Y-Y4)2+(Z-Z4)2 (X-X1) 2 +(Y-Y1) 2 +(Z-Z1) 2 =(X-X4) 2 +(Y-Y4) 2 +(Z-Z4) 2

同样可得从动轴示教点处标准球球心坐标Bpi(X,Y,Z)(i=1,2…8)。Similarly, the coordinates Bp i (X, Y, Z) (i=1, 2...8) of the center of the standard sphere at the teaching point of the driven axis can be obtained.

2)球心圆拟合2) Center circle fitting

标准球球心的轨迹是空间平面上的一个圆。依据Bai(X,Y,Z(i=1,2…8)8个标准球球心坐标,使用最小二乘法拟合轨迹圆圆心D1(X,Y,Z)与轨迹圆平面法矢V1(X,Y,Z),轨迹圆圆心D1(X,Y,Z)是主动轴轴线上的一点,轨迹圆平面法矢V1(X,Y,Z)是主动轴轴线的方向;依据Bpi(X,Y,Z)(i=1,2…8)8个标准球球心坐标使用最小二乘法拟合轨迹圆圆心D2(X,Y,Z)与轨迹圆平面法矢V2(X,Y,Z),轨迹圆圆心D2(X,Y,Z)是从动轴轴线上的一点,轨迹圆平面法矢V2(X,Y,Z)是从动轴轴线的方向。The locus of the center of the standard sphere is a circle on the space plane. Based on the coordinates of the 8 standard sphere centers of Ba i (X, Y, Z (i=1, 2...8), use the least squares method to fit the trajectory circle center D1 (X, Y, Z) and the trajectory circle plane normal vector V1 (X, Y, Z), the center of the trajectory circle D1 (X, Y, Z) is a point on the axis of the drive shaft, and the plane normal vector V1 (X, Y, Z) of the trajectory circle is the direction of the axis of the drive axis; according to Bp i (X, Y, Z) (i=1,2...8) 8 standard ball center coordinates use the least squares method to fit the trajectory circle center D2 (X, Y, Z) and the trajectory circle plane normal vector V2 (X, Y, Z), the center of the trajectory circle D2 (X, Y, Z) is a point on the axis of the driven shaft, and the normal vector of the trajectory circle plane V2 (X, Y, Z) is the direction of the axis of the driven shaft.

3)RTCP参数计算3) RTCP parameter calculation

根据主动轴轴线参数L1(V1,D1)与从动轴轴线参数L2(V2,D2),计算直线L1与直线L2之间公垂线段L3(T1,T2),点T1(X,Y,Z)为L3在L1上的垂足,点T2(X,Y,Z)为L3在L2上的垂足。L1(V1,D1)表示由方向矢量V1和D1确定的直线,L2(V2,D2)表示由方向矢量V2和D2确定的直线。According to the axis parameter L1 (V1, D1) of the driving shaft and the axis parameter L2 (V2, D2) of the driven shaft, calculate the common vertical segment L3 (T1, T2) between the straight line L1 and the straight line L2, point T1 (X, Y, Z ) is the foot of L3 on L1, point T2 (X, Y, Z) is the foot of L3 on L2. L1(V1, D1) represents a straight line determined by direction vectors V1 and D1, and L2(V2, D2) represents a straight line determined by direction vectors V2 and D2.

RTCP参数分别为:主动轴轴线方向矢量V1(X,Y,Z)、从动轴轴线方向矢量V2(X,Y,Z)、主动轴轴线偏移矢量(T2-T1)(X,Y,Z)、从动轴轴线偏移矢量T1(X,Y,Z)。上述矢量均以机床坐标原点为基准。The RTCP parameters are: axis direction vector V1 (X, Y, Z) of the driving shaft, axis direction vector V2 (X, Y, Z) of the driven axis, offset vector (T2-T1) (X, Y, Z), the axis offset vector T1 (X, Y, Z) of the driven shaft. The above vectors are based on the origin of the machine tool coordinates.

总体而言,通过本发明所构思的以上技术方案与现有技术相比,可以取得如下有益的效果:Generally speaking, compared with the prior art, the above technical solutions conceived by the present invention can achieve the following beneficial effects:

1)使用标准球和触发式测头作为测量仪器,设备简单,安装方便。其对于双摆头、双转台和混合结构,两回转轴线正交与非正交、相交与相贯都适用,具有广泛的适用性。1) Using a standard ball and a trigger probe as a measuring instrument, the equipment is simple and easy to install. It is suitable for double swing heads, double turntables and mixed structures, and the two rotary axes are both orthogonal and non-orthogonal, intersecting and intersecting, and has wide applicability.

2)可在数控系统上进行二次开发,形成独立的测量模块界面,机床测量人员输入测量参数,进行简单操作便能完成整个测量过程,极大降低了对机床测量人员的要求。2) Secondary development can be carried out on the CNC system to form an independent measurement module interface. Machine tool surveyors can input measurement parameters and complete the entire measurement process with simple operations, which greatly reduces the requirements for machine tool surveyors.

