CN105570203B - 一种采用泵阀联合的高效高精度液压控制系统 - Google Patents

一种采用泵阀联合的高效高精度液压控制系统 Download PDF

Info

Publication number
CN105570203B
CN105570203B CN201610018976.0A CN201610018976A CN105570203B CN 105570203 B CN105570203 B CN 105570203B CN 201610018976 A CN201610018976 A CN 201610018976A CN 105570203 B CN105570203 B CN 105570203B
Authority
CN
China
Prior art keywords
valve
way
accumulator
proportional cartridge
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610018976.0A
Other languages
English (en)
Other versions
CN105570203A (zh
Inventor
姚斌
吕立彤
朱笑丛
廖建锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610018976.0A priority Critical patent/CN105570203B/zh
Publication of CN105570203A publication Critical patent/CN105570203A/zh
Application granted granted Critical
Publication of CN105570203B publication Critical patent/CN105570203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity

Abstract

本发明公开了一种采用泵阀联合的高效高精度液压控制系统。伺服电机通过联轴器与定量泵相连,定量泵进口经第二过滤器与油箱相连,定量泵出口与油箱相连,定量泵出口连接单向阀的入口端,单向阀的出口端分别连通到单出杆缸执行器的无杆腔和有杆腔,单向阀的出口端连通回油箱,单向阀的出口端与蓄能器相连;蓄能器与单出杆缸执行器的无杆腔相连,蓄能器与单出杆缸执行器的有杆腔相连,无杆腔、有杆腔与油箱之间均连接有二通比例插装阀,蓄能器、单出杆缸执行器的无杆腔和有杆腔出口处均连接有压力传感器。本发明提高了能效,采用反馈控制方式实现执行器的高精度运动误差补偿,降低了成本,同时实现负载液压缸两腔压力的独立控制和系统的节能控制。

Description

一种采用泵阀联合的高效高精度液压控制系统
技术领域
本发明涉及一种液压控制系统,尤其涉及液压高精度控制领域的一种采用泵阀联合的高效高精度液压控制系统。
背景技术
传统液压高精度控制主要采用阀控方式,通过比例阀、伺服阀对负载的运动进行控制。控制阀采用节流控制,通过应用适当的控制方法,能够完成高精度的运动控制,然而液压油流经阀口产生压降会造成能量损失,同时还会造成系统发热,能耗和发热问题越来越成为液压控制领域着重解决的问题。另外,采用传统三位四通阀对液压缸进行控制时,由于其存在内部的机械耦合,无法完成对液压缸两腔压力的单独控制,造成了能耗的提高。
采用变量泵或变转速电机带动定量泵的泵控策略能够很好的降低系统能耗,提高能效,然而泵控系统存在着动态响应性能不佳、控制精度相比阀控差的问题。
国内外研究人员提出了很多方案来改善液压控制系统的性能,如采用若干二位二通比例插装阀代替传统的三位四通阀,解决机械耦合问题,通过负载口独立控制来提高能效;采用蓄能器回收能量提高能量利用效率;用高精度伺服电机带动定量泵的方式,改善传统变量泵控系统的控制性能等等。对于液压控制系统而言,同时达到高精度控制和高能效是系统的最佳状态。
发明内容
为了克服上述存在的不足,本发明提供一种采用泵阀联合的高效高精度液压控制系统,以泵控和阀控相结合,伺服电机带动定量泵通过前馈控制大部分流量,提高系统能效,二位二通比例插装阀组合对泵控产生的误差进行补偿,改善系统的动态响应性能,完成高效高精度运动控制。
本发明的采用如下技术方案:
本发明包括主要由伺服电机、定量泵、第一二通开关阀、第二二通开关阀组成的泵控部分以及主要由第一二通比例插装阀、第三二通比例插装阀、第二二通比例插装阀、第四二通比例插装阀、第五二通比例插装阀、第六二通比例插装阀和蓄能器组成的阀控部分,泵控部分和阀控部分并联连接在油箱和单出杆缸执行器之间,并分别对流量进行独立控制。
所述的伺服电机通过联轴器与定量泵相连,定量泵进口经第二过滤器与油箱相连,定量泵出口经第四二通开关阀与油箱相连,油箱设有温度计,定量泵出口连接单向阀的入口端,单向阀的出口端分别经第一二通开关阀、第二二通开关阀连通到单出杆缸执行器的无杆腔和有杆腔,单向阀的出口端经第二安全阀连通回油箱,单向阀的出口端经第三二通开关阀与蓄能器相连;
蓄能器分别经第一二通比例插装阀、第二二通比例插装阀单出杆缸执行器的无杆腔相连,蓄能器分别经第三二通比例插装阀、第四二通比例插装阀与单出杆缸执行器的有杆腔相连,第五二通比例插装阀、第六二通比例插装阀分别连接在单出杆缸执行器的无杆腔、有杆腔与油箱之间,蓄能器、单出杆缸执行器的无杆腔和有杆腔出口处分别连接有第一压力传感器、第二压力传感器和第三压力传感器。
所述第三二通开关阀与蓄能器之间连接有第一过滤器和第一单向阀,蓄能器经第一过滤器与第一单向阀的出口端相连,第一单向阀的入口端与第三二通开关阀相连,蓄能器经第一安全阀与油箱相连。
所述的第一二通比例插装阀和第三二通比例插装阀均为小流量二位二通比例插装阀,第二二通比例插装阀、第四二通比例插装阀、第五二通比例插装阀和第六二通比例插装阀均为大流量二位二通比例插装阀,第一二通开关阀、第二二通开关阀均为大流量二通开关阀,第三二通开关阀、第四二通开关阀均为小流量二通开关阀。
本发明的泵控部分完成前馈控制,根据理论模型计算量为单出杆缸执行器提供流量,由于理论计算量和实际存在误差,由阀控部分通过反馈调节对单出杆缸执行器的运动误差进行补偿,完成液压系统所要求的高精度运动控制。所述的泵控部分控制负载所需的绝大部分流量,小部分流量通过阀控部分控制完成误差补偿,这样经过控制阀口的流量很小,系统相对于传统阀控系统能效提高,造成的能量浪费和发热情况减少,能够完成高效运动控制。
所述泵控部分的定量泵的出口有三条油路,分别通向单出杆缸执行器、蓄能器和油箱:在泵控部分为单出杆缸执行器提供流量时,第一二通开关阀或第二二通开关阀打开,第三二通开关阀关闭;在不需要泵控部分为单出杆缸执行器提供流量时,第一二通开关阀和第二二通开关阀均关闭,伺服电机带动定量泵低转速转动。
所述在不需要泵控部分为单出杆缸执行器提供流量时:若第一压力传感器检测到蓄能器压力不足,则第三二通开关阀打开为蓄能器充能;若第一压力传感器检测到蓄能器压力充足,则第四二通开关阀打开为泵控部分卸荷,并维持定量泵不停转。
所述的第一二通比例插装阀和第三二通比例插装阀控制蓄能器分别向单出杆缸执行器的无杆腔和有杆腔提供流量,对泵控部分所产生的控制误差进行补偿。
所述的单出杆缸执行器无杆腔和有杆腔的回流流量分别通过第五二通比例插装阀、第六二通比例插装阀流至油箱,或者分别通过第二二通比例插装阀、第四二通比例插装阀流至蓄能器回收。
本发明的有益效果为:
本发明能够完成对执行器的高效高精度运动控制,通过泵控部分的前馈控制大部分流量,阀控部分控制小部分流量进行误差补偿,能够减少阀控部分的能量损失,提高系统的能效。
本发明阀控部分采用比例二位二通比例插装阀,采用反馈控制方式,能够做到执行器的高精度运动误差补偿。
本发明通过比例插装阀代替传统的三位四通伺服阀,能够降低系统成本,同时实现负载液压缸两腔压力的独立控制;通过向蓄能器回收能量、将泵卸荷等方式,能够进一步做到系统的节能控制。
简言之,本发明将二位二通比例插装阀组和伺服电机驱动定量泵的方式相结合,用阀控方式的良好动态性能和控制精度保证控制系统的高精度,用泵控方式控制大部分流量保证控制系统较高的能效,两种控制方式相结合,能够使控制系统同时达到高效高精度的控制效果。
附图说明
图1是本发明的液压原理图。
图中:1、第一二通比例插装阀;2、第二二通比例插装阀;3、第三二通比例插装阀;4、第四二通比例插装阀;5、第五二通比例插装阀;6、第六二通比例插装阀;7、第一二通开关阀;8、第二二通开关阀;9、第三二通开关阀;10、第四二通开关阀;11、单出杆缸执行器;12、蓄能器;13、第一安全阀;14、第一过滤器;15、第一单向阀;16、第二安全阀;17、定量泵;18、伺服电机;19、第二过滤器;20、油箱温度计;21、第一压力传感器;22、第二压力传感器;23、第三压力传感器;24、联轴器;25、油箱;26、第二单向阀。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
如图1所示,本发明包括主要由伺服电机18、定量泵17、第一二通开关阀7、第二二通开关阀8组成的泵控部分以及主要由第一二通比例插装阀1、第三二通比例插装阀3、第二二通比例插装阀2、第四二通比例插装阀4、第五二通比例插装阀5、第六二通比例插装阀6和蓄能器12组成的阀控部分。泵控部分和阀控部分并联连接在油箱25和单出杆缸执行器11之间,并分别对流量进行独立控制。系统并设置了液压安全阀、过滤器、温度计、单向阀等其他液压元件保证系统的正常工作。
泵控部分的伺服电机通过联轴器与定量液压泵连接,带动定量泵做变转速运动,可以根据负载所需流量而改变泵的输出流量。阀控部分蓄能器的出口连接四个比例插装阀,其中一组大流量比例插装阀和小流量比例插装阀连接蓄能器和液压缸无杆腔,另一组大流量比例插装阀和小流量比例插装阀连接蓄能器和液压缸有杆腔,小流量比例插装阀对蓄能器出口流量进行控制,大流量比例插装阀为蓄能器回收系统能量。
具体来说,本发明包括伺服电机18、定量泵17、四个二通开关阀7、8、9、10、六个二通比例插装阀1、2、3、4、5、6、蓄能器12、三个压力传感器21、22、23、单出杆缸执行器11、两个安全阀13、16和两个单向阀15、26。伺服电机18通过联轴器24与定量泵17相连,定量泵17进口经第二过滤器19与油箱25相连,定量泵17出口经第四二通开关阀10与油箱25相连,油箱25设有温度计20,定量泵17出口连接单向阀26的入口端,单向阀26的出口端分别经第一二通开关阀7、第二二通开关阀8连通到单出杆缸执行器11的无杆腔和有杆腔,单向阀26的出口端经第二安全阀16连通回油箱25,单向阀26的出口端经第三二通开关阀9与蓄能器12相连;蓄能器12分别经第一二通比例插装阀1、第二二通比例插装阀2单出杆缸执行器11的无杆腔相连,蓄能器12分别经第三二通比例插装阀3、第四二通比例插装阀4与单出杆缸执行器11的有杆腔相连,第五二通比例插装阀5、第六二通比例插装阀6分别连接在单出杆缸执行器11的无杆腔、有杆腔与油箱25之间,蓄能器12、单出杆缸执行器11的无杆腔和有杆腔出口处分别连接有第一压力传感器21、第二压力传感器22和第三压力传感器23。
第三二通开关阀9与蓄能器12之间连接有第一过滤器14和第一单向阀15,蓄能器12经第一过滤器14与第一单向阀15的出口端相连,第一单向阀15的入口端与第三二通开关阀9相连,蓄能器12经第一安全阀13与油箱25相连。
第一二通比例插装阀1和第三二通比例插装阀3均为小流量二位二通比例插装阀,第二二通比例插装阀2、第四二通比例插装阀4、第五二通比例插装阀5和第六二通比例插装阀6均为大流量二位二通比例插装阀,第一二通开关阀7、第二二通开关阀8均为大流量二通开关阀,第三二通开关阀9、第四二通开关阀10均为小流量二通开关阀。
本发明液压控制系统的基本控制策略是伺服电机带动定量泵做前馈控制大部分流量,按照理论模型计算量为系统提供流量,通过两个开关阀选择选择执行器运动方向,其产生的控制误差由阀控部分通过反馈控制进行补偿,从而保证控制精度并提高系统能效。
定量液压泵的出口有三条油路,分别由各自的开关阀控制选择油路,可以控制为蓄能器充能、为执行器提供流量或将泵卸荷,三条油路分别通向单出杆缸执行器11、蓄能器12和油箱25。其三条油路的开闭导通方式如下:
在泵控部分为单出杆缸执行器11提供流量时,第一二通开关阀7或第二二通开关阀8打开,第三二通开关阀9关闭;在不需要泵控部分为单出杆缸执行器11提供流量时,第一二通开关阀7和第二二通开关阀8均关闭,伺服电机18带动定量泵17低转速转动,保证定量泵17不出现爬行情况。
在上述不需要泵控部分为单出杆缸执行器11提供流量时:若第一压力传感器21检测到蓄能器12压力不足,则第三二通开关阀9打开为蓄能器12充能;若第一压力传感器21检测到蓄能器12压力充足,则第四二通开关阀10打开为泵控部分卸荷,并维持定量泵17不停转,以避免出现频繁启动的耗能和爬行情况。
第一二通比例插装阀1和第三二通比例插装阀3控制蓄能器12分别向单出杆缸执行器11的无杆腔和有杆腔提供流量,对泵控部分所产生的控制误差进行补偿。单出杆缸执行器11无杆腔和有杆腔的回流流量分别通过第五二通比例插装阀5、第六二通比例插装阀6流至油箱25,或者分别通过第二二通比例插装阀2、第四二通比例插装阀4流至蓄能器12回收,具体采用上述哪种回流方式由负载的特性以及蓄能器12的压力决定。
本发明的具体实施工作过程如下:
当完成单出杆缸执行器11的一个高精度运动跟踪过程,根据理论模型计算可以得到理论上需要为单出杆缸执行器11提供的流量,并将此数据转换为伺服电机18所需要的转速值,带动定量泵17按照理论转速转动,为系统输出流量。大流量的第一、第二二通开关阀7、8控制选择单出杆缸执行器11的运动方向;
由于实际液压系统存在油液泄露、温度变化、模型不确定性、外界干扰等因素,伺服电机18带动定量泵17所提供的理论流量必然使单出杆缸执行器11得运动与所要跟踪的运动存在误差,这部分误差由阀控部分实时进行反馈调节。蓄能器12的油液通过小流量的第一、第三二通比例插装阀1、3控制分别流向单出杆缸执行器11的无杆腔和有杆腔,调节实际运动误差;系统的控制精度由阀控部分决定,通过采用合理的反馈控制策略能够将运动误差控制在要求以内;系统的节能性由阀控部分控制的小流量决定,通过阀控部分的流量越少,则系统的能耗越低;
回流流量可以通过大流量的第五、第六二通比例插装阀5、6流向油箱25或通过大流量的第二、第四二通比例插装阀2、4流量蓄能器12进行回收,当负载特性为自重负载类型或回油压力高于蓄能器12的出口压力时,可以为通过大流量的第二、第四二通比例插装阀2、4的控制向蓄能器12中回收部分能量;当无法进行能量回收时,回流流量流向油箱25;
两个安全阀13、16为保证系统运行安全,同时可以在系统拆装时完成油路卸荷;两个单向阀15、26能够保压和避免回流;
伺服电机18的理论转速计算考虑到定量泵17存在低转速爬行,同时不应频繁启停,设定伺服电机18的最低转速为定量泵17的正常工作最低转速;若计算值高于最低转速则泵控部分正常工作,通过大流量的第一、第二二通开关阀7、8为单出杆缸执行器11提供流量;若计算值低于最低转速则伺服电机18维持最低转速,第一、第二二通开关阀7、8关闭,若压力传感器21检测蓄能器12出口压力低于设定值,小流量二位开关阀9打开,为蓄能器12充能直至充满;若压力传感器21检测蓄能器12出口压力高于设定值,小流量二位开关阀10打开为泵控部分卸荷,进一步节约系统能耗。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (3)

1.一种采用泵阀联合的高效高精度液压控制系统,其特征在于:包括主要由伺服电机(18)、定量泵(17)、第一二通开关阀(7)、第二二通开关阀(8)组成的泵控部分以及主要由第一二通比例插装阀(1)、第三二通比例插装阀(3)、第二二通比例插装阀(2)、第四二通比例插装阀(4)、第五二通比例插装阀(5)、第六二通比例插装阀(6)和蓄能器(12)组成的阀控部分,泵控部分和阀控部分并联连接在油箱(25)和单出杆缸执行器(11)之间,并分别对流量进行独立控制;
所述的泵控部分:伺服电机(18)通过联轴器(24)与定量泵(17)相连,定量泵(17)进口经第二过滤器(19)与油箱(25)相连,定量泵(17)出口经第四二通开关阀(10)与油箱(25)相连,油箱(25)设有温度计(20),定量泵(17)出口连接单向阀(26)的入口端,单向阀(26)的出口端分别经第一二通开关阀(7)、第二二通开关阀(8)连通到单出杆缸执行器(11)的无杆腔和有杆腔,单向阀(26)的出口端经第二安全阀(16)连通回油箱(25),单向阀(26)的出口端经第三二通开关阀(9)与蓄能器(12)相连;
所述的阀控部分:蓄能器(12)分别经第一二通比例插装阀(1)、第二二通比例插装阀(2)与单出杆缸执行器(11)的无杆腔相连,蓄能器(12)分别经第三二通比例插装阀(3)、第四二通比例插装阀(4)与单出杆缸执行器(11)的有杆腔相连,第五二通比例插装阀(5)、第六二通比例插装阀(6)分别连接在单出杆缸执行器(11)的无杆腔、有杆腔与油箱(25)之间,蓄能器(12)、单出杆缸执行器(11)的无杆腔和有杆腔出口处分别连接有第一压力传感器(21)、第二压力传感器(22)和第三压力传感器(23);
所述第三二通开关阀(9)与蓄能器(12)之间连接有第一过滤器(14)和第一单向阀(15),蓄能器(12)经第一过滤器(14)与第一单向阀(15)的出口端相连,第一单向阀(15)的入口端与第三二通开关阀(9)相连,蓄能器(12)经第一安全阀(13)与油箱(25)相连;
所述泵控部分的定量泵(17)的出口有三条油路,分别通向单出杆缸执行器(11)、蓄能器(12)和油箱(25):在泵控部分为单出杆缸执行器(11)提供流量时,第一二通开关阀(7)或第二二通开关阀(8)打开,第三二通开关阀(9)关闭;在不需要泵控部分为单出杆缸执行器(11)提供流量时,第一二通开关阀(7)和第二二通开关阀(8)均关闭,伺服电机(18)带动定量泵(17)低转速转动;
所述的第一二通比例插装阀(1)和第三二通比例插装阀(3)控制蓄能器(12)分别向单出杆缸执行器(11)的无杆腔和有杆腔提供流量,对泵控部分所产生的控制误差进行补偿;
所述的单出杆缸执行器(11)无杆腔和有杆腔的回流流量分别通过第五二通比例插装阀(5)、第六二通比例插装阀(6)流至油箱(25),或者分别通过第二二通比例插装阀(2)、第四二通比例插装阀(4)流至蓄能器(12)回收。
2.根据权利要求1所述的一种采用泵阀联合的高效高精度液压控制系统,其特征在于:所述的第一二通比例插装阀(1)和第三二通比例插装阀(3)均为小流量二位二通比例插装阀,第二二通比例插装阀(2)、第四二通比例插装阀(4)、第五二通比例插装阀(5)和第六二通比例插装阀(6)均为大流量二位二通比例插装阀,第一二通开关阀(7)、第二二通开关阀(8)均为大流量二通开关阀,第三二通开关阀(9)、第四二通开关阀(10)均为小流量二通开关阀。
3.根据权利要求1所述的一种采用泵阀联合的高效高精度液压控制系统,其特征在于:所述在不需要泵控部分为单出杆缸执行器(11)提供流量时:
若第一压力传感器(21)检测到蓄能器(12)压力不足,则第三二通开关阀(9)打开为蓄能器(12)充能;若第一压力传感器(21)检测到蓄能器(12)压力充足,则第四二通开关阀(10)打开为泵控部分卸荷,并维持定量泵(17)不停转。
CN201610018976.0A 2016-01-12 2016-01-12 一种采用泵阀联合的高效高精度液压控制系统 Active CN105570203B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610018976.0A CN105570203B (zh) 2016-01-12 2016-01-12 一种采用泵阀联合的高效高精度液压控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610018976.0A CN105570203B (zh) 2016-01-12 2016-01-12 一种采用泵阀联合的高效高精度液压控制系统

Publications (2)

Publication Number Publication Date
CN105570203A CN105570203A (zh) 2016-05-11
CN105570203B true CN105570203B (zh) 2018-04-27

Family

ID=55880703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610018976.0A Active CN105570203B (zh) 2016-01-12 2016-01-12 一种采用泵阀联合的高效高精度液压控制系统

Country Status (1)

Country Link
CN (1) CN105570203B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309406A1 (de) * 2016-10-17 2018-04-18 A S S F A L G Qualitätshydraulik GmbH & Co. KG Hydraulikaggregat
CN108087362B (zh) * 2016-11-22 2021-04-16 丹佛斯动力系统有限责任两合公司 开放式液压流体流动回路设备和控制液压回路的方法
CN109441904B (zh) * 2018-12-26 2020-07-14 燕山大学 一种数字阀组pwm与pcm复合控制装置及其控制方法
CN111828409A (zh) * 2020-07-23 2020-10-27 中国人民解放军陆军装甲兵学院 基于两级供能和负载口独立阀控技术的液压驱动单元
CN111828411B (zh) * 2020-07-24 2022-03-01 中国人民解放军陆军装甲兵学院 基于两级供能及负载口独立阀控的液压系统和控制方法
CN115182407B (zh) * 2022-07-13 2023-09-12 中联重科股份有限公司 用于控制臂架的方法、装置、控制器及工程机械

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100491748C (zh) * 2007-08-01 2009-05-27 太原理工大学 泵阀复合流量匹配进出油口独立控制电液系统
CN101446305B (zh) * 2008-10-16 2011-03-16 太原理工大学 一种液压缸并行控制回路系统
CN201461603U (zh) * 2009-07-03 2010-05-12 上海汇益液压控制系统工程有限公司 一种油动机的液压控制装置
CN102155476B (zh) * 2011-03-28 2013-11-06 上海交通大学 基于pwm无节流损失的阀控调节系统的调节方法
CN102588358B (zh) * 2012-02-20 2015-01-21 北京理工大学 一种高性能节能型的电液伺服控制油路
CN203230678U (zh) * 2013-04-27 2013-10-09 中国人民解放军63983部队 液压执行元件进出口流量压力独立控制系统
EP2808109B1 (de) * 2013-05-28 2018-05-02 HAWE Hydraulik SE Spannsystem
CN204041583U (zh) * 2014-09-05 2014-12-24 广州白云液压机械厂有限公司 一种伺服闭式液压差动装置
CN104196080B (zh) * 2014-09-17 2016-02-03 太原理工大学 变转速容积直驱纯电液压挖掘机驱动及能量回收系统

Also Published As

Publication number Publication date
CN105570203A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN105570203B (zh) 一种采用泵阀联合的高效高精度液压控制系统
CN102587444B (zh) 一种具有能量差动回收的挖掘机油液混合动力系统
CN100424361C (zh) 闭式电液控制系统
CN102513413B (zh) 伺服泵控折弯机液压控制系统
CN102588358B (zh) 一种高性能节能型的电液伺服控制油路
CN106402060B (zh) 直驱式容积控制电液伺服液压机液压系统
CN102877495B (zh) 一种挖掘机动臂势能回收混合动力系统
CN104806588B (zh) 双泵合流液压控制系统
CN107477051B (zh) 载荷差异油电液复合背压调控双执行器系统
CN108533546B (zh) 采用双泵直驱及差动快进自动换接的液压挖掘机动力系统
CN106122188B (zh) 基于液压蓄能器的常规溢流阀溢流损耗回收与再利用系统
CN108591144B (zh) 电机驱动双定量泵双蓄能器的分布式直驱挖掘机液压系统
CN110397634A (zh) 一种低能耗高动态泵阀联合位置伺服系统及其控制方法
CN110762065A (zh) 一种闭式泵阀复合调速的数字液压作动器系统及其控制方法
CN202579384U (zh) 基于比例阀控蓄能器调节偏载的液压同步驱动系统
CN115163582A (zh) 一种挖掘机用分布式独立变转速闭式泵控液压系统
CN109812404A (zh) 可逆式分级联动气体压缩系统
CN101813104A (zh) 一种快速推进的低功率节能型液压伺服执行机构
CN205918969U (zh) 齿轮泵控式电液联动执行机构
CN109267599A (zh) 分布式双泵并联直驱的挖掘机动力系统
CN116240941A (zh) 用于挖掘机动臂的伺服泵控系统及能量调控方法
CN107044459B (zh) 一种装载机联合供能液压系统及其控制方法
CN107503997B (zh) 背压与动力匹配液压混合动力调控双执行器系统
CN201635929U (zh) 一种用于风力发电机的直驱式容积控制变桨系统
CN107044466B (zh) 吊臂折弯机专用高效节能电液比例系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant