CN105548441A - 一种gc-ms/ms测定果蔬中苯唑嘧菌胺残留的方法 - Google Patents

一种gc-ms/ms测定果蔬中苯唑嘧菌胺残留的方法 Download PDF

Info

Publication number
CN105548441A
CN105548441A CN201610067253.XA CN201610067253A CN105548441A CN 105548441 A CN105548441 A CN 105548441A CN 201610067253 A CN201610067253 A CN 201610067253A CN 105548441 A CN105548441 A CN 105548441A
Authority
CN
China
Prior art keywords
sample
benzene azoles
azoles mepanipyrim
vegetables
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610067253.XA
Other languages
English (en)
Inventor
郭庆龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610067253.XA priority Critical patent/CN105548441A/zh
Publication of CN105548441A publication Critical patent/CN105548441A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种GC-MS/MS测定果蔬中苯唑嘧菌胺残留的方法,用乙腈或含1%乙酸的乙腈溶液均质提取样品中残留的苯唑嘧菌胺,提取液经乙二胺-N-丙基硅烷(PSA)和十八烷基硅烷键合相(C18)基质分散净化后,气相色谱串联质谱(GC-MS/MS)检测,采用不含待测农药的空白基质溶液建立校正的标准工作曲线,外标法定量。本方法平均回收率为84.3%~90.6%,平均相对标准偏差(RSD)为5.0%~8.0%,检出限低于3.40?μg/kg,具有操作简便、快速、灵敏度高、重复性好、定性定量准确的优点。能满足美国、欧盟、日本等国家对相应产品安全检测的技术要求,为保障我国人民食品安全及对外出口贸易健康发展提供有力的技术支撑。

Description

一种GC-MS/MS测定果蔬中苯唑嘧菌胺残留的方法
技术领域
本发明涉及一种GC-MS/MS测定果蔬中苯唑嘧菌胺残留的方法,更具体地说是采用气相色谱串联质谱(GC-MS/MS)定性定量测定蔬菜和水果中残留的苯唑嘧菌胺含量的方法,属于农药残留量的测定技术领域。
背景技术
苯唑嘧菌胺(Ametoctradin)是巴斯夫公司开发的新型杀菌剂,商品名为Initium,化学名称为:5-乙基-6-辛基[1,2,4]三唑并[1,5-a]嘧啶-7-胺,化学式为C15H25N5,结构式为:
苯唑嘧菌胺(Ametoctradin)属于均三唑并嘧啶类化合物,它作为一种线粒体呼吸作用抑制剂而发挥作用,能防治卵菌纲真菌病害,例如霜霉病和各种疫病。Ametoctradin于2010年在欧盟及南美首次或批准,现已在美国和意大利等多个国家获得登记,登记产品包括单一活性围城代号为BAS65000F(ametoctradin200克/升)产品及两种商标名称为Zampro和Orvego(两者均含ametoctradin300克/升+dimethomorph226克/升,烯酰吗啉)复配制剂产品,它与烯酰吗啉制成的复配制剂主要用于控制易产生抗性的病害。BAS65000F被登记用于果树、蔬菜和蛇麻,而Zampro用于果树、蔬菜、葡萄和土豆,Orvego则用于观赏作物。预计它们的年销售额可达12亿欧元,应用前景广阔。
随着苯唑嘧菌胺的登记、推广和使用,作为我国蔬菜、水果主要出口市场的美国和欧盟对其制定了残留限量标准。欧盟规定其在多种食品农产品中的最大允许残留限量为0.01~50mg/kg,日本等国家规定若田间使用农药没有在该国家登记,没有制定相应的残留限量标准时,出口至其国家的食品农产品包括畜禽肉等动物源性食品中残留限量均实行0.01mg/L的“一律标准”。
现阶段,对苯唑嘧菌胺残留量测定方法的研究较少,报道的检测方法主要为蔬菜和水果中苯唑嘧菌胺残留检测方法,这些检测方法均采用液相色谱串联质谱(LC-MS/MS)测定蔬菜和水果中苯唑嘧菌胺残留量的检测方法,使用LC-MS/MS测定食品农产品中农药残留具有快速、简便、灵敏度高等优点,但由于其价格较昂贵,很多检测机构、企业或科研院所未配置该仪器或配置台数较少,由于不同的化合物采用LC-MS/MS检测时,需使用不同的流动相或色谱柱,这样需要不断更换色谱柱、流动相并耗费比较长的时间对系统进行平衡,这一定程度上制约了LC-MS/MS的应用。使用气相色谱串联质谱(GC-MS/MS)分析食品农产品中农药残留具有快速、简便、灵敏度高、选择性强等优点,可实现几百种农药的多残留分析,但迄今为止未见食品农产品中苯唑嘧菌胺残留量的GC-MS/MS检测方法的报道,因此建立简便、快速、准确、耐用、能准确定性和定量分析蔬菜和水果中氟醚菌酰胺残留量的GC-MS/MS检测方法具有重要意义。
发明内容
本发明的目的是提供一种GC-MS/MS测定果蔬中苯唑嘧菌胺残留的方法。
为实现以上目的,本发明所采用的技术方案是:一种GC-MS/MS测定果蔬中苯唑嘧菌胺残留的方法,包括如下步骤:
(1)提取
称取样品于具塞离心管中,加入乙腈或含1%乙酸的乙腈溶液均质提取1min,加入氯化钠或乙酸钠中的一种和无水硫酸镁,振荡后离心。
(2)净化
移取样品提取液上清液于离心管中,加入基质分散固相萃取剂,涡旋振荡,离心,吸取一定量净化液氮气吹干后,用体积比为1/1的丙酮/正己烷混合溶剂溶解定容,过膜后,待气相色谱串联质谱(GC-MS/MS)检测。
(3)标准工作溶液的配制
将不含苯唑嘧菌胺的同种类基质空白样品按上述步骤(1)、(2)处理时,得样品提取净化残渣,加入适量溶剂和标准溶液,涡旋混匀,配制成至少3个浓度的苯唑嘧菌胺系列混合标准工作液。
(4)气相色谱串联质谱法(GC-MS/MS)测定
将步骤(3)中的各浓度梯度的标准工作液进行GC-MS/MS测定,以标准工作液的色谱峰面积对其相应浓度进行回归分析,得到标准工作曲线;在相同条件下将步骤(2)中净化后的样品液注入GC-MS/MS进行测定,测得样品液中苯唑嘧菌胺的色谱峰面积,代入标准工作曲线,得到样品液中苯唑嘧菌胺含量,然后根据样品液所代表试样的质量计算得到样品中苯唑嘧菌胺残留量;若上机溶液中苯唑嘧菌胺残留量超过线性范围上限,需用定容溶剂将上机溶液浓度稀释至线性范围之内。
步骤(1)中样品若为脱水蔬菜和水果,需降低称样量,并加适量水充分浸润。
步骤(1)中采用乙腈提取时加入氯化钠盐析,采用含1%乙酸的乙腈溶液提取时加入乙酸钠盐析;含水量较少的样品盐析时需加入一定量的水。
步骤(2)中基质分散固相萃取剂由无水硫酸镁、C18和PSA组成,每毫升提取液中无水硫酸镁、C18和PSA加入量分别为150mg、50mg和25mg。
步骤(4)中气相色谱条件为:色谱柱:HP-5MS毛细管色谱柱,柱长30m,内径0.25mm,膜厚0.25μm;进样口温度250℃;载气:He,不分流模式进样,进样量:1μL;恒流模式,流速1.2mL/min;升温程序:初温60℃保持2min,以每分钟20℃的速度升至200℃,然后以每分钟2℃的速度升至220℃,再以每分钟20℃的速度升至280℃,保持10min;传输线温度:290℃。
步骤(4)中质谱条件为:电离模式:电子轰击电离(EI,70eV);离子源温度280℃;碰撞气:氩气;多反应监测扫描方式MRM,监测参数为:
步骤(4)中测定样液和基质标准工作溶液时,若样液中农药色谱峰保留时间与标准溶液中相应农药保留时间相一致,并且在扣除背景后的样品质谱图中,所选择的离子均出现,而且离子丰度比与标准溶液的离子丰度比相一致,则可判断样液中存在这种农药;若上述两个条件不能同时满足,则判断不含该种农药。
本发明的有益效果在于:
本发明利用分散固相萃取技术,建立了简便、快速并能有效避免样品中基质干扰的样品前处理方法,将此前处理方法结合GC-MS/MS应用于蔬菜和水果中苯唑嘧菌胺定性确证和定量检测,平均回收率为84.3%~90.6%,平均相对标准偏差(RSD)为5.0%~8.0%,检出限低于3.40μg/kg,具有操作简便、快速、准确、灵敏度高及重复性好的优点。能满足美国、欧盟、日本等国家对相应产品安全检测的技术要求,为保障我国人民食品安全及对外出口贸易健康发展提供有力的技术支撑。
附图说明
图1为添加在空白苹果基质中的5ng/mL苯唑嘧菌胺标液的选择离子色谱图。
图2为不含苯唑嘧菌胺的苹果空白样品的选择离子色谱图。
图3为以不含苯唑嘧菌胺的苹果空白样品为基质配制的苯唑嘧菌胺标准工作曲线。
具体实施方式
现以以下实施实例来说明本发明,但并不是限制本发明的范围。
实施例中使用的仪器与试剂
T18Basic均质器(IKA,Germany);5810R离心机(Eppendorf,Germany);MS3基本型旋涡混合器(IKA,Germany);7890N气相色谱-5977C质谱仪(Agilent,USA);乙二胺-N-丙基硅烷(PSA)吸附剂(40~60μm)、十八烷基硅烷键合相(C18)净化剂(40~60μm)均购于美国安捷伦科技有限公司。
试剂:乙腈、丙酮、正己烷(HPLC级,Merke,Germany);乙酸(HPLC级,CNW,Germany);无水硫酸镁、氯化钠和乙酸钠为分析纯,均购自国药集团化学试剂有限公司。
标准物质:纯度99.0%,购自德国Dr.Ehrenstorfer公司。
实施例1:苹果中苯唑嘧菌胺残留量的检测
(1)样品前处理
称取经充分混匀的苹果10.0g于50mL离心管中,准确加入20mL乙腈,均质提取1min,加入3g无水硫酸镁和2g氯化钠,涡旋1min后,7000r/min离心5min。离心后,取6mL乙腈提取液转移至装有900mg无水硫酸镁、300mgC18和150mgPSA的离心管中,涡旋1min,5000r/min离心5min。取4mL上清液于氮吹管中,于40℃氮气吹干,加入体积比为1/1的丙酮/正己烷混合溶剂溶解残渣,涡旋混匀过膜后,移入进样瓶中待GC-MS/MS测定。
(2)标准工作溶液的配制
准确称取25±0.1mg标准品于25mL容量瓶中,用乙腈溶解,定容得1000.0μg/mL标准储备液;移取1.0mL标准储备液置于100mL容量瓶中,用用体积比为1/1的丙酮/正己烷混合溶剂定容得到10.0μg/mL标准中间液;将10μg/mL标准溶液稀释配成5、2、1、0.5、0.2、0.1μg/mL标准溶液。将不含苯唑嘧菌胺的苹果空白样品按上述前处理步骤处理,得样品提取净化残渣,在此残渣中加入900μL体积比为1/1的丙酮/正己烷混合溶剂和100μL上述标准溶液,涡旋混匀,配成10、20、50、100、200、500μg/L基质标准工作溶液。
(3)气相色谱串联质谱法(GC-MS/MS)测定
将不同浓度梯度的标准工作液分别注入GC-MS/MS,以外标法进行苯唑嘧菌胺含量的定量分析,即以标准工作液的色谱峰面积对其相应浓度进行回归分析,得到标准工作曲线;在相同条件下将样品提取液注入GC-MS/MS进行测定,测得样品液中苯唑嘧菌胺的色谱峰面积,代入标准工作曲线,得到样品液中苯唑嘧菌胺含量,然后根据样品液所代表试样的质量计算得到样品中苯唑嘧菌胺残留量。
其中色谱条件为:
色谱柱:HP-5MS毛细管色谱柱,柱长30m,内径0.25mm,膜厚0.25μm。
进样口温度:250.0℃,进样模式:不分流进样,进样量:1μL。
载气:He,恒流模式,流速1.2mL/min。
炉箱升温程序:初温60℃保持2min,以每分钟20℃的速度升至200℃,然后以每分钟2℃的速度升至220℃,再以每分钟20℃的速度升至280℃,保持10min;
传输线温度:290℃。
其中,质谱参数为:
电离模式:电子轰击电离,即EI模式,能量70eV。
离子源温度:280℃。
碰撞气:氩气。
扫描方式:多反应监测(SRM)扫描模式。
MRM检测参数见表1。
表1:实施例1的MRM检测参数
*为定量离子对。
定性鉴定:在相同的条件下,如果样液中农药色谱峰保留时间与标准溶液中相应农药保留时间相一致,并且在扣除背景后的样品质谱图中,所选择的离子均出现,而且离子丰度比与标准溶液的离子丰度比相一致,则可判断样液中存在这种农药;若上述两个条件不能同时满足,则判断不含该种农药。
以标准工作液的色谱峰面积对其相应浓度进行回归分析,得到标准工作曲线如表2。
表2苹果空白基质中苯唑嘧菌胺的标准工作曲线
名称 保留时间(min) 回归方程 相关系数
苯唑嘧菌胺 27.05 Y=50613X-40861 0.9994
加标回收率和重复性:
在不含苯唑嘧菌胺的苹果中加入10、20和200μg/kg3个浓度水平的苯唑嘧菌胺标准溶液,待农药添加30min后按上述处理步骤进行残留量测定,200μg/kg添加浓度的样品待测液用体积比为1/1的丙酮/正己烷混合溶剂稀释5倍后再用GC-MS/MS测定。将测定浓度与农药理论添加浓度进行比较,得到农药添加回收率,每个添加水平平行测定6次,得其相对标准偏差,测定结果见表3。由表3可以看出,在3个加标水平上,苯唑嘧菌胺的平均回收率为84.9%~90.2%,平均相对标准偏差(RSD)为5.0%~6.6%,说明本发明方法的回收率较高,重复性好。
表3苯唑嘧菌胺的回收率和重复性(n=6)
检出限:
将不同浓度的苯唑嘧菌胺基质标准工作溶液注入GC-MS/MS,以最低浓度基质标准溶液色谱峰的3倍信噪比和样品处理过程的浓缩倍数(苹果的浓缩倍数为2.0倍)计算检出限,苯唑嘧菌胺的检出限为2.40μg/kg。
实施例2:黄瓜中苯唑嘧菌胺残留量的检测
(1)样品前处理
称取经充分混匀的黄瓜10.0g于50mL离心管中,准确加入20mL含1%乙酸的乙腈溶液,均质提取1min,加入3g无水硫酸镁、2g乙酸钠和2mL水,涡旋1min后,7000r/min离心5min。离心后,取6mL乙腈提取液转移至装有900mg无水硫酸镁、300mgC18和150mgPSA的离心管中,涡旋1min,5000r/min离心5min。取4mL上清液于氮吹管中,于40℃氮气吹干,加入体积比为1/1的丙酮/正己烷混合溶剂溶解残渣,涡旋后混匀后,移入进样瓶中待GC-MS/MS测定。
(2)标准工作溶液的配制
将1000μg/mL标准中间液溶液用体积比为1/1的丙酮/正己烷混合溶剂稀释成10μg/mL标准中间液,将10μg/mL标准溶液稀释配成5、2、1、0.5、0.2、0.1μg/mL标准溶液。将不含苯唑嘧菌胺的黄瓜空白样品按上述前处理步骤处理,得样品提取净化残渣,在此残渣中加入900μL体积比为1/1的丙酮/正己烷混合溶剂和100μL上述标准溶液,涡旋混匀,配成10、20、50、100、200、500μg/L基质标准工作溶液。
(3)气相色谱串联质谱法(GC-MS/MS)测定
操作步骤、色谱和质谱条件与上述苹果样品中苯唑嘧菌胺的测定一致。
定性鉴定:
同上述苹果样品中苯唑嘧菌胺的测定一致。
线性关系:
以标准工作液的色谱峰面积对其相应浓度进行回归分析,得到标准工作曲线为Y=116596X+508.39,相关系数为0.9992。
加标回收率和重复性:
在不含苯唑嘧菌胺的黄瓜中加入10、20和200μg/kg3个浓度水平的苯唑嘧菌胺标准溶液,待农药添加30min后按上述处理步骤进行残留量测定,200μg/kg添加浓度的样品待测液用体积比为1/1的丙酮/正己烷混合溶剂稀释5倍后再用GC-MS/MS测定。将测定浓度与农药理论添加浓度进行比较,得到农药添加回收率,每个添加水平平行测定6次,得其相对标准偏差,测定结果见表4。由表4可以看出,在3个加标水平上,苯唑嘧菌胺的平均回收率为84.3%~90.6%,平均相对标准偏差(RSD)为6.4%~8.0%,说明本发明方法的回收率高,重复性好。
表4苯唑嘧菌胺的回收率和重复性(n=6)
检出限:
将不同浓度的苯唑嘧菌胺基质标准工作溶液注入GC-MS/MS,以最低浓度基质标准溶液色谱峰的3倍信噪比和样品处理过程的浓缩倍数(黄瓜的浓缩倍数为2.0倍)计算检出限,苯唑嘧菌胺的检出限为3.40μg/kg。
以上的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术对本发明的技术方案作出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (5)

1.一种GC-MS/MS测定果蔬中苯唑嘧菌胺残留的方法,其特征在于,所述方法包括以下步骤:
(1)提取
称取蔬菜和水果样品于具塞离心管中,加入乙腈或含1%乙酸的乙腈溶液均质提取1min,加入氯化钠或乙酸钠中的一种和无水硫酸镁振荡后离心;
(2)净化
移取样品提取液于离心管中,加入基质分散固相萃取剂,涡旋振荡,离心,取一定量净化液氮气吹干后,用体积比为1/1的丙酮/正己烷混合溶剂溶解定容,过膜后,待气相色谱串联质谱(GC-MS/MS)检测;
(3)标准工作溶液的配制
将不含苯唑嘧菌胺的同种类基质空白样品按上述步骤(1)、(2)处理,得样品提取净化残渣,加入适量溶剂和标准溶液,涡旋混匀,配制成至少3个浓度的苯唑嘧菌胺系列混合标准工作液;
(4)测定和结果计算
将步骤(3)中的各浓度梯度的标准工作液进行GC-MS/MS测定,以标准工作液的色谱峰面积对其相应浓度进行回归分析,得到基质标准工作曲线;在相同条件下将步骤(2)中净化后的样品液注入GC-MS/MS进行测定,测得样品液中苯唑嘧菌胺的色谱峰面积,代入基质标准工作曲线,得到样品液中苯唑嘧菌胺含量,然后根据样品液所代表试样的质量计算得到样品中苯唑嘧菌胺残留量;若上机溶液中苯唑嘧菌胺残留量超过线性范围上限,需用定容溶剂将上机溶液浓度稀释至线性范围之内。
2.根据权利要求1所述的一种GC-MS/MS测定果蔬中苯唑嘧菌胺残留的方法,其特征在于,步骤(1)中蔬菜和水果样品若为脱水样品,需降低称样量,并加适量水充分浸润。
3.根据权利要求1所述的一种GC-MS/MS测定果蔬中苯唑嘧菌胺残留的方法,其特征在于,步骤(1)中采用乙腈提取时需加入氯化钠盐析,采用含1%乙酸的乙腈溶液提取时需加入乙酸钠盐析。
4.根据权利要求1所述的一种GC-MS/MS测定果蔬中苯唑嘧菌胺残留的方法,其特征在于,步骤(2)中基质分散固相萃取剂由无水硫酸镁、C18和PSA组成,每毫升提取液中无水硫酸镁、C18和PSA加入量分别为150mg、50mg和25mg。
5.根据权利要求1所述的一种GC-MS/MS测定果蔬中苯唑嘧菌胺残留的方法,其特征在于,步骤(4)中GC-MS/MS分析条件为:色谱柱:HP-5MS毛细管色谱柱,柱长30m,内径0.25mm,膜厚0.25μm;进样口温度250.0℃;载气:He,不分流模式进样,进样量:1μL;恒流模式,流速1.2mL/min;升温程序:初温60℃保持2min,以每分钟20℃的速度升至200℃,然后以每分钟2℃的速度升至220℃,再以每分钟20℃的速度升至280℃,保持10min;传输线温度:290℃;电离模式:电子轰击电离(EI,70eV);离子源温度280℃;碰撞气:氩气;多反应监测扫描方式,监测参数为:
CN201610067253.XA 2016-01-30 2016-01-30 一种gc-ms/ms测定果蔬中苯唑嘧菌胺残留的方法 Pending CN105548441A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610067253.XA CN105548441A (zh) 2016-01-30 2016-01-30 一种gc-ms/ms测定果蔬中苯唑嘧菌胺残留的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610067253.XA CN105548441A (zh) 2016-01-30 2016-01-30 一种gc-ms/ms测定果蔬中苯唑嘧菌胺残留的方法

Publications (1)

Publication Number Publication Date
CN105548441A true CN105548441A (zh) 2016-05-04

Family

ID=55827774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610067253.XA Pending CN105548441A (zh) 2016-01-30 2016-01-30 一种gc-ms/ms测定果蔬中苯唑嘧菌胺残留的方法

Country Status (1)

Country Link
CN (1) CN105548441A (zh)

Similar Documents

Publication Publication Date Title
CN104502504B (zh) 一种蔬菜和水果中氯虫苯甲酰胺残留量的测定方法
CN104678025B (zh) 一种gc-ei-ms测定果蔬中氟醚菌酰胺残留的方法
CN104678023A (zh) 一种gc-ms/ms测定果蔬中氟醚菌酰胺残留的方法
CN104597189B (zh) 一种Pyrifluquinazon残留量的测定方法
CN104678043A (zh) 一种氟醚菌酰胺残留量的gc-ei-ms测定方法
CN104502483B (zh) 一种gc-ei-ms测定果蔬中腈吡螨酯残留量的方法
CN104655783B (zh) 一种果蔬中苯菌酮残留量的gc-nci-ms测定方法
CN104502510B (zh) 一种gc-nci-ms测定果蔬中腈吡螨酯残留的方法
CN105717212A (zh) 一种gc-ms/ms测定果蔬中氟唑菌酰胺残留的方法
CN104535686B (zh) 一种腈吡螨酯残留量的gc-nci-ms测定方法
CN104655782A (zh) 一种蔬菜和水果中氟醚菌酰胺残留量的测定方法
CN104458968A (zh) 一种果蔬中螺虫乙酯残留量的gc-ei-ms测定方法
CN105510506A (zh) 一种gc-ms/ms测定果蔬中氟唑菌苯胺残留的方法
CN104569210B (zh) 一种gc-ei-ms测定果蔬中四氯虫酰胺残留的方法
CN104655781A (zh) 一种苯菌酮残留量的测定方法
CN105548441A (zh) 一种gc-ms/ms测定果蔬中苯唑嘧菌胺残留的方法
CN104569198B (zh) 一种腈吡螨酯残留量的gc-ei-ms测定方法
CN105548446A (zh) 一种氟唑菌酰胺残留量的gc-ms/ms快速测定方法
CN105548448A (zh) 一种gc-ms/ms测定果蔬中吡噻菌胺残留的方法
CN104459001A (zh) 一种果蔬中氯虫苯甲酰胺残留量的测定方法
CN105548447A (zh) 一种氟唑菌酰胺残留量的gc-ei-ms测定方法
CN105548439A (zh) 一种吡噻菌胺残留量的gc-ms/ms测定方法
CN105675786A (zh) 一种gc-ei-ms测定果蔬中氟唑菌酰胺残留的方法
CN105486781A (zh) 一种苯唑嘧菌胺残留量的gc-ei-ms测定方法
CN105699518A (zh) 一种蔬菜和水果中氟唑菌酰胺残留量的测定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160504

WD01 Invention patent application deemed withdrawn after publication