CN105549006A - FPGA & SOC based handheld ground penetrating radar (GPR) system - Google Patents
FPGA & SOC based handheld ground penetrating radar (GPR) system Download PDFInfo
- Publication number
- CN105549006A CN105549006A CN201510942826.4A CN201510942826A CN105549006A CN 105549006 A CN105549006 A CN 105549006A CN 201510942826 A CN201510942826 A CN 201510942826A CN 105549006 A CN105549006 A CN 105549006A
- Authority
- CN
- China
- Prior art keywords
- radar
- fpga
- memory
- arm processor
- soc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000149 penetrating effect Effects 0.000 title description 11
- 238000005070 sampling Methods 0.000 claims abstract description 46
- 230000005540 biological transmission Effects 0.000 claims abstract description 25
- 230000006870 function Effects 0.000 claims abstract description 13
- 238000012545 processing Methods 0.000 claims abstract description 12
- 238000004891 communication Methods 0.000 claims abstract description 11
- 238000013461 design Methods 0.000 claims abstract description 10
- 230000003993 interaction Effects 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 claims description 5
- 230000003321 amplification Effects 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 abstract description 4
- 238000001914 filtration Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/885—Radar or analogous systems specially adapted for specific applications for ground probing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/282—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于FPGA&SOC手持式探地雷达系统。该系统以一块内嵌FPGA和ARM处理器的集成芯片作为主控单元,配合外围电路和通信单元完成了雷达脉冲发射、数据接收及信号处理等功能。雷达脉冲发射单元和可编程增益放大电路完成了雷达脉冲发射与接收并完成滤波放大等功能;基于FPGA设计的等效采样时序控制单元保证了回波的精确性和分辨力;ARM处理器对雷达回波进行实时处理,通过触摸屏控制器进行人机交互,同时可以上传雷达数据到上位PC机或者云端保存。具有体积小,重量轻,便携性好,可以实现雷达数据的实时在线处理功能,并保证了测量的高精度、操作的自由度和人性化,在军用、工控、民用领域有广泛的应用前景。
The invention discloses a hand-held ground-penetrating radar system based on FPGA&SOC. The system uses an integrated chip embedded with FPGA and ARM processor as the main control unit, and cooperates with the peripheral circuit and communication unit to complete the functions of radar pulse transmission, data reception and signal processing. The radar pulse transmitting unit and the programmable gain amplifying circuit complete the functions of radar pulse transmitting and receiving as well as filtering and amplifying; the equivalent sampling timing control unit based on FPGA design ensures the accuracy and resolution of the echo; the ARM processor controls the radar The echo is processed in real time, and the human-computer interaction is performed through the touch screen controller. At the same time, the radar data can be uploaded to the upper PC or stored in the cloud. It has small size, light weight and good portability. It can realize the real-time online processing function of radar data, and ensure the high precision of measurement, freedom of operation and humanization. It has broad application prospects in military, industrial control and civilian fields.
Description
技术领域 technical field
本发明涉及一种探地雷达领域,具体是涉及一种基于FPGA&SOC手持式探地雷达系统。 The invention relates to the field of ground penetrating radar, in particular to a hand-held ground penetrating radar system based on FPGA&SOC.
背景技术 Background technique
探地雷达(GroundPenetratingRadar,GPR)是一种利用电磁波对地表的穿透能力进行地表下结构或埋藏物探测的无损探测仪器。它通过向地表下发射特定形式的电磁波,根据回波信号的时延、形状及频谱特性等参数,对测量目标的深度、介质结构及性质进行测量,在此基础上,应用数字图像的特征提取与重建技术,对地下目标进行成像处理,以期达到对地下目标定位和检测。 Ground Penetrating Radar (GPR) is a non-destructive detection instrument that uses the penetration ability of electromagnetic waves to the surface to detect subsurface structures or buried objects. It transmits a specific form of electromagnetic waves to the subsurface, and measures the depth, medium structure and properties of the measurement target according to the parameters such as time delay, shape and spectrum characteristics of the echo signal. On this basis, the feature extraction of digital images is used. With the reconstruction technology, the underground target is imaged and processed in order to achieve the positioning and detection of the underground target.
传统的探地雷达系统分为两种,一种是利用PC电脑、数据传输驱动单元和外围电路来设计雷达系统,其中数据传输驱动单元包括板卡、USB驱动器等几类,负责接收PC电脑指令执行驱动任务,PC电脑控制板卡驱动和外围电路完成雷达信号的发射接收和数据传输,同时完成雷达数据的分析处理和成像的工作;另一种采用上位机和下位机的架构,上位机采用PC电脑作为载体负责雷达数据的存储、成像和后期处理;下位机一般由MPU或FPGA构成,负责雷达信号的发射接收和数据传输。 The traditional ground penetrating radar system is divided into two types, one is to use PC computer, data transmission drive unit and peripheral circuit to design the radar system, in which the data transmission drive unit includes board card, USB drive and other types, responsible for receiving PC computer instructions Execute the driving task, the PC computer controls the board driver and the peripheral circuit to complete the transmission and reception of radar signals and data transmission, and at the same time complete the analysis, processing and imaging of radar data; the other uses the architecture of upper computer and lower computer, the upper computer uses The PC computer is used as a carrier to store, image and post-process radar data; the lower computer is generally composed of MPU or FPGA, and is responsible for the transmission and reception of radar signals and data transmission.
中国专利申请CN200810104724.5(公开号CN101566687A)公开了一种地质雷达数控采集系统,它包括主机,USB控制模块和数字控制单元。通过CPLD配合USB控制模块完成雷达主机驱动的开发,通过PC电脑控制驱动CPLD完成雷达信号的发射接收传输等工作。 Chinese patent application CN200810104724.5 (publication number CN101566687A) discloses a ground radar numerical control acquisition system, which includes a host computer, a USB control module and a digital control unit. The development of the radar host driver is completed through the CPLD and the USB control module, and the CPLD is driven through the PC computer to complete the transmission, reception and transmission of radar signals.
中国专利申请CN201219280937.X(公开号CN102799131A)公开了一种基于FPGA的探地雷达下位机控制系统。该系统以FPGA作为主控单元,配合发射机脉冲控制单元、数据采样控制单元和数据通信单元,实现对超窄脉冲探地雷达发射、数据接收和传输等各部分功能的控制。其中FPGA首先通过发射机脉冲控制单元触发发射机发射窄脉冲,然后通过数据采样控制单元发射采样控制信号,通过采样数据接收单元完成信号的接收操作。在探地雷达下位机系统完成一次完成的探测后,通过数据通信单元讲采样数据发送给上位机,进行后续处理。 Chinese patent application CN201219280937.X (publication number CN102799131A) discloses a ground penetrating radar lower computer control system based on FPGA. The system uses FPGA as the main control unit, cooperates with the transmitter pulse control unit, data sampling control unit and data communication unit to realize the control of various functions such as ultra-narrow pulse ground penetrating radar transmission, data reception and transmission. The FPGA first triggers the transmitter to emit a narrow pulse through the transmitter pulse control unit, then transmits the sampling control signal through the data sampling control unit, and completes the signal receiving operation through the sampling data receiving unit. After the ground penetrating radar lower computer system completes a complete detection, the sampling data is sent to the upper computer through the data communication unit for subsequent processing.
现有的雷达系统,不管是采用PC机作为主控单元或者采用MPU等其他片上系统作为传输控制单元,都离不开PC电脑的后端支持,导致整个雷达主机体积庞大,操作不方便,同时雷达数据采集和后端分析都需要很长的周期,需要较多的时间开销。 Existing radar systems, whether they use a PC as the main control unit or use other on-chip systems such as MPU as the transmission control unit, are inseparable from the back-end support of the PC computer, resulting in the bulky radar host and inconvenient operation. Both radar data acquisition and back-end analysis require a long cycle and require a lot of time overhead.
发明内容 Contents of the invention
为了解决现有探地雷达系统复杂、体积大、操作不方便的问题,本发明提供一种基于FPGA&SOC手持式探地雷达系统,该系统以一块内嵌FPGA和ARM处理器的集成芯片作为主要控制单元,配合外围电路和通信单元完成了探地雷达脉冲发射、数据接收、信号处理、数据传输等功能,整个雷达主机体积小,重量轻,具有较好的便携性,可以实现雷达数据的实时在线处理功能。 In order to solve the problems of complex, bulky and inconvenient operation of the existing ground penetrating radar system, the present invention provides a hand-held ground penetrating radar system based on FPGA&SOC, which uses an integrated chip embedded with FPGA and ARM processor as the main control The unit cooperates with peripheral circuits and communication units to complete the functions of ground penetrating radar pulse transmission, data reception, signal processing, and data transmission. The entire radar host is small in size, light in weight, and has good portability, which can realize real-time online radar data Processing function.
为了解决上述技术问题,本发明采用的技术方案如下: In order to solve the problems of the technologies described above, the technical scheme adopted in the present invention is as follows:
一种基于FPGA&SOC手持式探地雷达系统,包括作为主控单元的SOC集成芯片、雷达脉冲发射单元、可编程增益放大电路、雷达天线及触摸屏控制器, A hand-held ground-penetrating radar system based on FPGA&SOC, including a SOC integrated chip as a main control unit, a radar pulse transmitting unit, a programmable gain amplifier circuit, a radar antenna and a touch screen controller,
所述SOC集成芯片内嵌FPGA和ARM处理器,所述FPGA通过IO接口分别与雷达脉冲发射单元、可编程增益放大电路相连,所述雷达脉冲发射单元、可编程增益放大电路分别与雷达天线连接,通过协调各单元的工作状态,完成对雷达信号的发射和采集工作;所述ARM处理器和FPGA通过AXI总线相连,完成参数设计、回波增益表下传、雷达数据上传的工作,所述ARM处理器实时处理雷达数据,并通过与触摸屏控制器相连完成显示和交互的功能。 The SOC integrated chip is embedded with an FPGA and an ARM processor, and the FPGA is respectively connected to the radar pulse transmitting unit and the programmable gain amplifier circuit through the IO interface, and the radar pulse transmitter unit and the programmable gain amplifier circuit are respectively connected to the radar antenna , by coordinating the working status of each unit, complete the launch and collection of radar signals; the ARM processor and FPGA are connected through the AXI bus to complete the work of parameter design, echo gain table downloading, and radar data uploading. The ARM processor processes the radar data in real time, and completes the display and interaction functions by connecting with the touch screen controller.
其中,所述系统,还包括通信单元,所述通信单元包括4G模块和以太网模块,使雷达数据通过以太网模块可以上传到上位PC机或者通过4G模块同步到云端备份,同时云端可以在线控制雷达系统设置参数。 Wherein, the system also includes a communication unit, the communication unit includes a 4G module and an Ethernet module, so that the radar data can be uploaded to the upper PC through the Ethernet module or synchronized to the cloud for backup through the 4G module, and the cloud can be controlled online Radar system setup parameters.
其中,所述FPGA包括等效采样时序控制单元,所述雷达脉冲发射单元包括温补晶振、延迟芯片和射频调制电路,所述等效采样时序控制单元通过延迟芯片与射频调制电路连接,所述射频调制电路与雷达天线连接;所述等效采样时序控制单元通过温补晶振作为控制时钟,通过FPGA内部粗延迟和延迟芯片细延迟的方法精确控制雷达等效采样时序,发射雷达脉冲。 Wherein, the FPGA includes an equivalent sampling timing control unit, the radar pulse transmitting unit includes a temperature-compensated crystal oscillator, a delay chip, and a radio frequency modulation circuit, and the equivalent sampling timing control unit is connected to the radio frequency modulation circuit through a delay chip, and the The radio frequency modulation circuit is connected with the radar antenna; the equivalent sampling timing control unit uses the temperature-compensated crystal oscillator as the control clock, and accurately controls the radar equivalent sampling timing through the method of FPGA internal coarse delay and delay chip fine delay, and transmits radar pulses.
其中,所述可编程增益放大电路采用ADI公司的AD8336完成,所述ARM处理器通过AXI总线将回波增益表下传到FPGA的存储器当中,所述FPGA经过协调时序控制DA根据回波增益表输出电压来完成雷达回波的时变增益放大。 Wherein, the programmable gain amplifying circuit is completed by AD8336 of ADI Company, and the ARM processor transmits the echo gain table to the memory of the FPGA through the AXI bus, and the FPGA controls the DA according to the echo gain table through the coordinated timing sequence. The output voltage is used to complete the time-varying gain amplification of the radar echo.
其中,雷达数据的上传分别经过了FPGA存储器、ARM处理器内存、上位PC机内存,分别可以在ARM处理器的内存卡和上位PC机内存磁盘进行永久保存;在FPGA传输过程中通过乒乓操作完成了“从AD采样模块到FPGA存储器的间隔存储”到“FPGA存储器到ARM内存的突发上传”的操作。 Among them, the uploading of the radar data has gone through the FPGA memory, the ARM processor memory, and the upper PC memory respectively, and can be stored permanently in the memory card of the ARM processor and the memory disk of the upper PC respectively; it is completed through the ping-pong operation during the FPGA transmission process The operation of "interval storage from AD sampling module to FPGA memory" to "burst upload from FPGA memory to ARM memory" is realized.
其中,在所述ARM处理器中采用嵌入式linux操作系统完成雷达数据处理、特征提取、彩图显示及参数控制,并基于Qt框架完成雷达界面设计交互功能。 Among them, the embedded linux operating system is used in the ARM processor to complete radar data processing, feature extraction, color image display and parameter control, and the radar interface design interaction function is completed based on the Qt framework.
其中,该系统的最小时间步进精度10ps,发射脉冲重复频率100KHz~1MHz可选,采样深度128~4096可选,每秒扫描速率16~2048可选,模数转换16位,前置增益0db~100db可选,手动或自动调整雷达回波增益曲线,显示方式:波形、彩色、灰度可选,采集触发方式:打标、测量轮、持续时间可选。 Among them, the minimum time step accuracy of the system is 10ps, the transmit pulse repetition frequency is optional from 100KHz to 1MHz, the sampling depth is optional from 128 to 4096, the scanning rate per second is optional from 16 to 2048, the analog-to-digital conversion is 16 bits, and the pre-gain is 0db ~100db is optional, manual or automatic adjustment of the radar echo gain curve, display mode: waveform, color, gray scale optional, acquisition trigger mode: marking, measurement wheel, duration optional.
其中,所述SOC集成芯片还包括采样存储单元,所述采样存储单元通过IO接口与所述FPGA连接。 Wherein, the SOC integrated chip further includes a sampling storage unit, and the sampling storage unit is connected to the FPGA through an IO interface.
有益效果: Beneficial effect:
本发明所述的一种基于FPGA&SOC手持式探地雷达系统,具有的优点如下:整个系统的所有数字部分都是通过一个集成芯片完成,使整个雷达主机体积小,重量轻,功耗低,具有较好的便携性;强大的ARM处理器配合FPGA的并行编程,实现对雷达回波数据的实时在线处理;通过“高稳温补晶振+粗延迟+细延迟”设计的时序系统保证了系统测量的高精确度,基于Qt界面的嵌入式linux程序设计保证了软件的自由度和交互人性化;还可以进行数据在线上传、云端同步的操作,在军用、工控、民用领域有广泛的应用前景。 A kind of hand-held ground-penetrating radar system based on FPGA&SOC of the present invention has the following advantages: all digital parts of the whole system are completed by an integrated chip, so that the whole radar host is small in size, light in weight, low in power consumption, and has Good portability; powerful ARM processor cooperates with FPGA parallel programming to realize real-time online processing of radar echo data; the timing system designed by "high stable temperature compensated crystal oscillator + coarse delay + fine delay" ensures system measurement High precision, embedded linux program design based on Qt interface ensures software freedom and interactive humanization; it can also perform online data upload and cloud synchronization operations, and has a wide range of application prospects in military, industrial control, and civilian fields.
附图说明 Description of drawings
图1是本发明基于FPGA&SOC手持式探地雷达系统的整体结构框图。 Fig. 1 is the overall structural block diagram of the present invention based on FPGA&SOC hand-held ground-penetrating radar system.
图2是本发明等效采样时序控制及发射采样时序同步结构图。 FIG. 2 is a structural diagram of equivalent sampling timing control and transmission sampling timing synchronization in the present invention.
图3是本发明雷达回波时变增益实现空间结构图。 Fig. 3 is a spatial structure diagram for realizing the time-varying gain of the radar echo in the present invention.
图4是本发明中雷达采集数据空间传输图。 Fig. 4 is a space transmission diagram of radar acquisition data in the present invention.
图5是本发明基于FPGA&SOC手持式探地雷达系统中ARM处理器的软件流程图。 Fig. 5 is the software flowchart of the ARM processor in the FPGA-SOC handheld ground-penetrating radar system based on the present invention.
图6是本发明软件实际工作测试界面。 Fig. 6 is the actual working test interface of the software of the present invention.
图中: In the picture:
1-SOC集成芯片,2-ARM处理器,3-FPGA,4-雷达脉冲发射单元,5-可编程增益放大电路,6-雷达天线,7-采样存储单元,8-触摸屏控制器。 1-SOC integrated chip, 2-ARM processor, 3-FPGA, 4-radar pulse transmitting unit, 5-programmable gain amplifier circuit, 6-radar antenna, 7-sampling storage unit, 8-touch screen controller.
具体实施方式 detailed description
下面通过实施例并结合附图,对本发明的技术方案作进一步具体的说明。 The technical solutions of the present invention will be further specifically described below through the embodiments and in conjunction with the accompanying drawings.
图1是本发明基于FPGA&SOC手持式探地雷达系统的整体结构框图。如图1所示,本发明所述的一种基于FPGA&SOC手持式探地雷达系统,其特征在于,包括作为主控单元的SOC集成芯片1、雷达脉冲发射单元4、可编程增益放大电路5、雷达天线6及触摸屏控制器8, Fig. 1 is the overall structural block diagram of the present invention based on FPGA&SOC hand-held ground-penetrating radar system. As shown in Figure 1, a kind of hand-held ground-penetrating radar system based on FPGA&SOC of the present invention is characterized in that, comprises the SOC integrated chip 1 as main control unit, radar pulse emission unit 4, programmable gain amplifier circuit 5, Radar antenna 6 and touch screen controller 8,
所述SOC集成芯片1内嵌FPGA3和ARM处理器2,所述FPGA3通过IO接口分别与雷达脉冲发射单元4、可编程增益放大电路5相连,所述雷达脉冲发射单元4、可编程增益放大电路5分别与雷达天线6连接,通过协调各单元的工作状态,完成对雷达信号的发射和采集工作;所述ARM处理器2和FPGA3通过AXI总线相连,完成参数设计、回波增益表下传、雷达数据上传的工作,所述ARM处理器2实时处理雷达数据,并通过与触摸屏控制器8相连完成显示和交互的功能。 The SOC integrated chip 1 is embedded with FPGA3 and ARM processor 2, and the FPGA3 is connected to the radar pulse transmitting unit 4 and the programmable gain amplifier circuit 5 through the IO interface respectively, and the radar pulse transmitting unit 4 and the programmable gain amplifier circuit 5 are respectively connected with the radar antenna 6, and by coordinating the working state of each unit, complete the emission and collection of radar signals; the ARM processor 2 and FPGA3 are connected through the AXI bus to complete parameter design, echo gain table downloading, For the uploading of radar data, the ARM processor 2 processes the radar data in real time, and is connected with the touch screen controller 8 to complete the functions of display and interaction.
所述系统,还包括通信单元,所述通信单元包括4G模块和以太网模块,使雷达数据通过以太网模块可以上传到上位PC机或者通过4G模块同步到云端备份,同时云端可以在线控制雷达系统设置参数。 The system also includes a communication unit, the communication unit includes a 4G module and an Ethernet module, so that the radar data can be uploaded to the upper PC through the Ethernet module or synchronized to the cloud for backup through the 4G module, and the cloud can control the radar system online at the same time Setting parameters.
所述SOC集成芯片1还包括采样存储单元7,所述采样存储单元7通过IO接口与所述FPGA3连接。 The SOC integrated chip 1 also includes a sampling storage unit 7, and the sampling storage unit 7 is connected to the FPGA 3 through an IO interface.
可见,本发明所述的系统通过一块内嵌FPGA3和ARM处理器2的SOC集成芯片1配合外围电路和通信单元完成了系统的设计。其中FPGA3通过IO分别与雷达脉冲发射单元4、可编程增益放大电路5、采样存储单元7相连,通过协调各单元的工作状态,完成对雷达信号的发射和采集工作。ARM处理器2和FPGA3通过AXI总线相连,完成参数设计、回波增益表下传、雷达数据上传的工作。ARM处理器2实时处理雷达数据,并通过触摸屏控制器8完成显示和交互的功能。同时雷达数据可以上传到上位PC机或者同步到云端备份。整个系统的所有数字部分都是通过一个集成芯片完成,使整个雷达主机体积小,重量轻,功耗低,具有较好的便携性。 It can be seen that the system of the present invention completes the design of the system through an SOC integrated chip 1 embedded with FPGA 3 and ARM processor 2 in cooperation with peripheral circuits and communication units. Among them, FPGA3 is respectively connected with radar pulse transmitting unit 4, programmable gain amplifier circuit 5, and sampling storage unit 7 through IO, and completes the transmission and collection of radar signals by coordinating the working status of each unit. The ARM processor 2 and FPGA3 are connected through the AXI bus to complete the work of parameter design, echo gain table download, and radar data upload. The ARM processor 2 processes the radar data in real time, and completes the display and interaction functions through the touch screen controller 8 . At the same time, the radar data can be uploaded to the upper PC or synchronized to the cloud for backup. All the digital parts of the whole system are completed by an integrated chip, which makes the whole radar host small in size, light in weight, low in power consumption, and has good portability.
如图1所示,所述FPGA3包括等效采样时序控制单元,所述雷达脉冲发射单元4包括温补晶振、延迟芯片和射频调制电路,所述等效采样时序控制单元通过延迟芯片与射频调制电路连接,所述射频调制电路与雷达天线6连接;所述等效采样时序控制单元通过温补晶振作为控制时钟,通过FPGA3内部粗延迟和延迟芯片细延迟的方法精确控制雷达等效采样时序,发射雷达脉冲。 As shown in Figure 1, the FPGA3 includes an equivalent sampling timing control unit, and the radar pulse transmitting unit 4 includes a temperature-compensated crystal oscillator, a delay chip and a radio frequency modulation circuit, and the equivalent sampling timing control unit is modulated by a delay chip and a radio frequency modulation circuit. The circuit is connected, and the radio frequency modulation circuit is connected with the radar antenna 6; the equivalent sampling timing control unit uses the temperature-compensated crystal oscillator as the control clock, and accurately controls the radar equivalent sampling timing through the method of FPGA3 internal coarse delay and delay chip fine delay, Sends radar pulses.
图2是本发明等效采样时序控制及发射采样时序同步结构图。如图2所示,精准时钟CLK通过高稳温补晶振给出作为所有时序控制单元和同步模块的工作时钟。间隔触发模块根据控制指令设定的间隔周期T等间隔产生触发脉冲,等效延迟模块在间隔脉冲的基础上进行整数个CLK时钟周期的粗延迟操作,得到了带粗延迟的间隔脉冲,然后通过CLK的反向时钟进行锁存,保证带粗延迟的间隔脉冲上升沿的陡峭程度和稳定性。带粗延迟的间隔脉冲经过专用的时钟端口输出来作为延迟芯片的触发信号,根据延迟芯片同步设定的延迟时间得到带有“粗延迟+细延迟”的雷达顺序采样同步信号。另外,间隔触发模块输出的间隔脉冲,通过一路延迟模块触发回波增益控制模块完成同步控制增益的操作,通过另一路延迟模块触发采集模块完成采集的工作。其中,控制不同模块的延迟时间,可以控制增益曲线相对雷达回波,采样点序列相对雷达回波的相对位置关系。 FIG. 2 is a structural diagram of equivalent sampling timing control and transmission sampling timing synchronization in the present invention. As shown in Figure 2, the precise clock CLK is given as the working clock of all timing control units and synchronization modules through a high-temperature-compensated crystal oscillator. The interval trigger module generates trigger pulses at equal intervals according to the interval period T set by the control command. The equivalent delay module performs a coarse delay operation of an integer number of CLK clock cycles on the basis of the interval pulse, and obtains an interval pulse with a coarse delay, and then passes The inverse clock of CLK is latched to ensure the steepness and stability of the rising edge of the interval pulse with coarse delay. The interval pulse with coarse delay is output through a dedicated clock port as the trigger signal of the delay chip, and the radar sequential sampling synchronization signal with "coarse delay + fine delay" is obtained according to the delay time set by the delay chip synchronization. In addition, the interval pulse output by the interval trigger module triggers the echo gain control module through one delay module to complete the operation of synchronous control gain, and triggers the acquisition module through another delay module to complete the acquisition work. Among them, controlling the delay time of different modules can control the relative positional relationship of the gain curve relative to the radar echo, and the sampling point sequence relative to the radar echo.
所述可编程增益放大电路5采用ADI公司的AD8336完成,所述ARM处理器2通过AXI总线将回波增益表下传到FPGA3的存储器当中,所述FPGA3经过协调时序控制DA根据回波增益表输出电压来完成雷达回波的时变增益放大。图3是本发明雷达回波时变增益实现空间结构图。如图3所示,所述ARM处理器2将用户输入的回波时变增益图以波表的形式简称回波增益表保存到ARM处理器2的内存当中,通过AXI总线将回波增益表下传到FPGA3的存储器当中,FPGA3的DA控制单元在时钟同步单元的触发控制下读取回波增益表数据输出增益控制电压,控制两片ADI公司的AD8336完成回波时变两级放大。 The programmable gain amplifying circuit 5 adopts the AD8336 of ADI Company to complete, and the ARM processor 2 transmits the echo gain table to the memory of the FPGA3 through the AXI bus, and the FPGA3 controls the DA according to the echo gain table through the coordinated timing sequence. The output voltage is used to complete the time-varying gain amplification of the radar echo. Fig. 3 is a spatial structure diagram for realizing the time-varying gain of the radar echo in the present invention. As shown in Figure 3, the ARM processor 2 saves the echo time-varying gain map input by the user in the form of a wave table for short in the memory of the ARM processor 2, and the echo gain table is passed through the AXI bus. Downloaded to the memory of FPGA3, the DA control unit of FPGA3 reads the echo gain table data and outputs the gain control voltage under the trigger control of the clock synchronization unit, and controls two pieces of AD8336 of ADI Company to complete the echo time-varying two-stage amplification.
雷达数据的上传分别经过了FPGA3存储器、ARM处理器2内存、上位PC机内存,分别可以在ARM处理器2的内存卡和上位PC机内存磁盘进行永久保存;在FPGA3传输过程中通过乒乓操作完成了“从AD采样模块到FPGA存储器的间隔存储”到“FPGA存储器到ARM内存的突发上传”的操作。 The uploading of the radar data has gone through the FPGA3 memory, the ARM processor 2 memory, and the upper PC memory respectively, and can be permanently stored in the memory card of the ARM processor 2 and the memory disk of the upper PC respectively; it is completed through the ping-pong operation during the FPGA3 transmission process The operation of "interval storage from AD sampling module to FPGA memory" to "burst upload from FPGA memory to ARM memory" is realized.
图4是本发明中雷达采集数据空间传输图。如图4所示,雷达采样的数据上传流程会经过FPGA3内部存储器SRAM、ARM处理器2的内存、上位PC机内存磁盘,分别可以在ARM处理器2的内存SD卡和上位PC机内存磁盘进行永久保存。其中,FPGA3内部设置了一片两倍采样深度的存储空间SRAM,雷达回波数据在设定的时序周期的基础上等间隔的以地址增操作的方式进行存储。雷达数据最开始从低地址段的零地址进行存储,当一帧回波数据采集完成时低地址段正好存满,AD采样模块产生中断信号通知ARM处理器2来用DMA来流读取低地址段的数据;同时雷达数据开始从高地址段的零地址进行存储,当一只回波数据采集完成时高地址段正好存满,AD采样模块又产生中断信号通知ARM处理器2用DMA来流读取高地址段的数据。通过这样的乒乓操作完成雷达数据不间断的上传操作。当需要将雷达数据存储到上位PC机电脑硬盘里面时,ARM处理器2在FIFO队列缓存5帧雷达数据,然后通过TCP协议完成数据到上位PC机的流传输。同时上位PC机可以通过UDP发送指令设置相应参数完成雷达收发过程中的相关操作。需要说明的是,AD采样模块是FPGA3内部的单元模块,由FPGA3控制。 Fig. 4 is a space transmission diagram of radar acquisition data in the present invention. As shown in Figure 4, the upload process of radar sampling data will go through FPGA3 internal memory SRAM, ARM processor 2 memory, and upper PC memory disk, which can be performed on the memory SD card of ARM processor 2 and the upper PC memory disk respectively Save forever. Among them, FPGA3 is equipped with a storage space SRAM with twice the sampling depth, and the radar echo data is stored at equal intervals by address increment operation on the basis of the set timing cycle. The radar data is initially stored from the zero address of the low address segment. When a frame of echo data acquisition is completed, the low address segment is just full, and the AD sampling module generates an interrupt signal to notify the ARM processor 2 to use DMA to stream read the low address. At the same time, the radar data starts to be stored from the zero address of the high address segment. When an echo data collection is completed, the high address segment is just full, and the AD sampling module generates an interrupt signal to inform the ARM processor 2 to use DMA to stream Read the data of the high address segment. The uninterrupted upload operation of radar data is completed through such ping-pong operation. When the radar data needs to be stored in the hard disk of the host PC, the ARM processor 2 buffers 5 frames of radar data in the FIFO queue, and then completes the stream transmission of the data to the host PC through the TCP protocol. At the same time, the upper PC can send commands through UDP to set the corresponding parameters to complete the relevant operations in the process of radar transmission and reception. It should be noted that the AD sampling module is a unit module inside the FPGA3 and is controlled by the FPGA3.
在所述ARM处理器2采用嵌入式linux操作系统完成雷达数据处理、特征提取、彩图显示及参数控制,并基于Qt框架完成雷达界面设计交互功能。图5是本发明基于FPGA&SOC手持式探地雷达系统中ARM处理器2的软件流程图。如图5所示,软件部分采用定制的嵌入式linux操作系统作为程序工作运行环境,通过开发相应FPGA3雷达数据交互驱动完成雷达数据的交互,通过Qt框架编写界面程序配合触摸屏控制器8完成人机交互的功能。当系统上电后,uboot分别先后完成FPGA3的配置和linux内核的启动的操作流程,linux内核启动过程中加载相应的FPGA3雷达模块驱动程序,建立Qt程序运行环境。内核启动完成,基于Qt框架的GPR主程序由自启动项引导运行,分别开启了文件管理、参数设置、数据采集、数据处理、数据推送等多个线程。修改参数设置中的界面参数可以分别控制上述几个线程分别处于运行或者挂起的状态,改变程序的运行状态和界面的显示结构;修改回波增益表可以设置雷达回波时变增益;修改采样时序参数可以控制FPGA3部分的顺序采样发射单元,发射满足不同时序要求的雷达宽带脉冲信号,同时控制同步模块改变增益曲线相对雷达回波、采样点序列相对雷达回波的相对位置关系。 The ARM processor 2 uses an embedded linux operating system to complete radar data processing, feature extraction, color image display and parameter control, and completes radar interface design interaction functions based on the Qt framework. Fig. 5 is a software flow chart of the ARM processor 2 in the FPGA&SOC handheld GPR system based on the present invention. As shown in Figure 5, the software part uses a customized embedded linux operating system as the operating environment of the program. The interaction of radar data is completed by developing the corresponding FPGA3 radar data interaction driver, and the interface program is written through the Qt framework to cooperate with the touch screen controller 8 to complete the man-machine interactive features. When the system is powered on, uboot completes the operation process of FPGA3 configuration and linux kernel startup successively. During the linux kernel startup process, the corresponding FPGA3 radar module driver is loaded to establish the Qt program operating environment. After the kernel startup is completed, the GPR main program based on the Qt framework is guided by the self-starting item, and multiple threads such as file management, parameter setting, data collection, data processing, and data push are respectively opened. Modifying the interface parameters in the parameter settings can control the above-mentioned threads to be in the running or suspended state respectively, and change the running state of the program and the display structure of the interface; modify the echo gain table to set the radar echo time-varying gain; modify the sampling The timing parameters can control the sequential sampling transmitter unit of the FPGA3 to transmit radar broadband pulse signals meeting different timing requirements, and at the same time control the synchronization module to change the relative positional relationship between the gain curve and the radar echo, and the sampling point sequence relative to the radar echo.
图6是本发明软件实际工作测试界面。如图6所示,本雷达系统通过ARM+FPGA+硬件协同设计,具体实现参数如下:实现最小时间步进精度10ps,发射脉冲重复频率100KHz~1MHz可选,采样深度128~4096可选,每秒扫描速率16~2048可选,模数转换16位,前置增益0db~100db可选,手动或自动调整雷达回波增益曲线,显示方式:波形、彩色、灰度可选,采集触发方式:打标、测量轮、持续时间可选。 Fig. 6 is the actual working test interface of the software of the present invention. As shown in Figure 6, the radar system is designed through ARM+FPGA+hardware collaboration. The specific parameters are as follows: the minimum time step accuracy is 10 ps, the transmit pulse repetition frequency is optional from 100KHz to 1MHz, and the sampling depth is optional from 128 to 4096. Scan rate 16~2048 optional, analog-to-digital conversion 16 bits, pre-gain 0db~100db optional, manual or automatic adjustment of radar echo gain curve, display mode: waveform, color, gray scale optional, acquisition trigger mode: open Marker, measuring wheel, and duration are selectable.
该雷达系统集成4G模块,配合云端服务器打通网络链路通道,实现雷达数据的准实时上传,同时也可以通过云端完成远程控制,进行雷达工作参数远程修改。 The radar system integrates a 4G module and cooperates with the cloud server to open up a network link channel to realize quasi-real-time upload of radar data. At the same time, it can also complete remote control through the cloud to remotely modify radar working parameters.
以上所述实施例及应用场景仅为本发明的较佳实施例及应用场景而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进及其在其他领域及场景的应用,均应包含在本发明的保护范围之内。 The above-described embodiments and application scenarios are only preferred embodiments and application scenarios of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention and their Applications in other fields and scenarios should be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510942826.4A CN105549006A (en) | 2015-12-16 | 2015-12-16 | FPGA & SOC based handheld ground penetrating radar (GPR) system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510942826.4A CN105549006A (en) | 2015-12-16 | 2015-12-16 | FPGA & SOC based handheld ground penetrating radar (GPR) system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105549006A true CN105549006A (en) | 2016-05-04 |
Family
ID=55828315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510942826.4A Pending CN105549006A (en) | 2015-12-16 | 2015-12-16 | FPGA & SOC based handheld ground penetrating radar (GPR) system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105549006A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106130909A (en) * | 2016-08-22 | 2016-11-16 | 西安电子科技大学 | Radar signal switching route system based on FPGA and method for designing thereof |
CN108303680A (en) * | 2018-01-04 | 2018-07-20 | 厦门兴康信科技股份有限公司 | The signal and data processing terminal of pathfinder |
CN108828556A (en) * | 2018-07-12 | 2018-11-16 | 北京大汉正源科技有限公司 | laser radar control system |
CN109188444A (en) * | 2018-10-10 | 2019-01-11 | 中国船舶重工集团公司七五0试验场 | Seabed underwater sound response formula localization method and its system based on synchronization signal system |
CN109507644A (en) * | 2018-12-25 | 2019-03-22 | 北京华航无线电测量研究所 | Larger Dynamic Ground Penetrating Radar sampling front-end delay equivalent sampling method and circuit |
CN109828238A (en) * | 2019-02-18 | 2019-05-31 | 航天南湖电子信息技术股份有限公司 | A kind of timing/AGC device |
CN109884638A (en) * | 2019-03-13 | 2019-06-14 | 苏州理工雷科传感技术有限公司 | A signal processor, radar system and signal processing method |
CN110174672A (en) * | 2019-05-30 | 2019-08-27 | 西安电子科技大学 | Real time signal processing device is imaged in SAR based on RFSoC chip |
CN112305961A (en) * | 2020-10-19 | 2021-02-02 | 武汉大学 | New Signal Detection and Acquisition Equipment |
CN113386134A (en) * | 2021-06-11 | 2021-09-14 | 中国地质大学(武汉) | Coordinate type welding robot control system and method and robot |
CN114755630A (en) * | 2022-03-23 | 2022-07-15 | 中山大学 | Frequency modulation continuous wave radar based on SOC |
CN116506057A (en) * | 2023-05-08 | 2023-07-28 | 苏州洞悉科技有限公司 | Time sequence controller and imaging control device |
CN118033675A (en) * | 2024-04-11 | 2024-05-14 | 珠海光恒科技有限公司 | Handheld laser wind-finding radar system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102799131A (en) * | 2012-08-08 | 2012-11-28 | 中国科学院东北地理与农业生态研究所 | Ground penetrating radar lower computer control system based on field programmable gate array (FPGA) |
CN103529432A (en) * | 2012-07-05 | 2014-01-22 | 上海无线电设备研究所 | Pulse compression system radar target distance ultra-high-precision simulation method |
CN103728893A (en) * | 2013-12-31 | 2014-04-16 | 中国电子科技集团公司第二十二研究所 | High-precision time-sequence control circuit of ground penetrating radar |
CN103731136A (en) * | 2014-01-02 | 2014-04-16 | 西北核技术研究所 | Sequential equivalent sampling circuit and method based on delay signals |
CN105021802A (en) * | 2015-08-13 | 2015-11-04 | 中国科学院电子学研究所 | Handheld type concrete structure detector and detection method thereof |
-
2015
- 2015-12-16 CN CN201510942826.4A patent/CN105549006A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103529432A (en) * | 2012-07-05 | 2014-01-22 | 上海无线电设备研究所 | Pulse compression system radar target distance ultra-high-precision simulation method |
CN102799131A (en) * | 2012-08-08 | 2012-11-28 | 中国科学院东北地理与农业生态研究所 | Ground penetrating radar lower computer control system based on field programmable gate array (FPGA) |
CN103728893A (en) * | 2013-12-31 | 2014-04-16 | 中国电子科技集团公司第二十二研究所 | High-precision time-sequence control circuit of ground penetrating radar |
CN103731136A (en) * | 2014-01-02 | 2014-04-16 | 西北核技术研究所 | Sequential equivalent sampling circuit and method based on delay signals |
CN105021802A (en) * | 2015-08-13 | 2015-11-04 | 中国科学院电子学研究所 | Handheld type concrete structure detector and detection method thereof |
Non-Patent Citations (1)
Title |
---|
韩毅刚 等: "《物联网概论》", 30 October 2012 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106130909B (en) * | 2016-08-22 | 2019-07-09 | 西安电子科技大学 | Radar signal switching route system and its design method based on FPGA |
CN106130909A (en) * | 2016-08-22 | 2016-11-16 | 西安电子科技大学 | Radar signal switching route system based on FPGA and method for designing thereof |
CN108303680A (en) * | 2018-01-04 | 2018-07-20 | 厦门兴康信科技股份有限公司 | The signal and data processing terminal of pathfinder |
CN108828556A (en) * | 2018-07-12 | 2018-11-16 | 北京大汉正源科技有限公司 | laser radar control system |
CN109188444A (en) * | 2018-10-10 | 2019-01-11 | 中国船舶重工集团公司七五0试验场 | Seabed underwater sound response formula localization method and its system based on synchronization signal system |
CN109507644B (en) * | 2018-12-25 | 2022-02-01 | 北京华航无线电测量研究所 | Large dynamic ground penetrating radar sampling front end delay equivalent sampling method and circuit |
CN109507644A (en) * | 2018-12-25 | 2019-03-22 | 北京华航无线电测量研究所 | Larger Dynamic Ground Penetrating Radar sampling front-end delay equivalent sampling method and circuit |
CN109828238A (en) * | 2019-02-18 | 2019-05-31 | 航天南湖电子信息技术股份有限公司 | A kind of timing/AGC device |
CN109884638A (en) * | 2019-03-13 | 2019-06-14 | 苏州理工雷科传感技术有限公司 | A signal processor, radar system and signal processing method |
CN110174672A (en) * | 2019-05-30 | 2019-08-27 | 西安电子科技大学 | Real time signal processing device is imaged in SAR based on RFSoC chip |
CN112305961A (en) * | 2020-10-19 | 2021-02-02 | 武汉大学 | New Signal Detection and Acquisition Equipment |
CN113386134A (en) * | 2021-06-11 | 2021-09-14 | 中国地质大学(武汉) | Coordinate type welding robot control system and method and robot |
CN114755630A (en) * | 2022-03-23 | 2022-07-15 | 中山大学 | Frequency modulation continuous wave radar based on SOC |
CN116506057A (en) * | 2023-05-08 | 2023-07-28 | 苏州洞悉科技有限公司 | Time sequence controller and imaging control device |
CN116506057B (en) * | 2023-05-08 | 2024-09-27 | 苏州洞悉科技有限公司 | Time sequence controller and imaging control device |
CN118033675A (en) * | 2024-04-11 | 2024-05-14 | 珠海光恒科技有限公司 | Handheld laser wind-finding radar system |
CN118033675B (en) * | 2024-04-11 | 2024-06-21 | 珠海光恒科技有限公司 | Handheld laser wind-finding radar system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105549006A (en) | FPGA & SOC based handheld ground penetrating radar (GPR) system | |
CN102175169B (en) | A kind of three-dimensional deformation wireless optical measurement system for engineering structure and measuring method thereof | |
CN102590811B (en) | FM continuous wave small SAR imaging system based on FPGA | |
CN104749559B (en) | FPGA chip-based ice-penetrating radar control method | |
CN208270756U (en) | Airborne fire control radar echo signal simulation system | |
CN203396954U (en) | Satellite navigation signal forwarding/simulating device | |
CN101592729A (en) | The radar PPI images local enlargement display apparatus and method of based target details | |
CN101923840A (en) | Large-capacity ultra-high-speed image digital signal generator based on programmable logic device | |
CN103267968A (en) | Control device and control method for meteorological radar signal processing | |
CN102314185B (en) | Control method for advanced scannable two-dimensional rail observation (ASTRO) system | |
CN103744063B (en) | A kind of portable aiming formula radar interference simulator | |
CN114755630B (en) | Frequency modulation continuous wave radar based on SOC | |
Tong et al. | Processing design of a networked passive coherent location system | |
CN109283260A (en) | Acquisition, processing and control circuit of an ultrasonic phased array borehole wall imaging system | |
CN203224627U (en) | A meteorological radar signal processing controlling device | |
CN210761303U (en) | Flying robot | |
CN110471340B (en) | ARM-based interhole elastic wave acquisition device and control method thereof | |
CN205581895U (en) | Acquisition device of partial or whole body silhouette data | |
CN206573713U (en) | Wireless precision distance measurement system based on ultra-broadband signal | |
CN111562798A (en) | Device capable of generating fixed-angle pulse at specified position and working method thereof | |
CN107133547A (en) | The acquisition device and method and its application method of a part or whole part human body contour outline data | |
CN205581898U (en) | Acquisition device of partial or whole body silhouette data | |
Prasad et al. | Implementing LPC1768 Microcontroller with UI Control for Ground Penentration Radar | |
CN117452357B (en) | System and method for realizing multichannel data acquisition and injection based on FPGA | |
CN205581896U (en) | Acquisition device of partial or whole body silhouette data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160504 |
|
RJ01 | Rejection of invention patent application after publication |