CN105550447A - 基于双神经网络的离心式水泵系统的建模方法 - Google Patents

基于双神经网络的离心式水泵系统的建模方法 Download PDF

Info

Publication number
CN105550447A
CN105550447A CN201510932619.0A CN201510932619A CN105550447A CN 105550447 A CN105550447 A CN 105550447A CN 201510932619 A CN201510932619 A CN 201510932619A CN 105550447 A CN105550447 A CN 105550447A
Authority
CN
China
Prior art keywords
output
pump
input
neural network
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510932619.0A
Other languages
English (en)
Other versions
CN105550447B (zh
Inventor
巫庆辉
王长忠
刘继行
李鸿一
常晓恒
杨友林
丁硕
杨祯山
尹作友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohai University
Original Assignee
Bohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohai University filed Critical Bohai University
Priority to CN201510932619.0A priority Critical patent/CN105550447B/zh
Publication of CN105550447A publication Critical patent/CN105550447A/zh
Application granted granted Critical
Publication of CN105550447B publication Critical patent/CN105550447B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种基于双神经网络的离心式水泵系统的建模方法,可解决传统建模方法依赖于精确的泵特性方程与管道特性方程问题,其步骤如下:建立以泵调速比K、泵流量Q为输入变量,泵扬程H、泵的轴功率Pin为输出变量的数学模型,建立以调速比K与轴功率Pin为输入变量、泵流量Q与扬程H为输出变量的泵系统模型,得到双输入-单输出的数学模型:采用双神经网络建立泵系统模型,其中神经网络NN1与NN2分别是双输入-单输出的BP神经网络;调速比K、轴功率Pin作为神经网络NN1的输入,调速比K、神经网络NN1的输出作为神经网络NN2的输入,输出层的神经元的阀值为bk,输出层的输出为输出变量扬程H。

Description

基于双神经网络的离心式水泵系统的建模方法
技术领域
本发明涉及离心式水泵系统的建模方法,具体地说,以泵的调速比、电机的轴功率为输入变量,以泵的流量、扬程为输出变量,采用双神经网络构建离心式水泵系统的建模方法。
背景技术
泵系统节能潜力的实现通常需要附加测量仪器(如差压传感器、流量计等)探测泵低效率运行状态,如扬程、流量、轴功率、效率等信息,而这种带有传感器的传统控制系统成本昂贵,可靠性差,不适合于苛刻环境的泵应用领域。目前,针对离心式水泵系统运行状态估计模型已取得了一些研究成果。美国Kernan等人发明一种在不用传统传感器情况下确定泵流量的方法,其主要特征是建立两个转速下阀门关闭情况下的校正功率曲线,从基于泵功率比的标准化功率曲线计算系数,并在当前运行点下求解多项式功率方程获得流量,这种方法解决了泵特性偏离标准泵特性曲线问题,而没有解决泵特性随时间衰退问题。针对泵运行状态超出有效工作区间时基于泵特性的状态估计方法无法实现准确估计的问题,T.Ahonen提出了基于泵QP特性与管道特性模型的混合估计方法,并在有效的工作区间辨识管道特性模型参数。上述方法依赖于泵功率曲线、泵特性方程与管道特性方程,这给该方法的实际应用带来困难,另外,在实际应用过程中泵特性会偏离标准泵特性,用户参与调解过程中管道特性具有时变性与不确定性,这导致该方法在实际应用过程中很难获得理想效果。基于此,提出了一种不依赖于泵特性方程与管道特性方程的双神经网络建模方法。
发明内容
为了将基于电机状态估计离心式水泵运行状态的无传感器技术取代目前的流量、扬程传感器,并解决传统建模方法依赖于精确的泵特性方程与管道特性方程问题,本发明提出一种基于双神经网络的离心式水泵系统的建模方法。
本发明的技术解决方案是:
离心式水泵系统的建模方法,其步骤如下:
1、泵系统数学模型
1.1建立以泵调速比K、泵流量Q为输入变量,以泵扬程H、泵的轴功率Pin为输出变量的数学模型
H ( K , Q ) = K 2 H 0 - R · Q 2 P i n ( K , Q ) = r 3600 η p ( K , Q ) ( H 0 K 2 Q - RQ 3 ) η p ( K , Q ) = b 3 ( Q K ) 3 + b 2 ( Q K ) 2 + b 1 ( Q K ) - - - ( 1 )
式中,H(K,Q)为泵扬程;K为泵调速比,K=n/nN;H0—泵在额定转速下流量为零时的扬程;R—泵的内阻;Q—泵的流量;Pin(K,Q)为泵的轴功率;r—介质的重度,N/m3,r=ρg;ηp(K,Q)为调速比K下的水泵效率;
1.2建立以调速比K与轴功率Pin为输入变量、以泵流量Q与扬程H为输出变量的泵系统模型
Q H = F ( K , P i n ) - - - ( 2 )
式中F表示双输入-双输出的函数关系;
1.3数学模型结构化简
利用式(1)将流量Q表达成调速比K、轴功率Pin的函数
Q=f1(K,Pin)(3)
利用式(1),将扬程H表达成调速比K、流量Q的函数
H=f2(K,Q)(4)
将式(2)的双输入-双输出的数学模型结构表达成两个双输入-单输出的数学模型描述,即
Q = f 1 ( K , P i n ) H = f 2 ( K , Q ) - - - ( 5 )
2、基于双神经网络的泵系统模型
采用双神经网络建立泵系统模型,其中神经网络NN1与NN2分别是双输入-单输出的BP神经网络;调速比K、轴功率Pin作为神经网络NN1的输入,输入变量连接输入层i的神经元,输入层的神经元分别与隐含层j的各神经元连接,连接权值矩阵为Wij,隐含层的阀值向量为bj,隐含层的输出分别与输出层k的神经元连接,连接权值矩阵为Wkj,输出层的神经元的阀值为bk,输出层的输出为输出变量流量Q;调速比K、神经网络NN1的输出作为神经网络NN2的输入,输入变量连接输入层i的神经元,输入层的神经元分别与隐含层j的各神经元连接,连接权值矩阵为Wij,隐含层的阀值向量为bj,隐含层的输出分别与输出层k的神经元连接,连接权值矩阵为Wkj,输出层的神经元的阀值为bk,输出层的输出为输出变量扬程H。
本发明有益效果是:
1)将双输入-双输出的强耦合泵模型解耦成双输入-单输出的模型,模型结构大大简化;
2)本发明的神经网络采用基于反传算法的前馈神经网络,即BP神经网络,具有很强的非线性映射能力,可以充分逼近复杂泵模型的非线性关系;
3)所有调速比、轴功率与流量、扬程的定量和定性信息等势分布在神经元内,该模型具有很强的鲁棒性和容错性;
4)泵模型中的轴功率与电机效率、变频器效率等未知的与不确定的因素有关,基于神经网络的泵模型具有自适应与学习未知的或不确定的能力。
综上所述,由于泵特性具有严重的非线性,泵特性参数及管道特性参数很难准确获得,在实际应用过程中又存在随机噪声干扰的影响,无法通过泵特性方程获得泵状态的准确估计。由于神经网络具有强大的学习能力和非线性映射能力,它不需要任何先验公式就可以通过学习或训练自动地获得函数关系,因而是一种有效的泵系统建模手段。另外,双输入-双输出的泵系统模型可以分解成两个双输入-单输出的子系统模型串联构成,本发明采用双神经网络构建泵系统模型,可以大大提高建模精度、神经网络的收敛速度及泛化能力。
附图说明
图1是以泵调速比、泵流量为输入变量,以泵扬程、泵的轴功率为输出变量的数学模型结构示意图;
图2以调速比与轴功率为输入变量、以泵流量与扬程为输出变量的泵系统模型;
图3是简化的泵模型结构示意图;
图4是双神经网络结构示意图;
图5双神经网络模型简化示意图;
图6是神经网络NN1的测试样本对示意图;
图7是神经网络NN1的神经网络输出结果示意图;
图8是神经网络NN1的输出误差示意图;
图9是神经网络NN1输出的相对误差曲线示意图;
图10是神经网络NN2的测试样本对示意图;
图11是神经网络NN2的输出结果示意图;
图12是神经网络NN2的输出误差示意图;
图13是神经网络NN2的输出相对误差曲线示意图。
具体实施方式
本发明涉及的离心式水泵系统的建模方法,其步骤如下:
1、泵系统数学模型
1.1建立以泵调速比K、泵流量Q为输入变量,以泵扬程H、泵的轴功率Pin为输出变量的数学模型:
H ( K , Q ) = K 2 H 0 - R · Q 2 P i n ( K , Q ) = r 3600 η p ( K , Q ) ( H 0 K 2 Q - RQ 3 ) η p ( K , Q ) = b 3 ( Q K ) 3 + b 2 ( Q K ) 2 + b 1 ( Q K ) - - - ( 1 )
式中,H(K,Q)为泵扬程;K为泵调速比,K=n/nN;H0—泵在额定转速下流量为零时的扬程;R—泵的内阻;Q—泵的流量;Pin(K,Q)为泵的轴功率;r—介质的重度,N/m3,r=ρg;ηp(K,Q)为调速比K下的水泵效率;L由式(1)描述的模型结构如图1所示。
1.2建立以调速比与轴功率为输入变量、以泵流量Q与扬程H为输出变量的泵系统模型:
Q H = F ( K , P i n ) - - - ( 2 )
式中F表示双输入-双输出的函数关系;
泵运行估计的目的是通过电机运行状态(调速比K、轴功率Pin)估计泵运行状态(泵流量Q,泵扬程H),因此,建立以调速比K、轴功率Pin为输入变量,以泵流量Q、扬程H为输出变量的数学模型,新型的泵模型结构示意图如图2所示。
1.3数学模型结构化简
由式(1)可知:流量Q是调速比K、轴功率Pin的函数;扬程H是调速比K、流量Q的函数,即:
Q=f1(K,Pin)(3)
H=f2(K,Q)(4)
将双输入-双输出的泵系统模型分解成两个双输入-单输出的子系统模型串联构成,数学模型描述见式(2),结构示意图如图3所示。
Q = f 1 ( K , P i n ) H = f 2 ( K , Q ) - - - ( 3 )
将式(2)的双输入-双输出的数学模型结构表达成两个双输入-单输出的数学模型描述,即
Q = f 1 ( K , P i n ) H = f 2 ( K , Q ) - - - ( 5 )
2、基于双神经网络泵系统模型描述
如图4和图5所示,采用双神经网络建立泵系统模型,其中神经网络NN1与NN2分别是双输入-单输出的BP神经网络;调速比K、轴功率Pin作为神经网络NN1的输入,输入变量连接输入层i的神经元,输入层的神经元分别与隐含层j的各神经元连接,连接权值矩阵为Wij,隐含层的阀值向量为bj,隐含层的输出分别与输出层k的神经元连接,连接权值矩阵为Wkj,输出层的神经元的阀值为bk,输出层的输出为输出变量流量Q;调速比K、神经网络NN1的输出作为神经网络NN2的输入,输入变量连接输入层i的神经元,输入层的神经元分别与隐含层j的各神经元连接,连接权值矩阵为Wij,隐含层的阀值向量为bj,隐含层的输出分别与输出层k的神经元连接,连接权值矩阵为Wkj,输出层的神经元的阀值为bk,输出层的输出为输出变量扬程H。
下面结合具体实施例对双神经网络泵系统模型训练过程进行阐述:
以ISG150-400型水泵为例,在额定转速下的特性方程为:
H=H0-R·Q2
ηP=b3Q3+b2Q2+b1Q
式中:H0=60,R=0.002,b1=0.007782,b2=-2.26×10-5,b3=1.221×10-8
选取设计工况为HA=52m,QA=200m3/h,ηA=75%,nN=1450r/min。
(1)神经网络NN1设计
神经网络NN1采用三层BP神经网络,结构2-15-1,即输入层为两个神经元,隐含层15个神经元,输出层为1个神经元;隐含层的作用函数采用双曲函数,输出层采用线性函数。
(2)神经网络NN2设计
神经网络NN2采用三层BP神经网络,结构2-8-1,即输入层为两个神经元,隐含层8个神经元,输出层为1个神经元;隐含层的作用函数采用双曲函数,输出层采用线性函数。
(3)训练结果
随机选取1500组数据样本对(K,Pin;Q)作为神经网络NN1的训练样本,随机选取1500组数据样本对(K,Q;H)作为神经网络NN2的训练样本,分别采用BP算法训练神经网络,训练结果如下:
(3.1)NN1神经网络
隐含层对输入层的连接权矩阵Wji训练结果如下:
Wji=[-13.4458-0.2612;-4.00368.3285;-1.13924.7099;19.20770.8136;...-21.1528-11.9566;2.1668-37.1255;-6.3947-2.0734;-36.955919.8892;...-2.8751-3.9093;-44.7075-2.7831;-24.1887-27.4666;-5.3050-3.5983;...-0.64671.3937;-6.25922.7757;15.32041.2649]
输出层对隐含层连接权矩阵Wkj训练结果如下:
Wkj=[-14.69767.9680-24.350363.59313.48820.0000-10.1124...-0.0010-58.16604.57870.0009-13.455811.57337.356619.1911]
隐含层的阈值向量bj
bj=[-5.0912;16.3692;12.4358;8.8508;-27.4959;-0.2156;-3.3013;...-9.4730;-16.9971;-19.1995;-17.0963;-4.5334;8.0071;15.0764;5.3722]
输出层的阈值bk
bk=84.4138
(3.2)NN2神经网络
隐含层对输入层的连接权矩阵Wji训练结果如下:
Wji=[-0.0194-8.2302;0.9431-13.9939;-0.133414.9560;0.031715.2316;...-0.8925-9.1913;0.371111.0104;-2.016918.0616;-0.6343-6.1537]
输出层对隐含层连接权矩阵Wkj训练结果如下:
Wkj=[26.5821-2.7288-15.5891-17.5645-2.4577-4.0430-3.5381-2.7956]
隐含层的阈值向量bj
bj=[-4.6887;-15.9782;2.8261;9.9888;-7.2817;5.7791;2.6929;-3.1946]
输出层的阈值bk
bk=25.0195
(4)神经网络校验
另外,随机选取100组数据样本对(K,Pin;Q)作为神经网络NN1的测试样本,随机选取100组数据样本对(K,Q;H)作为神经网络NN2的测试样本,测试结果如图6-图13所示。图6为测试样本对(K,Pin;Q),图7为神经网络NN1输出Q结果,图8为神经网络NN1输出Q误差,图9为神经网络NN1输出相对误差曲线,由测试结果可以看出,神经网络NN1输出流量Q的绝对误差小于±0.01m3/h,而相对误差在0.5×10-4以内,表明神经网络NN1具有很高的建模精度。图10为测试样本对(K,Q;H),图11为神经网络NN2输出H结果,图13为神经网络NN2输出H误差及相对误差曲线,由测试结果可以看出,神经网络NN2输出扬程H的绝对误差小于±0.02m,而相对误差在0.5×10-4以内,表明神经网络NN2也具有很高的建模精度。
以上仅为本发明的具体实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种离心式水泵系统的建模方法,其特征是步骤如下:
1)、泵系统数学模型
1.1建立以泵调速比K、泵流量Q为输入变量,以泵扬程H、泵的轴功率Pin为输出变量的数学模型
H ( K , Q ) = K 2 H 0 - R · Q 2 P i n ( K , Q ) = r 3600 η p ( K , Q ) ( H 0 K 2 Q - RQ 3 ) η p ( K , Q ) = b 3 ( Q K ) 3 + b 2 ( Q K ) 2 + b 1 ( Q K ) - - - ( 1 )
式中,H(K,Q)为泵扬程;K为泵调速比,K=n/nN;H0—泵在额定转速下流量为零时的扬程;R—泵的内阻;Q—泵的流量;Pin(K,Q)为泵的轴功率;r—介质的重度,N/m3,r=ρg;ηp(K,Q)为调速比K下的水泵效率;
1.2建立以调速比K与轴功率Pin为输入变量、以泵流量Q与扬程H为输出变量的泵系统模型
Q H = F ( K , P i n ) - - - ( 2 )
式中F表示双输入-双输出的函数关系;
1.3数学模型结构化简
利用式(1)将流量Q表达成调速比K、轴功率Pin的函数
Q=f1(K,Pin)(3)
利用式(1),将扬程H表达成调速比K、流量Q的函数
H=f2(K,Q)(4)
将式(2)的双输入-双输出的数学模型结构表达成两个双输入-单输出的数学模型描述,即
Q = f 1 ( K , P i n ) H = f 2 ( K , Q ) - - - ( 5 )
2)、基于双神经网络的泵系统模型
采用双神经网络建立泵系统模型,其中神经网络NN1与NN2分别是双输入-单输出的BP神经网络;调速比K、轴功率Pin作为神经网络NN1的输入,输入变量连接输入层i的神经元,输入层的神经元分别与隐含层j的各神经元连接,连接权值矩阵为Wij,隐含层的阀值向量为bj,隐含层的输出分别与输出层k的神经元连接,连接权值矩阵为Wkj,输出层的神经元的阀值为bk,输出层的输出为输出变量流量Q;调速比K、神经网络NN1的输出作为神经网络NN2的输入,输入变量连接输入层i的神经元,输入层的神经元分别与隐含层j的各神经元连接,连接权值矩阵为Wij,隐含层的阀值向量为bj,隐含层的输出分别与输出层k的神经元连接,连接权值矩阵为Wkj,输出层的神经元的阀值为bk,输出层的输出为输出变量扬程H。
CN201510932619.0A 2015-12-14 2015-12-14 基于双神经网络的离心式水泵系统的建模方法 Expired - Fee Related CN105550447B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510932619.0A CN105550447B (zh) 2015-12-14 2015-12-14 基于双神经网络的离心式水泵系统的建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510932619.0A CN105550447B (zh) 2015-12-14 2015-12-14 基于双神经网络的离心式水泵系统的建模方法

Publications (2)

Publication Number Publication Date
CN105550447A true CN105550447A (zh) 2016-05-04
CN105550447B CN105550447B (zh) 2019-06-14

Family

ID=55829636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510932619.0A Expired - Fee Related CN105550447B (zh) 2015-12-14 2015-12-14 基于双神经网络的离心式水泵系统的建模方法

Country Status (1)

Country Link
CN (1) CN105550447B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114046259A (zh) * 2021-11-12 2022-02-15 利欧集团浙江泵业有限公司 一种基于双神经网络模型的离心泵变频控制方法
CN114109859A (zh) * 2021-10-27 2022-03-01 中国计量大学 一种无流量传感的离心泵性能神经网络预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412483A (zh) * 2013-07-31 2013-11-27 中国石油大学(华东) 一种海上平台注采的无模型梯度优化控制方法及模拟装置
CN104199294A (zh) * 2014-08-14 2014-12-10 浙江工业大学 电机伺服系统双神经网络摩擦补偿和有限时间协同控制方法
CN104298875A (zh) * 2014-10-13 2015-01-21 浙江工业大学之江学院 一种基于功率和压差的离心泵流量预测方法
CN104929954A (zh) * 2015-06-05 2015-09-23 哈尔滨新世通电器有限公司 一种泵站离心式水泵智能控制方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412483A (zh) * 2013-07-31 2013-11-27 中国石油大学(华东) 一种海上平台注采的无模型梯度优化控制方法及模拟装置
CN104199294A (zh) * 2014-08-14 2014-12-10 浙江工业大学 电机伺服系统双神经网络摩擦补偿和有限时间协同控制方法
CN104298875A (zh) * 2014-10-13 2015-01-21 浙江工业大学之江学院 一种基于功率和压差的离心泵流量预测方法
CN104929954A (zh) * 2015-06-05 2015-09-23 哈尔滨新世通电器有限公司 一种泵站离心式水泵智能控制方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KISELICHNIK O I, ET AL,: "Nonsensor control of centrifugal water pump with asynchronous electric-drive motor based on extended Kalman filter", 《RUSSIAN ELECTRICAL ENGINEERING》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109859A (zh) * 2021-10-27 2022-03-01 中国计量大学 一种无流量传感的离心泵性能神经网络预测方法
CN114109859B (zh) * 2021-10-27 2023-10-17 中国计量大学 一种无流量传感的离心泵性能神经网络预测方法
CN114046259A (zh) * 2021-11-12 2022-02-15 利欧集团浙江泵业有限公司 一种基于双神经网络模型的离心泵变频控制方法
CN114046259B (zh) * 2021-11-12 2024-05-28 利欧集团浙江泵业有限公司 一种基于双神经网络模型的离心泵变频控制方法

Also Published As

Publication number Publication date
CN105550447B (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
Zhang et al. Fault detection and isolation of the wind turbine benchmark: An estimation-based approach
CN107070734B (zh) 一种网络控制系统故障检测方法
CN111381498B (zh) 多传感器基于多率变时滞状态空间模型的期望最大化辨识方法
CN105550447A (zh) 基于双神经网络的离心式水泵系统的建模方法
Cen et al. A gray-box neural network-based model identification and fault estimation scheme for nonlinear dynamic systems
CN106873568A (zh) 基于h无穷鲁棒未知输入观测器的传感器故障诊断方法
CN108448585A (zh) 一种基于数据驱动的电网潮流方程线性化求解方法
Yan et al. Fault diagnosis for a class of nonlinear systems via ESO
CN111752262A (zh) 一种执行器故障观测器与容错控制器集成设计方法
Goppelt et al. Modeling centrifugal pump systems from a system-theoretical point of view
CN111130408A (zh) 一种改进的Luenberger速度观测方法和系统
Ke et al. Compound fault diagnosis method of modular multilevel converter based on improved capsule network
CN103761567A (zh) 一种基于贝叶斯估计的小波神经网络权值初始化方法
Wu et al. Estimation of centrifugal pump operational state with dual neural network architecture based model
CN104200266B (zh) 一种基于可拓神经网络的烘房加热系统故障诊断方法
Yu et al. Robust just-in-time learning approach and its application on fault detection
Zhu et al. Integrated model of water pump and electric motor based on BP neural network
CN105700354A (zh) 可调节故障的智能采样和检测系统
CN113392574A (zh) 一种基于神经网络模型的汽油机次充模型进气量估算方法
Gara et al. Design of a fault detection hybrid observer for linear switched systems
CN113315667B (zh) 一种野值检测下时滞复杂网络系统的状态估计方法
Moez et al. Identification of nonlinear complex systems using uncoupled state fuzzy model for liquid level process
Li et al. Soft sensor for dynamic fluid level of beam pump unit based on multiple LS-SVM models
Ding et al. An Improved Artificial Neural Network Based Parameter Fault Diagnosis for Dual Boost Rectifier
CN114035548B (zh) 一种基于核表征的t-s模糊控制系统的故障检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190614

Termination date: 20201214