CN105552395A - 一种酶催化甘油的生物燃料电池阳极及其制备方法与应用 - Google Patents

一种酶催化甘油的生物燃料电池阳极及其制备方法与应用 Download PDF

Info

Publication number
CN105552395A
CN105552395A CN201510940886.2A CN201510940886A CN105552395A CN 105552395 A CN105552395 A CN 105552395A CN 201510940886 A CN201510940886 A CN 201510940886A CN 105552395 A CN105552395 A CN 105552395A
Authority
CN
China
Prior art keywords
electrode
solution
enzymatic
cell anode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510940886.2A
Other languages
English (en)
Other versions
CN105552395B (zh
Inventor
朴金花
董长城
陈东霞
张力
姜建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201510940886.2A priority Critical patent/CN105552395B/zh
Publication of CN105552395A publication Critical patent/CN105552395A/zh
Application granted granted Critical
Publication of CN105552395B publication Critical patent/CN105552395B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本发明属于电化学酶生物燃料电池领域,公开了一种酶催化甘油的生物燃料电池阳极及其制备方法与应用。所述制备方法为:对基底电极进行表面预处理,然后将Nafion溶液滴加到电极表面形成一层Nafion膜;然后把此电极插入麦尔多拉蓝水溶液中浸泡,使麦尔多拉蓝通过离子交换固定到Nafion膜中;将电极取出后洗净、干燥,得到含有介体层的电极;再将含石墨烯的壳聚糖溶液、甘油激酶水溶液、甘油3-磷酸氧化酶水溶液按比例混合均匀,滴加到上述电极表面,晾干后得到酶催化甘油的生物燃料电池阳极。本发明的产物具有成本低,催化剂及介体负载量大,催化性能好等优点,具有良好的应用前景。

Description

一种酶催化甘油的生物燃料电池阳极及其制备方法与应用
技术领域
本发明属于电化学酶生物燃料电池领域,具体涉及一种酶催化甘油的生物燃料电池阳极及其制备方法与应用。
背景技术
生物燃料电池是一种以生物发电方式将生物能和化学能转化为电能的装置,其系统中至少有一部分是以微生物组织或酶为电池反应催化剂。生物燃料电池按催化方式的不同可分为两类:一类是酶生物燃料电池,即直接利用从生物体中分离出来的不同氧化还原酶作为催化剂;另一类是微生物燃料电池,使用整体微生物作为催化剂,实际上是间接利用微生物体内的酶。
而酶燃料电池需要在几个月甚至更长的时间内连续稳定工作,这不仅要求电极修饰材料具有一定的生物相容性,而且要求酶必须适应人体生理环境或其它使用环境,以保持长期工作下酶的催化活性。这对于氧化还原酶来说还比较困难,因此目前的酶燃料电池连续工作时间较短,一般在几天至一个月左右。电池寿命主要与酶的特性有关,温度、pH值、溶液中离子的组成与浓度等环境因素也会有很大影响。
目前,制约酶生物燃料电池发展的关键问题有两个:(1)输出功率(输出电流、电压)低。人们普遍认为酶电极的电子传递过程是限制酶生物燃料电池输出功率的关键因素,这与电极材料和酶本身的结构有关。大多数酶由于蛋白质外壳的屏蔽作用,很难实现与电极之间的直接电子转移过程。虽然引入电子介体为电子的传递提供了有效通道,但其综合结果还远远达不到实际应用的要求。因此,利用各种途径(如加入纳米颗粒、导电聚合物等对酶电极进行修饰)实现酶与电极之间的直接电子传递过程是提高输出功率的重要手段。另外,电极表面酶的负载量低也是导致输出功率低的重要因素,所以增加酶催化剂在电极表面的固定量也是提高输出功率的重要方法。(2)电池寿命短。影响使用寿命的关键因素就是酶催化剂本身的稳定性。酶是一种有催化能力的蛋白质,它的活性很容易受环境因素(如温度、pH、溶液中离子的组成与浓度等)的影响。研究发现,一般天然酶在溶液中的半衰期只有7-8h,但如果将其固定化,寿命可长达45天左右。
因此,采用各种固定化技术将酶催化剂固定在电极表面是提高使用寿命的重要途径。综合而言,提高性能的最有效途径就是选择适合酶催化剂的固定化方法和材料。
发明内容
为了解决以上现有技术的缺点和不足之处,本发明的首要目的在于提供一种酶催化甘油的生物燃料电池阳极。
本发明的另一目的在于提供上述酶催化甘油的生物燃料电池阳极的制备方法。
本发明的再一目的在于提供上述酶催化甘油的生物燃料电池阳极在制备生物燃料电池或生物传感器中的应用。
本发明目的通过以下技术方案实现:
一种酶催化甘油的生物燃料电池阳极,所述阳极是以基底电极为中心,由内到外依次为介体层和酶层;所述的酶层由石墨烯壳聚糖、甘油激酶(glycerolkinase)、甘油3-磷酸氧化酶(glycerol-3P-oxidase)组成。
优选地,所述的基底电极是指玻碳电极。
所述介体层的材料优选为Nafion膜固定的麦尔多拉蓝(MB)。
上述酶催化甘油的生物燃料电池阳极的制备方法,包括以下制备步骤:
(1)对基底电极进行表面预处理;
(2)将Nafion溶液滴加到预处理后的基底电极表面,待溶剂挥发后形成一层Nafion膜;然后把此电极插入麦尔多拉蓝水溶液中浸泡,使麦尔多拉蓝通过离子交换固定到Nafion膜中;将电极取出后洗净、干燥,得到含有介体层的电极;
(3)将含石墨烯的壳聚糖溶液、甘油激酶水溶液、甘油3-磷酸氧化酶水溶液按比例混合均匀得复合酶溶液,然后将复合酶溶液滴加到步骤(2)的电极上表面,晾干后得到酶催化甘油的生物燃料电池阳极。
优选地,步骤(1)中所述的表面预处理过程如下:将基底电极的表面依次用直径为0.3μm和0.05μm的Al2O3粉末抛光成镜面,再用水冲洗;然后依次在无水乙醇和水中超声清洗1min,取出用水洗净,晾干,然后置于0.5mol/L的H2SO4溶液中进行电极活化。
优选地,步骤(2)中所述的Nafion溶液是指Nafion的质量分数为5%的甲醇溶液;所述麦尔多拉蓝水溶液的浓度为0.1mmol/L;所述的浸泡的时间为2h。
优选地,步骤(3)中所述含石墨烯的壳聚糖溶液通过以下方法制备:在质量分数为0.5%~2%的壳聚糖醋酸溶液中加入石墨烯,超声分散2~12h,得到石墨烯浓度为1~5mg/mL的含石墨烯的壳聚糖溶液。
优选地,所述甘油激酶水溶液的浓度为20~30mg/mL;甘油3-磷酸氧化酶水溶液的浓度为20~30mg/mL。
优选地,所述的含石墨烯的壳聚糖溶液、甘油激酶水溶液、甘油3-磷酸氧化酶水溶液的体积比为1:1:1。
上述酶催化甘油的生物燃料电池阳极在制备生物燃料电池或生物传感器中的应用。
本发明的原理:本发明首先是制备Nafion-麦尔多拉蓝修饰玻碳电极,然后将含石墨烯的壳聚糖溶液、甘油激酶水溶液、甘油3-磷酸氧化酶水溶液混合均匀;再利用壳聚糖的包埋作用,将甘油激酶、甘油3-磷酸氧化酶包埋起来,并利用石墨烯的载体特性,负载更多的酶,以利于对底物的催化;最后,取适量混合液滴于Nafion-麦尔多拉蓝修饰玻碳电极表面上,得到修饰后的工作电极即低成本高性能酶生物燃料电池复合生物阳极。本发明所使用的麦尔多拉蓝是一种良好的电子传递体,经浸泡离子交换后形成膜稳定性好,不易流失,且具有快速传递电子的能力,能够实现电子的间接转移。本发明的电极催化氧化甘油的原理图如图1所示。
本发明的制备方法及所得到的产物具有如下优点及有益效果:
(1)本发明的生物燃料电池阳极通过加入石墨烯并通过特定的制备方法,可提高酶的负载量,有利于酶对底物的催化作用,产生更多的电子,同时也增加了介体的负载量,较高的介体负载量能将产生电子进行良好的转移,实现酶与电极之间的电子传递,减少了介体和酶的脱落对电池的功率性、稳定性和重现性的影响;
(2)本发明的制备方法成本较低、容易制备(反应在室温中性环境)、催化性能好(在实施例中可看到明显的氧化还原峰变化)等优点;
(3)本发明的生物燃料电池阳极对底物的氧化在中性pH条件下进行,所用的底物为自然界中广泛存在的物质,具有良好的应用前景。
附图说明
图1为本发明的电极催化氧化甘油的原理图;
图2为本发明实施例1的酶催化甘油的生物燃料电池阳极在不同浓度甘油条件下的循环伏安图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)将直径为3mm的玻碳电极依次用直径为0.3μm和0.05μm的Al2O3粉末抛光成镜面,用蒸馏水冲洗,然后依次在无水乙醇和蒸馏水中超声清洗1min,再将玻碳电极置于0.5mol/L的H2SO4溶液中进行电极活化,取出用蒸馏水冲洗,晾干得到预处理的玻碳电极;
(2)吸取6μL质量分数为0.5%的Nafion甲醇溶液滴加到预处理玻碳电极表面,在室温下放置约1.5h,电极表面上的溶剂挥发后形成一层Nafion膜;然后把此电极插入含有0.1mmol/L麦尔多拉蓝水溶液(将3.8mg麦尔多拉蓝加入到100mL蒸馏水中配制得到)中浸泡,使麦尔多拉蓝通过离子交换固定到Nafion膜中;离子交换完成后,把电极取出用二次蒸馏水洗净,干燥,得到含有介体层的电极;
(3)将含石墨烯的壳聚糖溶液(1mg/mL)、甘油激酶水溶液(30mg/mL,称取甘油激酶6KU(1KU/mg),加入0.2mL蒸馏水配制得到)、甘油3-磷酸氧化酶水溶液(30mg/mL,称取甘油3-磷酸氧化酶3KU(500U/mg),加入0.2mL蒸馏水配制得到)按1:1:1的体积比混合均匀得复合酶溶液,取复合酶溶液5μL滴加到步骤(2)的电极表面,室温晾干,得到酶催化甘油的生物燃料电池阳极。
本实施例所使用的含石墨烯的壳聚糖溶液通过以下方法制备:称取0.03g壳聚糖(T0060,DAC≥95%)加入到3mL浓度为0.1mol/L的醋酸溶液中,得质量分数为1%的壳聚糖醋酸溶液;取1mL上述质量分数为1%的壳聚糖醋酸溶液,加入1mg石墨烯,超声分散2h,得到石墨烯浓度为1mg/mL的含石墨烯的壳聚糖溶液。
本实施例的酶催化甘油的生物燃料电池阳极性能测试采用标准三电极体系:本实施例得到的生物燃料电池阳极(GCE,直径为3mm)为工作电极,铂电极为对电极,Ag/AgCl电极为参比电极,室温下进行电化学试验。
本实施例的酶催化甘油的生物燃料电池阳极在0.02mol/L、pH为7.0的磷酸盐缓冲溶液中,不断增加甘油浓度条件下的循环伏安图如图2所示,其中,还原曲线右端从低到高依次对应的甘油浓度为0mM、0.5mM、1.0mM、1.5mM、2.0mM、2.5mM、3.0mM、3.5mM、4.0mM、4.5mM、5.0mM、5.5mM、6.0mM、6.5mM、7.0mM、7.5mM、8.0mM、8.5mM。通过图2可以看出:本发明的酶催化甘油的生物燃料电池阳极在含甘油的磷酸盐缓冲溶液中的循环伏安曲线的还原峰明显大于不含甘油的磷酸盐缓冲溶液中的还原峰。氧化峰减小,表明本发明酶修饰阳极中的酶可对溶液中的甘油产生灵敏的电流响应;而且随着甘油浓度的增加,电流响应也在不断增大,催化电流为69.24μA,表明电极表面实现了快速的电子转移。
实施例2
(1)将直径为3mm的玻碳电极依次用直径为0.3μm和0.05μm的Al2O3粉末抛光成镜面,用蒸馏水冲洗,然后依次在无水乙醇和蒸馏水中超声清洗1min,再将玻碳电极置于0.5mol/L的H2SO4溶液中进行电极活化,取出用蒸馏水冲洗,晾干得到预处理的玻碳电极;
(2)吸取6μL质量分数为0.5%的Nafion甲醇溶液滴加到预处理玻碳电极表面,在室温下放置约1.5h,电极表面上的溶剂挥发后形成一层Nafion膜;然后把此电极插入含有0.1mmol/L麦尔多拉蓝水溶液(将3.8mg麦尔多拉蓝加入到100mL蒸馏水中配制得到)中浸泡,使麦尔多拉蓝通过离子交换固定到Nafion膜中;离子交换完成后,把电极取出用二次蒸馏水洗净,干燥,得到含有介体层的电极;
(3)将含石墨烯的壳聚糖溶液(1mg/mL)、甘油激酶水溶液(30mg/mL,称取甘油激酶6KU(1KU/mg),加入0.2mL蒸馏水配制得到)、甘油3-磷酸氧化酶水溶液(20mg/mL,称取甘油3-磷酸氧化酶2KU(500U/mg),加入0.2mL蒸馏水配制得到)按1:1:1的体积比混合均匀得复合酶溶液,取复合酶溶液5μL滴加到步骤(2)的电极表面,室温晾干,得到酶催化甘油的生物燃料电池阳极。
本实施例所使用的含石墨烯的壳聚糖溶液通过以下方法制备:称取0.03g壳聚糖(T0060,DAC≥95%)加入到3mL浓度为0.1mol/L的醋酸溶液中,得质量分数为1%的壳聚糖醋酸溶液;取1mL上述质量分数为1%的壳聚糖醋酸溶液,加入1mg石墨烯,超声分散4h,得到石墨烯浓度为1mg/mL的含石墨烯的壳聚糖溶液。
本实施例的酶催化甘油的生物燃料电池阳极用于甘油催化的电流为66.13μA。
实施例3
(1)将直径为3mm的玻碳电极依次用直径为0.3μm和0.05μm的Al2O3粉末抛光成镜面,用蒸馏水冲洗,然后依次在无水乙醇和蒸馏水中超声清洗1min,再将玻碳电极置于0.5mol/L的H2SO4溶液中进行电极活化,取出用蒸馏水冲洗,晾干得到预处理的玻碳电极;
(2)吸取6μL质量分数为0.5%的Nafion甲醇溶液滴加到预处理玻碳电极表面,在室温下放置约1.5h,电极表面上的溶剂挥发后形成一层Nafion膜;然后把此电极插入含有0.1mmol/L麦尔多拉蓝水溶液(将3.8mg麦尔多拉蓝加入到100mL蒸馏水中配制得到)中浸泡,使麦尔多拉蓝通过离子交换固定到Nafion膜中;离子交换完成后,把电极取出用二次蒸馏水洗净,干燥,得到含有介体层的电极;
(3)将含石墨烯的壳聚糖溶液(5mg/mL)、甘油激酶水溶液(20mg/mL,称取甘油激酶4KU(1KU/mg),加入0.2mL蒸馏水配制得到)、甘油3-磷酸氧化酶水溶液(20mg/mL,称取甘油3-磷酸氧化酶2KU(500U/mg),加入0.2mL蒸馏水配制得到)按1:1:1的体积比混合均匀得复合酶溶液,取复合酶溶液5μL滴加到步骤(2)的电极表面,室温晾干,得到酶催化甘油的生物燃料电池阳极。
本实施例所使用的含石墨烯的壳聚糖溶液通过以下方法制备:称取0.03g壳聚糖(T0060,DAC≥95%)加入到3mL浓度为0.1mol/L的醋酸溶液中,得质量分数为1%的壳聚糖醋酸溶液;取1mL上述质量分数为1%的壳聚糖醋酸溶液,加入5mg石墨烯,超声分散6h,得到石墨烯浓度为5mg/mL的含石墨烯的壳聚糖溶液。
本实施例的酶催化甘油的生物燃料电池阳极用于甘油催化的电流为65.58μA。
实施例4
(1)将直径为3mm的玻碳电极依次用直径为0.3μm和0.05μm的Al2O3粉末抛光成镜面,用蒸馏水冲洗,然后依次在无水乙醇和蒸馏水中超声清洗1min,再将玻碳电极置于0.5mol/L的H2SO4溶液中进行电极活化,取出用蒸馏水冲洗,晾干得到预处理的玻碳电极;
(2)吸取6μL质量分数为0.5%的Nafion甲醇溶液滴加到预处理玻碳电极表面,在室温下放置约1.5h,电极表面上的溶剂挥发后形成一层Nafion膜;然后把此电极插入含有0.1mmol/L麦尔多拉蓝水溶液(将3.8mg麦尔多拉蓝加入到100mL蒸馏水中配制得到)中浸泡,使麦尔多拉蓝通过离子交换固定到Nafion膜中;离子交换完成后,把电极取出用二次蒸馏水洗净,干燥,得到含有介体层的电极;
(3)将含石墨烯的壳聚糖溶液(1mg/mL)、甘油激酶水溶液(30mg/mL,称取甘油激酶6KU(1KU/mg),加入0.2mL蒸馏水配制得到)、甘油3-磷酸氧化酶水溶液(30mg/mL,称取甘油3-磷酸氧化酶3KU(500U/mg),加入0.2mL蒸馏水配制得到)按1:1:1的体积比混合均匀得复合酶溶液,取复合酶溶液5μL滴加到步骤(2)的电极表面,室温晾干,得到酶催化甘油的生物燃料电池阳极。
本实施例所使用的含石墨烯的壳聚糖溶液通过以下方法制备:称取0.06g壳聚糖(T0060,DAC≥95%)加入到3mL浓度为0.1mol/L的醋酸溶液中,得质量分数为2%的壳聚糖醋酸溶液;取1mL上述质量分数为2%的壳聚糖醋酸溶液,加入1mg石墨烯,超声分散12h,得到石墨烯浓度为1mg/mL的含石墨烯的壳聚糖溶液。
本实施例的酶催化甘油的生物燃料电池阳极用于甘油催化的电流大于66.32μA。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种酶催化甘油的生物燃料电池阳极,其特征在于:所述阳极是以基底电极为中心,由内到外依次为介体层和酶层;所述的酶层由石墨烯壳聚糖、甘油激酶和甘油3-磷酸氧化酶组成。
2.根据权利要求1所述的一种酶催化甘油的生物燃料电池阳极,其特征在于:所述的基底电极是指玻碳电极。
3.根据权利要求1所述的一种酶催化甘油的生物燃料电池阳极,其特征在于:所述介体层的材料为Nafion膜固定的麦尔多拉蓝。
4.权利要求1~3任一项所述的一种酶催化甘油的生物燃料电池阳极的制备方法,其特征在于包括以下制备步骤:
(1)对基底电极进行表面预处理;
(2)将Nafion溶液滴加到预处理后的基底电极表面,待溶剂挥发后形成一层Nafion膜;然后把此电极插入麦尔多拉蓝水溶液中浸泡,使麦尔多拉蓝通过离子交换固定到Nafion膜中;将电极取出后洗净、干燥,得到含有介体层的电极;
(3)将含石墨烯的壳聚糖溶液、甘油激酶水溶液、甘油3-磷酸氧化酶水溶液按比例混合均匀得复合酶溶液,然后将复合酶溶液滴加到步骤(2)的电极上表面,晾干后得到酶催化甘油的生物燃料电池阳极。
5.根据权利要求4所述的一种酶催化甘油的生物燃料电池阳极的制备方法,其特征在于,步骤(1)中所述的表面预处理过程如下:将基底电极的表面依次用直径为0.3μm和0.05μm的Al2O3粉末抛光成镜面,再用水冲洗;然后依次在无水乙醇和水中超声清洗1min,取出用水洗净,晾干,然后置于0.5mol/L的H2SO4溶液中进行电极活化。
6.根据权利要求4所述的一种酶催化甘油的生物燃料电池阳极的制备方法,其特征在于:步骤(2)中所述的Nafion溶液是指Nafion的质量分数为5%的甲醇溶液;所述麦尔多拉蓝水溶液的浓度为0.1mmol/L;所述的浸泡的时间为2h。
7.根据权利要求4所述的一种酶催化甘油的生物燃料电池阳极的制备方法,其特征在于:步骤(3)中所述含石墨烯的壳聚糖溶液通过以下方法制备:在质量分数为0.5%~2%的壳聚糖醋酸溶液中加入石墨烯,超声分散2~12h,得到石墨烯浓度为1~5mg/mL的含石墨烯的壳聚糖溶液。
8.根据权利要求4所述的一种酶催化甘油的生物燃料电池阳极的制备方法,其特征在于:所述甘油激酶水溶液的浓度为20~30mg/mL;甘油3-磷酸氧化酶水溶液的浓度为20~30mg/mL。
9.根据权利要求4所述的一种酶催化甘油的生物燃料电池阳极的制备方法,其特征在于:所述的含石墨烯的壳聚糖溶液、甘油激酶水溶液、甘油3-磷酸氧化酶水溶液的体积比为1:1:1。
10.权利要求1~3任一项所述的酶催化甘油的生物燃料电池阳极在制备生物燃料电池或生物传感器中的应用。
CN201510940886.2A 2015-12-15 2015-12-15 一种酶催化甘油的生物燃料电池阳极及其制备方法与应用 Expired - Fee Related CN105552395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510940886.2A CN105552395B (zh) 2015-12-15 2015-12-15 一种酶催化甘油的生物燃料电池阳极及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510940886.2A CN105552395B (zh) 2015-12-15 2015-12-15 一种酶催化甘油的生物燃料电池阳极及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN105552395A true CN105552395A (zh) 2016-05-04
CN105552395B CN105552395B (zh) 2018-01-16

Family

ID=55831455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510940886.2A Expired - Fee Related CN105552395B (zh) 2015-12-15 2015-12-15 一种酶催化甘油的生物燃料电池阳极及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN105552395B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914379A (zh) * 2016-06-06 2016-08-31 华南理工大学 一种酶催化甘油氧化的生物燃料电池阳极及制备与应用
CN106784862A (zh) * 2016-11-28 2017-05-31 华南理工大学 一种酶催化甘油氧化的生物燃料电池阳极及其制备与应用
CN114636737A (zh) * 2022-02-18 2022-06-17 华南理工大学 一种基于二硫化钼量子点-还原氧化石墨烯的酶生物传感器及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050095466A1 (en) * 2003-11-05 2005-05-05 St. Louis University Immobilized enzymes in biocathodes
CN101908630A (zh) * 2009-06-04 2010-12-08 中国科学院化学研究所 一种介体型生物燃料电池阳极及其制备方法
CN102998348A (zh) * 2012-11-27 2013-03-27 重庆医科大学 一种脱氢酶型电化学生物传感器制备方法
CN103066302A (zh) * 2012-12-20 2013-04-24 华南理工大学 一种生物燃料电池阳极及其制备方法与应用
CN103066304A (zh) * 2012-12-20 2013-04-24 华南理工大学 一种酶生物燃料电池阳极及其制备方法与应用
US20150280266A1 (en) * 2011-11-02 2015-10-01 Sony Corporation Biofuel cell, method for production of biofuel cell, electronic device, enzyme immobilization electrode, method for production of enzyme immobilization electrode, electrode for production of enzyme immobilization electrode, method for 5 production of electrode for production of enzyme immobilization electrode and enzyme reaction using device
CN104974371A (zh) * 2014-04-11 2015-10-14 山东大学 一种石墨烯-壳聚糖多孔复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050095466A1 (en) * 2003-11-05 2005-05-05 St. Louis University Immobilized enzymes in biocathodes
CN101908630A (zh) * 2009-06-04 2010-12-08 中国科学院化学研究所 一种介体型生物燃料电池阳极及其制备方法
US20150280266A1 (en) * 2011-11-02 2015-10-01 Sony Corporation Biofuel cell, method for production of biofuel cell, electronic device, enzyme immobilization electrode, method for production of enzyme immobilization electrode, electrode for production of enzyme immobilization electrode, method for 5 production of electrode for production of enzyme immobilization electrode and enzyme reaction using device
CN102998348A (zh) * 2012-11-27 2013-03-27 重庆医科大学 一种脱氢酶型电化学生物传感器制备方法
CN103066302A (zh) * 2012-12-20 2013-04-24 华南理工大学 一种生物燃料电池阳极及其制备方法与应用
CN103066304A (zh) * 2012-12-20 2013-04-24 华南理工大学 一种酶生物燃料电池阳极及其制备方法与应用
CN104974371A (zh) * 2014-04-11 2015-10-14 山东大学 一种石墨烯-壳聚糖多孔复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GERVÁSIO PAULODA SILVA ET AL: "Glycerol: A promising and abundant carbon source for industrial microbiology", 《BIOTECHNOLOGY ADVANCES》 *
R. L. ARECHEDERRA ET AL: "Complete Oxidation of Glycerol in an Enzymatic Biofuel Cell", 《FUEL CELLS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914379A (zh) * 2016-06-06 2016-08-31 华南理工大学 一种酶催化甘油氧化的生物燃料电池阳极及制备与应用
CN105914379B (zh) * 2016-06-06 2018-06-22 华南理工大学 一种酶催化甘油氧化的生物燃料电池阳极及制备与应用
CN106784862A (zh) * 2016-11-28 2017-05-31 华南理工大学 一种酶催化甘油氧化的生物燃料电池阳极及其制备与应用
CN114636737A (zh) * 2022-02-18 2022-06-17 华南理工大学 一种基于二硫化钼量子点-还原氧化石墨烯的酶生物传感器及其制备方法和应用
CN114636737B (zh) * 2022-02-18 2023-01-06 华南理工大学 基于二硫化钼量子点-还原氧化石墨烯的酶生物传感器

Also Published As

Publication number Publication date
CN105552395B (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
Zhao et al. Nanostructured material-based biofuel cells: recent advances and future prospects
Sund et al. Effect of electron mediators on current generation and fermentation in a microbial fuel cell
Arechederra et al. Development of glycerol/O2 biofuel cell
Higgins et al. Hybrid biofuel cell: microbial fuel cell with an enzymatic air-breathing cathode
JP5307316B2 (ja) 燃料電池、燃料電池の使用方法、燃料電池用カソード電極、電子機器、電極反応利用装置および電極反応利用装置用電極
Zebda et al. Glucose biofuel cell construction based on enzyme, graphite particle and redox mediator compression
EP2343765A1 (en) Bioanodes for use in biofuel cells
Xia et al. Direct energy conversion from xylose using xylose dehydrogenase surface displayed bacteria based enzymatic biofuel cell
Wu et al. Fabrication of flexible and disposable enzymatic biofuel cells
CN105261761B (zh) 一种基于石墨烯的生物燃料电池酶修饰阳极及制备与应用
Rengasamy et al. An insoluble iron complex coated cathode enhances direct electron uptake by Rhodopseudomonas palustris TIE-1
Scott et al. Biological and microbial fuel cells
CN103066304B (zh) 一种酶生物燃料电池阳极及其制备方法与应用
CN103066302B (zh) 一种生物燃料电池阳极及其制备方法与应用
CN102017267A (zh) 燃料电池及其制造方法、酶固定电极及其制造方法和电子设备
Fujita et al. A repeatedly refuelable mediated biofuel cell based on a hierarchical porous carbon electrode
CN106450399A (zh) 一种基于微生物表面共展示顺序酶的高性能淀粉/氧气燃料电池
De Poulpiquet et al. Exploring Properties of a Hyperthermophilic Membrane‐Bound Hydrogenase at Carbon Nanotube Modified Electrodes for a Powerful H2/O2 Biofuel Cell
Aslan et al. Development of a Bioanode for Microbial Fuel Cells Based on the Combination of a MWCNT‐Au‐Pt Hybrid Nanomaterial, an Osmium Redox Polymer and Gluconobacter oxydans DSM 2343 Cells
CN105552395A (zh) 一种酶催化甘油的生物燃料电池阳极及其制备方法与应用
Wang et al. Preserved enzymatic activity of glucose oxidase immobilized on an unmodified electrode
Gouranlou et al. Enhancement of ethanol–oxygen biofuel cell output using a CNT based nano-composite as bioanode
Jeyaraman et al. Membranes, immobilization, and protective strategies for enzyme fuel cell stability
Li et al. Simple construction of an enzymatic glucose biosensor based on a nanocomposite film prepared in one step from iron oxide, gold nanoparticles, and chitosan
Zhang et al. Oxygen reduction catalyzed by bilirubin oxidase and applications in biosensors and biofuel cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180116

Termination date: 20211215

CF01 Termination of patent right due to non-payment of annual fee