3)测量模块中数据处理模块能精确计算轴线方向和轴线偏移,改变了手动无法测量回转轴线方向和精度不足的局限,实现了旋转刀具中心点的精确控制。3) The data processing module in the measurement module can accurately calculate the axis direction and axis offset, which changes the limitations of manual measurement of the rotation axis direction and insufficient precision, and realizes the precise control of the center point of the rotating tool.

总而言之,本发明方法可以既方便又精确测量RTCP参数,极大简化了机床测量人员的操作。In a word, the method of the invention can measure RTCP parameters conveniently and accurately, and greatly simplifies the operation of machine tool measuring personnel.

附图说明Description of drawings

图1是本发明实施例方法中测试机床及测试仪器安装示意图;Fig. 1 is the installation schematic diagram of test machine tool and test instrument in the embodiment method of the present invention;

图2是本发明实施例方法中步骤流程示意图。Fig. 2 is a schematic flow chart of the steps in the method of the embodiment of the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments, which are not intended to limit the present invention.

图1是本发明实施例中测试对象拓璞C50AC双转台五轴机床实物图,A转台为主动轴,C转台为从动轴,测量对象RTCP参数为:Fig. 1 is the physical picture of the test object Tuopu C50AC double turntable five-axis machine tool in the embodiment of the present invention, A turntable is the driving axis, C turntable is the driven axis, and the RTCP parameters of the measurement object are:

1)A转台旋转轴轴线方向;1) The axis direction of the rotation axis of A turntable;

2)C转台旋转轴轴线方向;2) The axis direction of the rotation axis of the C turntable;

3)A转台旋转轴轴线偏移;3) A rotary shaft axis offset;

4)C转台旋转轴轴线偏移。4) The axis of the rotation axis of the C turntable is offset.

图2是本发明实施例方法中步骤流程示意图,结合该图对本发明进行进一步详细说明。Fig. 2 is a schematic flow chart of the steps in the method of the embodiment of the present invention, and the present invention will be further described in detail in conjunction with this figure.

1、仪器安装。图1为测试仪器安装示意图,主轴上安装测头,C转台上以磁力座吸附直径25mm标准球。用杠杆表对测头探针进行主轴同心校准,使得探针末端圆球球心与主轴轴线高度重合,校准时杠杆表针跳动2um以内。1. Instrument installation. Figure 1 is a schematic diagram of the installation of the test instrument. The measuring head is installed on the spindle, and the standard ball with a diameter of 25mm is adsorbed by the magnetic base on the C turntable. Use a lever gauge to perform concentric calibration of the spindle of the measuring head probe, so that the center of the ball at the end of the probe coincides with the axis of the spindle at a high degree, and the lever gauge needle jumps within 2um during calibration.

2、参数设置。2. Parameter setting.

1)测量类型:双转台类型;1) Measurement type: double turntable type;

2)旋转轴显示顺序:示教点坐标顺序与系统设定一致;2) The display order of the rotation axis: the coordinate order of the teaching point is consistent with the system setting;

3)旋转轴名:主动轴名在前,从动轴名在后,AC;3) Rotary axis name: the name of the active axis comes first, followed by the name of the driven axis, AC;

4、安全高度:测头探针快速接近标准球时,在Z向应与标准球顶点保持的安全距离,单位为mm,数值20;4. Safety height: When the probe probe approaches the standard ball quickly, the safe distance in the Z direction should be kept from the top of the standard ball, the unit is mm, and the value is 20;

5)定位速度:测头探针快速接近标准球至安全高度,用于测头探针与标准球之间的快速定位,单位mm/min,数值1500;5) Positioning speed: the probe probe quickly approaches the standard ball to a safe height, used for rapid positioning between the probe probe and the standard ball, the unit is mm/min, and the value is 1500;

6)中间速度:测头探针超过安全高度后与标准球产生碰撞并回退的速度,比定位速度小,单位mm/min,数值400;6) Intermediate speed: the speed at which the probe probe collides with the standard ball and retreats after exceeding the safe height, which is smaller than the positioning speed, the unit is mm/min, and the value is 400;

7)触发速度:测头探针中间速度回退后,继续与标准球碰撞精确采点的速度,比中间速度小,单位mm/min,数值200;7) Trigger speed: After the intermediate speed of the probe probe is retracted, the speed at which it continues to collide with the standard ball to accurately collect points is smaller than the intermediate speed, the unit is mm/min, and the value is 200;

8)标准球半径:单位mm,数值12.5;8) Standard ball radius: unit mm, value 12.5;

9)刀具长度:标准球球心到主轴端面距离,单位mm,数值273.15;9) Tool length: the distance from the center of the standard ball to the end face of the spindle, in mm, and the value is 273.15;

10)刀具半径:探针球半径值。单位mm,数值3;10) Tool radius: the probe ball radius value. Unit mm, value 3;

11)示教点:本实施例8个主动轴示教点在A轴-90°~15°之间均匀分布,8个从动轴示教点在C轴0°~360°之间均匀分布,参数列表如表1、表2:11) Teaching points: In this embodiment, the 8 teaching points of the active axis are evenly distributed between -90° and 15° on the A axis, and the 8 teaching points of the driven axis are evenly distributed between 0° and 360° on the C axis , the parameter list is shown in Table 1 and Table 2:

表1Table 1

主动initiative Xx YY ZZ AA CC 11 -281.5750-281.5750 -272.9020-272.9020 -75.2274-75.2274 -80.0003-80.0003 169.2999169.2999 22 -281.5750-281.5750 -251.3027-251.3027 -79.8707-79.8707 -67.5006-67.5006 169.2999169.2999 33 -281.5750-281.5750 -229.2021-229.2021 -89.4043-89.4043 -55.0003-55.0003 169.2999169.2999 44 -281.5750-281.5750 -211.2004-211.2004 -103.4041-103.4041 -42.5004-42.5004 169.2999169.2999 55 -281.5750-281.5750 -194.6009-194.6009 -121.0047-121.0047 -30.0003-30.0003 169.2999169.2999 66 -281.5750-281.5750 -183.6004-183.6004 -141.6043-141.6043 -17.5004-17.5004 169.2999169.2999 77 -281.5750-281.5750 -176.6009-176.6009 -164.2049-164.2049 -5.0003-5.0003 169.2999169.2999 88 -281.5750-281.5750 -174.5004-174.5004 -187.8040-187.8040 7.49947.4994 169.2999169.2999

表2Table 2

从动follower Xx YY ZZ AA CC 11 -254.7888-254.7888 -393.8996-393.8996 -174.6999-174.6999 0.00000.0000 0.00000.0000 22 -333.8890-333.8890 -363.6998-363.6998 -174.5994-174.5994 0.00000.0000 44.999844.9998 33 -368.1888-368.1888 -286.6990-286.6990 -174.1997-174.1997 0.00000.0000 89.999889.9998 44 -338.2415-338.2415 -208.2367-208.2367 -173.7368-173.7368 0.00000.0000 134.9997134.9997 55 -261.3366-261.3366 -173.6701-173.6701 -173.4783-173.4783 0.00000.0000 179.9996179.9996 66 -182.5136-182.5136 -203.6070-203.6070 -173.5775-173.5775 0.00000.0000 224.9995224.9995 77 -147.9459-147.9459 -280.5108-280.5108 -173.9765-173.9765 0.00000.0000 269.9994269.9994 88 -177.8826-177.8826 -359.3324-359.3324 -174.4414-174.4414 0.00000.0000 314.9993314.9993

3、碰撞锁存。通过G代码编程,10个基本参数以及8个主动轴示教点和8个从动轴示教点坐标,驱动测头探针与标准球进行碰撞并锁存碰撞点机床坐标系下的坐标X、Y、Z。3. Collision latch. Through G code programming, 10 basic parameters, 8 teaching points of the driving axis and 8 coordinates of the teaching points of the driven axis, drive the probe probe to collide with the standard ball and latch the coordinate X of the collision point in the machine coordinate system , Y, Z.

1)本实施例采用HNC8数控系统中“程序跳断指令”G31用来实现上述碰撞过程,G31指令代码为:1) In this embodiment, the "program jump command" G31 in the HNC8 numerical control system is used to realize the above collision process, and the G31 command code is:

G31L1G01Xx0Yy0Zz0G31L1G01Xx0Yy0Zz0

其中(x0,y0,z0)为输入目标点,当进给至目标点之前测头探针与标准球产生碰撞,系统输出碰撞点机床坐标系下的坐标X、Y、Z。Among them (x0, y0, z0) is the input target point. When the probe probe collides with the standard ball before feeding to the target point, the system outputs the coordinates X, Y, and Z of the collision point in the machine tool coordinate system.

2)Xai,Yai,Zai,Aai,Cai(i=1,2…8)分别为第i个主动轴示教点X轴、Y轴、Z轴、A轴、C轴坐标分量。机床进给至(Xai,Yai,Zai+H,Aai,Cai)(i=1,2…8),其中H表示步骤S2中的测量参数“安全高度”,此时测头探针距离标准球最高点一个安全高度距离。测头探针Z负方向与标准球顶点进行碰撞锁存机床坐标点1记为(X1,Y1,Z1),然后在X正方向与标准球赤道碰撞锁存机床坐标点2记为(X2,Y2,Z2),接着在X负方向与标准球赤道碰撞锁存机床坐标点3记为(X3,Y3,Z3),最后在Y正方向与标准球赤道碰撞锁存机床坐标点4记为(X4,Y4,Z4)。4个点合记作矩阵:2) Xa i , Ya i , Za i , Aa i , Ca i (i=1,2...8) are the X-axis, Y-axis, Z-axis, A-axis, and C-axis coordinates of the i-th active axis teaching point respectively portion. The machine tool feeds to (Xa i , Ya i , Za i +H, Aa i ,Ca i ) (i=1,2…8), where H represents the measurement parameter “safety height” in step S2, at this time the probe The probe is a safe height away from the highest point of the standard ball. The probe probe collides with the vertex of the standard sphere in the negative Z direction to lock the machine tool coordinate point 1 as (X1, Y1, Z1), and then collides with the standard sphere equator in the X positive direction to lock the machine tool coordinate point 2 as (X2, Y2, Z2), and then collide with the standard sphere equator in the X negative direction to lock the machine tool coordinate point 3 as (X3, Y3, Z3), and finally collide with the standard sphere equator in the Y positive direction to lock the machine tool coordinate point 4 as ( X4, Y4, Z4). The 4 points are combined into a matrix:

3)对于从动轴示教点Xpi,Ypi,Zpi,Api,Cpi(i=1,2…8)分别为第i个从动轴示教点X轴、Y轴、Z轴、A轴、C轴坐标分量。机床坐标进给至(Xpi,Ypi,Zpi+H,Api,Cpi)(i=1,2…8),其中H表示步骤S2中的测量参数“安全高度”,此时测头探针距离标准球最高点一个安全高度距离。测头探针Z负方向与标准球顶点进行碰撞锁存机床坐标点1记为(X1,Y1,Z1),然后在X正方向与标准球赤道碰撞锁存机床坐标点2记为(X2,Y2,Z2),接着在X负方向与标准球赤道碰撞锁存机床坐标点3记为(X3,Y3,Z3),最后在Y正方向与标准球赤道碰撞锁存机床坐标点4记为(X4,Y4,Z4)。4个点合记作矩阵:3) For the teaching points of the driven axis Xp i , Yp i , Zp i , Ap i , Cp i (i=1,2...8) are respectively the i-th teaching points of the driven axis X-axis, Y-axis, Z Axis, A-axis, C-axis coordinate components. The machine tool coordinates are fed to (Xp i , Yp i , Zp i +H, Ap i , Cp i ) (i=1,2...8), where H represents the measurement parameter "safety height" in step S2. The head probe is a safe height away from the highest point of the standard ball. The probe probe collides with the vertex of the standard sphere in the negative Z direction to lock the machine tool coordinate point 1 as (X1, Y1, Z1), and then collides with the standard sphere equator in the X positive direction to lock the machine tool coordinate point 2 as (X2, Y2, Z2), and then collide with the standard sphere equator in the X negative direction to lock the machine tool coordinate point 3 as (X3, Y3, Z3), and finally collide with the standard sphere equator in the Y positive direction to lock the machine tool coordinate point 4 as ( X4, Y4, Z4). The 4 points are combined into a matrix:

4、RTCP参数计算。4. RTCP parameter calculation.

1)球心计算1) Calculation of the center of the sphere

根据主动轴示教点处碰撞锁存的机床坐标系下4个空间坐标点According to the 4 spatial coordinate points in the machine tool coordinate system that are latched by the collision at the teaching point of the active axis

求取主动轴示教点处标准球球心坐标Bai(X,Y,Z)(i=1,2…8),公式如下: Calculate the coordinates Ba i (X, Y, Z) (i=1,2...8) of the center of the standard sphere at the teaching point of the driving axis, the formula is as follows:

(X-X1)2+(Y-Y1)2+(Z-Z1)2=(X-X2)2+(Y-Y2)2+(Z-Z2)2 (X-X1) 2 +(Y-Y1) 2 +(Z-Z1) 2 =(X-X2) 2 +(Y-Y2) 2 +(Z-Z2) 2

(X-X1)2+(Y-Y1)2+(Z-Z1)2=(X-X3)2+(Y-Y3)2+(Z-Z3)2 (X-X1) 2 +(Y-Y1) 2 +(Z-Z1) 2 =(X-X3) 2 +(Y-Y3) 2 +(Z-Z3) 2

(X-X1)2+(Y-Y1)2+(Z-Z1)2=(X-X4)2+(Y-Y4)2+(Z-Z4)2 (X-X1) 2 +(Y-Y1) 2 +(Z-Z1) 2 =(X-X4) 2 +(Y-Y4) 2 +(Z-Z4) 2

同样可得从动轴示教点处标准球球心坐标Bpi(X,Y,Z)(i=1,2…8)。Similarly, the coordinates Bp i (X, Y, Z) (i=1, 2...8) of the center of the standard sphere at the teaching point of the driven axis can be obtained.

2)球心圆拟合2) Center circle fitting

标准球球心的轨迹是空间平面上的一个圆。依据Bai(X,Y,Z(i=1,2…8)8个标准球球心坐标使用最小二乘法拟合轨迹圆圆心D1(X,Y,Z)与轨迹圆平面法矢V1(X,Y,Z),轨迹圆圆心D1(X,Y,Z)是A轴轴线上的一点,轨迹圆平面法矢V1(X,Y,Z)是A轴轴线的方向;依据Bpi(X,Y,Z)(i=1,2…8)8个标准球球心坐标使用最小二乘法拟合轨迹圆圆心D2(X,Y,Z)与轨迹圆平面法矢V2(X,Y,Z),轨迹圆圆心D2(X,Y,Z)是C轴轴线上的一点,轨迹圆平面法矢V2(X,Y,Z)是C轴轴线的方向。The locus of the center of the standard sphere is a circle on the space plane. According to Ba i (X, Y, Z (i=1, 2...8) 8 standard ball center coordinates, use the least squares method to fit the trajectory circle center D1 (X, Y, Z) and the trajectory circle plane normal vector V1 ( X, Y, Z), the center of the trajectory circle D1 (X, Y, Z) is a point on the axis of the A-axis, and the normal vector V1 (X, Y, Z) of the trajectory circle plane is the direction of the axis of the A-axis; according to Bp i ( X, Y, Z) (i=1,2...8) 8 standard ball center coordinates use the least squares method to fit the trajectory circle center D2 (X, Y, Z) and the trajectory circle plane normal vector V2 (X, Y , Z), the center of the trajectory circle D2 (X, Y, Z) is a point on the axis of the C-axis, and the plane normal vector V2 (X, Y, Z) of the trajectory circle is the direction of the axis of the C-axis.

3)RTCP参数计算3) RTCP parameter calculation

根据A轴线参数L1(V1,D1)与C轴线参数L2(V2,D2),计算直线L1与直线L2之间公垂线段L3(T1,T2),点T1(X,Y,Z)为L3在L1上的垂足,点T2(X,Y,Z)为L3在L2上的垂足。According to the A-axis parameters L1 (V1, D1) and C-axis parameters L2 (V2, D2), calculate the common vertical segment L3 (T1, T2) between the straight line L1 and the straight line L2, and the point T1 (X, Y, Z) is L3 The foot on L1, the point T2 (X, Y, Z) is the foot of L3 on L2.

RTCP参数分别为:The RTCP parameters are:

A轴轴线方向矢量:V1(-1.000000,-0.000059,-0.000441)A-axis axis direction vector: V1 (-1.000000, -0.000059, -0.000441)

C轴轴线方向矢量:V2(0.000243,0.004974,-0.999988)C-axis axis direction vector: V2 (0.000243, 0.004974, -0.999988)

A轴轴线偏移矢量:(T2-T1)(0.0000,0.0738,0.0004)A axis offset vector: (T2-T1) (0.0000, 0.0738, 0.0004)

C轴轴线偏移矢量:T1(-257.7030,-283.3569,-421.7816)C axis offset vector: T1 (-257.7030, -283.3569, -421.7816)

本领域的技术人员容易理解,以上所述仅为本发明较佳实例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred examples of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention all include Within the protection scope of the present invention.

Claims (5)

1.一种五轴联动机床回转轴线几何参数测量方法,其特征在于,包括以下步骤:1. A method for measuring the geometric parameters of the axis of rotation of a five-axis linkage machine tool, characterized in that it comprises the following steps: S1:仪器安装,根据机床结构类型,安装触发式测头和标准球,并用杠杆表对测头探针进行主轴同心校准;S1: Instrument installation, according to the structure type of the machine tool, install the trigger probe and the standard ball, and use the lever meter to calibrate the spindle concentricity of the probe probe; S2:参数设置,在数控系统上设置测量参数,包括测量类型、旋转轴显示顺序、旋转轴名、安全高度、定位速度、中间速度、触发速度、标准球半径、刀具长度和刀具半径10个基本参数以及8个主动轴示教点和8个从动轴示教点,所述示教点是用来确定标准球与测头相对位置,并进行碰撞的基准点;S2: Parameter setting, set measurement parameters on the CNC system, including measurement type, display order of rotary axis, name of rotary axis, safety height, positioning speed, intermediate speed, trigger speed, standard ball radius, tool length and tool radius 10 basic Parameters and 8 teaching points of the driving axis and 8 teaching points of the driven axis, the teaching points are used to determine the relative position of the standard ball and the measuring head, and the reference point for collision; S3:碰撞采集,通过数控系统,根据步骤S2确定的10个基本参数以及8个主动轴示教点和8个从动轴示教点坐标,驱动测头探针与标准球进行碰撞并锁存碰撞时机床坐标系下的坐标X、Y、Z,各个示教点碰撞4次;碰撞过程如下:S3: Collision collection, through the numerical control system, according to the 10 basic parameters determined in step S2 and the coordinates of 8 teaching points of the driving axis and 8 teaching points of the driven axis, drive the probe probe to collide with the standard ball and latch it The coordinates X, Y, and Z in the machine tool coordinate system at the time of collision, and each teaching point collides 4 times; the collision process is as follows: 测头探针在Z轴负方向与标准球顶点进行碰撞锁存机床坐标点1,在X轴正方向与标准球赤道碰撞锁存机床坐标点2,在X轴负方向与标准球赤道碰撞锁存机床坐标点3,在Y轴正或负方向与标准球赤道碰撞锁存机床坐标点4;The probe probe collides with the vertex of the standard sphere in the negative direction of the Z axis to lock the machine tool coordinate point 1, collides with the equator of the standard sphere in the positive direction of the X axis and locks the machine tool coordinate point 2, and collides with the equator of the standard sphere in the negative direction of the X axis to lock Save the machine tool coordinate point 3, and collide with the standard sphere equator in the positive or negative direction of the Y axis to lock the machine tool coordinate point 4; 或者,or, 测头探针在Z负方向与标准球顶点进行碰撞锁存机床坐标点1,在Y轴正方向与标准球赤道碰撞锁存机床坐标点2,在Y轴负方向与标准球赤道碰撞锁存机床坐标点3,在X轴正或负方向与标准球赤道碰撞锁存机床坐标点4;The probe probe collides with the vertex of the standard sphere in the negative direction of Z to lock the machine coordinate point 1, collides with the equator of the standard sphere in the positive direction of the Y axis and locks the machine tool coordinate point 2, and collides with the equator of the standard sphere in the negative direction of the Y axis and latches it. The machine tool coordinate point 3 collides with the standard sphere equator in the positive or negative direction of the X axis to lock the machine tool coordinate point 4; S4:RTCP参数计算,根据锁存的碰撞点坐标,计算各个示教点相对应的标准球球心坐标;使用最小二乘数据处理方法,对各个标准球球心坐标拟合主动旋转轴与从动旋转轴轴线方向与空间位置,得到RTCP参数,所述RTCP参数包括主动轴轴线方向矢量、从动轴轴线方向矢量、主动轴轴线偏移矢量和从动轴轴线偏移矢量;S4: RTCP parameter calculation, according to the latched coordinates of the collision point, calculate the coordinates of the center of the standard ball corresponding to each teaching point; use the least square data processing method to fit the coordinates of the center of each standard ball to the active rotation axis and the slave The axial direction and spatial position of the moving rotating shaft are obtained to obtain RTCP parameters, and the RTCP parameters include the axial direction vector of the driving shaft, the axial direction vector of the driven shaft, the offset vector of the axis of the driving shaft and the offset vector of the axis of the driven shaft; RTCP参数计算方法如下:The calculation method of RTCP parameters is as follows: 根据主动轴轴线参数L1(V1,D1)与从动轴轴线参数L2(V2,D2),计算直线L1与直线L2之间公垂线段L3(T1,T2),点T1为L3在L1上的垂足,点T2为L3在L2上的垂足;According to the driving shaft axis parameter L1 (V1, D1) and the driven shaft axis parameter L2 (V2, D2), calculate the common vertical segment L3 (T1, T2) between the straight line L1 and the straight line L2, and the point T1 is the point of L3 on L1 Pedestal foot, point T2 is the vertical foot of L3 on L2; 其中:L1(V1,D1)是由方向矢量V1和D1确定的直线,L2(V2,D2)是由方向矢量V2和D2确定的直线;D1是由主动轴示教点用最小二乘法拟合的轨迹圆圆心,其位于主动轴轴线上,V1为所述轨迹圆平面法矢,是主动轴轴线的方向;D2是由从动轴示教点用最小二乘法拟合的轨迹圆圆心,是从动轴轴线上的一点,V2为所述轨迹圆平面法矢,是从动轴轴线的方向;Among them: L1(V1, D1) is a straight line determined by the direction vectors V1 and D1, L2(V2, D2) is a straight line determined by the direction vectors V2 and D2; D1 is fitted by the least squares method from the teaching point of the active axis The center of the trajectory circle is located on the axis of the driving shaft, V1 is the normal vector of the plane of the trajectory circle, and is the direction of the axis of the driving shaft; D2 is the center of the trajectory circle fitted by the least square method from the teaching point of the driven axis, and is A point on the axis of the driven shaft, V2 is the normal vector of the trajectory circle plane, and is the direction of the axis of the driven shaft; 最后,得到的RTCP参数分别为:主动轴轴线方向矢量V1、从动轴轴线方向矢量V2、主动轴轴线偏移矢量(T2-T1)、从动轴轴线偏移矢量T1;上述矢量均以机床坐标原点为基准。Finally, the obtained RTCP parameters are: axis direction vector V1 of the driving axis, axis direction vector V2 of the driven axis, offset vector (T2-T1) of the axis of the driving axis, and axis offset vector T1 of the driven axis; The origin of the coordinates is the datum. 2.如权利要求1所述的几何参数测量方法,其特征在于,步骤S2的示教点选取过程中,主动旋转轴或从动旋转轴在保持任一角度,在Z方向测头探针与标准球最高点附近刚好接触时,此时机床坐标系下的五个轴坐标即为示教点坐标;在主动旋转轴行程范围,均匀获取8个主动轴示教点;在从动旋转轴行程范围,均匀获取8个从动轴示教点。2. The method for measuring geometric parameters as claimed in claim 1, characterized in that, in the process of selecting the teaching point in step S2, the active rotation axis or the driven rotation axis maintains any angle, and the measuring head probe in the Z direction and the When the highest point of the standard ball is just in contact, the coordinates of the five axes under the machine tool coordinate system are the coordinates of the teaching points; within the travel range of the active rotation axis, 8 teaching points of the active axis are obtained evenly; range, evenly acquire 8 slave axis teaching points. 3.如权利要求1或2所述的几何参数测量方法,其特征在于,步骤S1中,对于双摆头和混合型结构机床采用主轴装夹标准球而工作台放置测头的安装方式,对于双转台类型机床采用主轴装夹测头而转台放置标准球的安装方式。3. The method for measuring geometric parameters as claimed in claim 1 or 2, characterized in that, in step S1, for double-oscillating heads and hybrid structure machine tools, the installation mode in which the spindle is clamped with a standard ball and the workbench is placed with a probe is used. The double turntable type machine tool adopts the installation method of clamping the probe on the spindle and placing the standard ball on the turntable. 4.如权利要求1或2所述的几何参数测量方法,其特征在于,步骤S4中,各示教点处标准球球心坐标计算公式为:4. The method for measuring geometric parameters as claimed in claim 1 or 2, characterized in that, in step S4, the formula for calculating the coordinates of the center of the standard ball at each teaching point is: (X-X1)2+(Y-Y1)2+(Z-Z1)2=(X-X2)2+(Y-Y2)2+(Z-Z2)2 (X-X1) 2 +(Y-Y1) 2 +(Z-Z1) 2 =(X-X2) 2 +(Y-Y2) 2 +(Z-Z2) 2 (X-X1)2+(Y-Y1)2+(Z-Z1)2=(X-X3)2+(Y-Y3)2+(Z-Z3)2 (X-X1) 2 +(Y-Y1) 2 +(Z-Z1) 2 =(X-X3) 2 +(Y-Y3) 2 +(Z-Z3) 2 (X-X1)2+(Y-Y1)2+(Z-Z1)2=(X-X4)2+(Y-Y4)2+(Z-Z4)2 (X-X1) 2 +(Y-Y1) 2 +(Z-Z1) 2 =(X-X4) 2 +(Y-Y4) 2 +(Z-Z4) 2 其中,(X1,Y1,Z1)、(X2,Y2,Z2)、(X3,Y3,Z3)、(X4,Y4,Z4)为步骤S3中示教点处碰撞锁存的机床坐标系下4个空间坐标点,(X,Y,Z)为待求的标准球球心坐标。Among them, (X1, Y1, Z1), (X2, Y2, Z2), (X3, Y3, Z3), (X4, Y4, Z4) are 4 under the machine coordinate system of the collision latch at the teaching point in step S3 space coordinate points, (X, Y, Z) are the center coordinates of the standard sphere to be sought. 5.如权利要求1或2所述的几何参数测量方法,其特征在于,所述的几何参数测量方法中,测量参数的赋值、碰撞锁存和计算,是利用数控系统G代码实现的。5. The geometric parameter measurement method according to claim 1 or 2, wherein, in the geometric parameter measurement method, the assignment, collision latch and calculation of the measurement parameters are realized by using the G code of the numerical control system.
CN201510856867.1A 2015-11-28 2015-11-28 A kind of five-axis linkage machine tools axis of rotation geometric parameter measurement method Active CN105571545B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510856867.1A CN105571545B (en) 2015-11-28 2015-11-28 A kind of five-axis linkage machine tools axis of rotation geometric parameter measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510856867.1A CN105571545B (en) 2015-11-28 2015-11-28 A kind of five-axis linkage machine tools axis of rotation geometric parameter measurement method

Publications (2)

Publication Number Publication Date
CN105571545A CN105571545A (en) 2016-05-11
CN105571545B true CN105571545B (en) 2018-04-10

Family

ID=55881952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510856867.1A Active CN105571545B (en) 2015-11-28 2015-11-28 A kind of five-axis linkage machine tools axis of rotation geometric parameter measurement method

Country Status (1)

Country Link
CN (1) CN105571545B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106181576B (en) * 2016-08-08 2019-04-19 中国空空导弹研究院 A kind of center positioning method and device of machining center rotary table
CN106529045B (en) * 2016-11-15 2019-03-29 西北工业大学 Multi-axis milling process tool axis modeling method based on spinor
CN108469785B (en) * 2017-02-23 2021-05-25 中国科学院沈阳计算技术研究所有限公司 Five-axis machining complex curved surface collision detection method based on implicit function
CN108332642B (en) * 2017-12-31 2020-11-17 纽威数控装备(苏州)股份有限公司 Right-angle head precision detection method
CN109765841A (en) * 2019-01-09 2019-05-17 西北工业大学 A spatiotemporal mapping method between online monitoring data and part machining position
CN110008605A (en) * 2019-04-10 2019-07-12 广东工业大学 Monitoring method based on digital twin model and impact point machine equipment using the same
CN110068295A (en) * 2019-04-30 2019-07-30 武汉华育诺为信息技术有限公司 A kind of chargeable automatic tool length measuring system
CN110202223A (en) * 2019-06-21 2019-09-06 上海汉霸数控机电有限公司 Electrode positioning system in a kind of spark machine
CN111077847B (en) * 2019-12-31 2021-04-09 武汉华中数控股份有限公司 Tool vector error compensation method generated by linear axis rolling angle error of multi-axis machine tool
CN111906594B (en) * 2020-06-08 2022-07-08 深圳众为兴技术股份有限公司 RTCP parameter calibration method for five-axis linkage machine tool
CN111678472B (en) * 2020-06-09 2022-02-15 无锡身为度信息技术有限公司 Error identification method for rotary table of four-axis coordinate measuring machine
CN112526924B (en) * 2020-12-10 2022-10-21 中国航空工业集团公司北京航空精密机械研究所 Calibration method of 3D measuring head for five-axis double-cradle structure machine tool
CN112526926B (en) * 2021-02-10 2021-06-08 成都飞机工业(集团)有限责任公司 Method for compensating structural parameter errors of rotating shaft of five-axis numerical control machine tool
CN114253217B (en) * 2021-11-18 2023-12-22 武汉华中数控股份有限公司 Automatic calibration method for RTCP (real-time control protocol) of five-axis machine tool with self-correcting function
CN114322765B (en) * 2021-12-27 2023-09-26 科德数控股份有限公司 Cutter measuring method by coordinate system rotation mode
CN115157004B (en) * 2022-09-06 2023-02-10 深圳市世宗自动化设备有限公司 Five-axis equipment calibration method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913103A (en) * 2010-08-19 2010-12-15 上海理工大学 Measuring Method of Angle Error of Rotary Worktable of CNC Machine Tool
CN103206932A (en) * 2012-01-11 2013-07-17 财团法人精密机械研究发展中心 Assessment method for geometric errors of five-axis tool machine
CN103273379A (en) * 2013-05-29 2013-09-04 成都飞机工业(集团)有限责任公司 Method for detecting linkage accuracy of C-shaft of multi-shaft linkage double-pendulum numerical control milling machine
CN103862327A (en) * 2012-12-11 2014-06-18 成都飞机工业(集团)有限责任公司 Ball joint center position detecting method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917114B2 (en) * 2003-08-08 2007-05-23 株式会社ジェイテクト Error calculation method for processing machine with rotating shaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913103A (en) * 2010-08-19 2010-12-15 上海理工大学 Measuring Method of Angle Error of Rotary Worktable of CNC Machine Tool
CN103206932A (en) * 2012-01-11 2013-07-17 财团法人精密机械研究发展中心 Assessment method for geometric errors of five-axis tool machine
CN103862327A (en) * 2012-12-11 2014-06-18 成都飞机工业(集团)有限责任公司 Ball joint center position detecting method
CN103273379A (en) * 2013-05-29 2013-09-04 成都飞机工业(集团)有限责任公司 Method for detecting linkage accuracy of C-shaft of multi-shaft linkage double-pendulum numerical control milling machine

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A/C轴双轴转台几何误差检测与补偿技术研究;高秀峰、刘春时;《机械传动》;20120331;第36卷(第3期);第10-13页 *
五轴数控机床工作台的几何误差测量;沈斌、梁威风;《机电一体化》;20110531(第5期);第88-91页 *
数控回转工作台的几何误差测量和建模;王姗姗、赵高晖;《测控技术》;20120531;第31卷(第5期);正文第1-2节,图1-2 *

Also Published As

Publication number Publication date
CN105571545A (en) 2016-05-11

Similar Documents

Publication Publication Date Title
CN105571545B (en) A kind of five-axis linkage machine tools axis of rotation geometric parameter measurement method
CN110108207B (en) Method for calibrating geometric error of rotation center line of rotating shaft based on probe
CN111487923B (en) Swing position error detection and identification method for CA double-swing five-axis numerical control machine tool
CN106052556B (en) A kind of three coordinate measuring machine spatial domain coordinates compensation method
CN105479268B (en) Five-axle number control machine tool swinging axle geometric error discrimination method based on RTCP
CN104308657B (en) A kind of rotary axis of machine tool geometric error six measured based on ball bar encloses discrimination method
JP2013503380A (en) Calibration method for machine tools
CN105136031A (en) Five-axis linkage machine tool rotation shaft geometric error continuous measurement method
CN103921170B (en) The rotary table center positioning method of spindle swing Five-axis NC Machining Center
CN102151866B (en) Three-ball-based multistation coordinate unifying method of processing center
CN104990487B (en) A kind of nonopiate gyroaxis axle center bias measurement method based on linkage error analysis
JP5571007B2 (en) Sphere shape measuring device
CN106247914A (en) A kind of coordinate measuring machine touch trigger probe scaling method
CN111673292A (en) RTCP error calibration compensation method for five-axis laser processing equipment
CN204893581U (en) Continuous measuring device of geometrical error of five -axle linkage lathe rotation axis
CN102937409A (en) Polar coordinate gear measurement center and zero calibrating method thereof
CN101629816A (en) Complex revolving body contour measuring method and device capable of eliminating part positioning error
CN108972154A (en) A kind of machine tool rotary axis geometric error discrimination method based on ball bar measurement
CN106017377A (en) Calibration method for measuring probe for online measurement in processing machine tool
CN114253217A (en) Five-axis machine tool RTCP automatic calibration method with self-correction function
TW201800178A (en) Five-axis machine tool error detection method in which a probe assembly including a standard sphere is installed on the five-axis machine tool to be measured and a probe is moved to contact the standard sphere and feeds a signal back
CN110793794A (en) Ball arm instrument-based dynamic precision detection method for five-axis machine tool in complex motion state
CN108332642B (en) Right-angle head precision detection method
CN104117913B (en) A kind of centre of gyration aligning method of many bistriques turntable
CN104776779B (en) Hub bearing outer ring groove position detection means

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant