CN105543672A - 一种优化无取向高硅钢冷轧板板型的方法 - Google Patents

一种优化无取向高硅钢冷轧板板型的方法 Download PDF

Info

Publication number
CN105543672A
CN105543672A CN201610098385.9A CN201610098385A CN105543672A CN 105543672 A CN105543672 A CN 105543672A CN 201610098385 A CN201610098385 A CN 201610098385A CN 105543672 A CN105543672 A CN 105543672A
Authority
CN
China
Prior art keywords
rolling
silicon steel
cold
warm
yield point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610098385.9A
Other languages
English (en)
Other versions
CN105543672B (zh
Inventor
刘振宇
王项龙
李昊泽
李成刚
曹光明
王国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201610098385.9A priority Critical patent/CN105543672B/zh
Publication of CN105543672A publication Critical patent/CN105543672A/zh
Application granted granted Critical
Publication of CN105543672B publication Critical patent/CN105543672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Metal Rolling (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种优化无取向高硅钢冷轧板板型的方法,按以下步骤进行:(1)冶炼钢水,用薄带铸轧机制备硅钢铸带,热轧获得热轧钢板;(2)在100~300℃下进行温轧,温轧总压下量控制在55~60%之间;(3)将温轧钢板在300~350℃和保护气氛条件下保温30~60min,进行低温回复,然后空冷至室温,再进行冷轧。本发明制备的无取向高硅钢冷轧板边裂程度微小、板型良好,对设备要求低,且无需繁琐的操作。

Description

一种优化无取向高硅钢冷轧板板型的方法
技术领域
本发明属于冶金技术领域,特别涉及一种优化无取向高硅钢冷轧板板型的方法。
背景技术
无取向硅钢是一种重要的软磁材料,是制作电动机,发电机等电器元件的核心材料。当无取向硅钢内的硅含量增加至6.5wt.%左右时,其软磁性能将大幅度提升,表现为在高频时的高电阻、高磁导率、高磁化强度、趋近于零的磁致伸缩、很低的涡流和磁滞损耗等;因此在制造高频且低噪音的电机和变压器时,它是一种非常理想的磁性材料;然而,由于较高的Si含量,其内部将出现有序相B2(FeSi)及DO3(Fe3Si),同时还由于存在Fe-Si共价键的原因,使无取向6.5wt.%Si硅钢在室温下具有非常脆的特性,导致其冷加工性能被大大降低;因此,在传统工艺流程下很难被生产,尤其是在冷轧工序。
1993年,日本钢管公司(NKK)采用化学气相沉积(CVD)方法成功生产出了无取向6.5wt.%Si硅钢薄板,而且该生产线是目前世界上唯一一条通过CVD法生产6.5wt.%Si硅钢的生产线,月产量为100吨左右,但是由于产品内存在柯肯戴尔空洞,其磁感值较低;此外,由于渗硅物质SiCl4的强烈毒性和腐蚀性,使CVD工艺具有很大的危险性。
薄带铸轧是一种近净型生产技术,该工艺可以将熔融的钢水直接铸轧到接近成品厚度的薄带,省掉大压下量热轧工序,达到节能减排、提高生产率的效果;利用该工艺生产无取向6.5wt.%Si硅钢,可以省掉大压下量热轧,从而避免热轧时裂纹的产生;此外,通过控制钢水过热度,使6.5wt.%Si硅钢初始铸态组织以<001>∥ND晶粒为主,最终产品的磁感值得以提升;另一方面,采用薄带铸轧工艺可以生产出具有细小等轴晶组织的薄带,使无取向6.5wt.%Si硅钢薄带具有一定量的初始室温韧性,这将大大增加后续轧制工艺的成功率;
中国专利(201510563681.7)将薄带铸轧和应变诱导无序(DID)工艺相结合,采用“铸轧-热轧-温轧-室温冷轧”的生产路线,成功地生产出冷轧压下量>50%的0.25mm厚的无取向6.5wt.%Si硅钢冷轧板,且产品的最终磁性能优良,其中B8高达1.44T。然而,由于温轧板具有较高的硬度,导致采用上述方法制备出的6.5wt.%Si硅钢冷轧板存在小量的边裂问题。因此需要研发出一种新的方法来软化温轧板,降低成品冷轧板的边裂程度。
发明内容
本发明的目的是提供一种优化无取向高硅钢冷轧板板型的方法,将轧制工艺优化为“铸轧-热轧-温轧-低温回复-室温冷轧”,保证温轧板基体保持无序的情况下,降低其内部位错密度,从而降低冷轧板的边裂程度。
本发明的方法按以下步骤进行:
1、冶炼钢水,然后采用薄带铸轧机制备硅钢铸带,其化学成分按重量百分比含C0.008~0.01%,Si6.45~6.55%,N≤0.003%,O≤0.003%,S≤0.008%,余量为Fe;将硅钢铸带热轧获得热轧钢板;
2、将热轧钢板在100~300℃下进行温轧,温轧总压下量控制在55~60%之间,获得温轧钢板;
3、将温轧钢板在300~350℃和保护气氛条件下保温30~60min,进行低温回复,然后空冷至室温,再进行冷轧,获得无取向高硅钢冷轧板。
上述的硅钢铸带厚度为2.3~2.5mm。
上述的保护气氛为氮气。
上述方法中,热轧温度为900~1050℃,总压下量为40~60%。
上述方法中,冷轧的总压下量为30~50%。
本发明的方法可以简单有效地降低冷轧板的边裂程度,优化最终冷轧成品的板型;控制温轧总压下量控制在55~60%之间,此时的温轧钢板基体呈现出无序化,且具有一定量的室温韧性;在低温回复工序完成后,采用空冷的方式冷却至室温,可防止冷却时内应力的产生;低温回复处理后的钢板内部位错密度大幅度降低,但基体仍然保持无序化状态,因此硬度降低,室温韧性得到提高;后续的冷轧使钢板的性能提升,最终制备出边裂程度微小、板型良好的无取向高硅钢冷轧板。
本发明的突出优点是:1、可以有效地软化温轧板,提升其室温韧性,使后续的冷轧工艺可以更加容易的实施;2、对设备要求低,且无需繁琐的操作;3、在实际生产中容易实施。
附图说明
图1为本发明实施例1中的温轧钢板纵断面上的金相组织图;图中(a)为低温回复前,(b)为低温回复后,箭头指示处为剪切带;
图2为本发明实施例1中获得的无取向高硅钢冷轧板与对比试验获得的冷轧板形貌图以及局部放大图;图中,(A)为实施例的冷轧板,(B)为对比试验的冷轧板。
具体实施方式
本发明实施例中金相组织观测采用的设备型号为LeicaDMIRM。
本发明实施例中宏观硬度检测设备为德国KB3000BVRZ-SA硬度计。
本发明实施例获得的无取向高硅钢冷轧板经900℃×30min退火后(氮气保护,冷却方式为空冷)获得的磁性能与日本CVD法生产的同规格(0.3mm)高硅钢性能对比结果如表1所示;
表1
B8 / T W10/50 /W/kg W10/400 /W/kg W2/1000 /W/kg W10/1000 /W/kg
冷轧高硅钢 1.425 0.86 11.13 2.684 46.92
日本CVD 1.27 0.49 10 1.8 --
由表1可见,本发明的硅钢板高频铁损(W10/400)略逊于日本产品,磁感值(B8)优于日本产品。
本发明实施例中测试磁性能采用的标准为GB/T3655-2000。
本发明实施例中温轧钢板在低温回复前的宏观硬度值为398~405HV,低温回复后的宏观硬度值为380~387HV。
实施例1
冶炼钢水,然后采用薄带铸轧机制备硅钢铸带,厚度为2.5mm,化学成分按重量百分比含C0.0083%,Si6.55%,N0.0022%,O0.0027%,S0.0076%,余量为Fe;将硅钢铸带热轧获得热轧钢板;其中热轧温度为900℃,总压下量40%;
将热轧钢板在100℃下进行温轧,温轧总压下量60%,获得温轧钢板;金相组织如图1(a)所示;
将温轧钢板在350℃和保护气氛条件下保温30min,进行低温回复,然后空冷至室温,保护气氛为氮气;金相组织如图1(b)所示;
再进行冷轧,冷轧的总压下量为50%,获得无取向高硅钢冷轧板,外观形貌如图2(A)所示;边裂程度微小,板型良好;
采用上述温轧钢板进行对比试验,不进行低温回复直接冷轧,获得的对比冷轧板外观形貌如图2(B)所示。
实施例2
方法同实施例1,不同点在于:
(1)硅钢铸带厚度为2.4mm,成分按重量百分比含C0.008,Si6.50%,N0.0025%,O0.0024%,S0.0075%;热轧温度为1000℃,总压下量为60%;
(2)在150℃下进行温轧,温轧总压下量55%;
(3)在340℃和保护气氛条件下保温40min;
(4)冷轧的总压下量为40%;
无取向高硅钢冷轧板边裂程度微小,板型良好。
实施例3
方法同实施例1,不同点在于:
(1)硅钢铸带厚度为2.3mm,成分按重量百分比含C0.009%,Si6.45%,N0.0026%,O0.0028%,S0.0071%;热轧温度为1050℃,总压下量为56%;
(2)在200℃下进行温轧,温轧总压下量58%;
(3)在320℃和保护气氛条件下保温50min;
(4)冷轧的总压下量为30%;
无取向高硅钢冷轧板边裂程度微小,板型良好。
实施例4
方法同实施例1,不同点在于:
(1)硅钢铸带厚度为2.4mm,成分按重量百分比含C0.01%,Si6.51%,N0.0023%,O0.0029%,S0.0079%;热轧温度为950℃,总压下量为50%;
(2)在300℃下进行温轧,温轧总压下量56%;
(3)在300℃和保护气氛条件下保温60min;
(4)冷轧的总压下量为46%;
无取向高硅钢冷轧板边裂程度微小,板型良好。

Claims (5)

1.一种优化无取向高硅钢冷轧板板型的方法,按以下步骤进行:
(1)冶炼钢水,然后采用薄带铸轧机制备硅钢铸带,其化学成分按重量百分比含C0.008~0.01%,Si6.45~6.55%,N≤0.003%,O≤0.003%,S≤0.008%,余量为Fe;将硅钢铸带热轧获得热轧钢板;
其特征在于:
(2)将热轧钢板在100~300℃下进行温轧,温轧总压下量控制在55~60%之间,获得温轧钢板;
(3)将温轧钢板在300~350℃和保护气氛条件下保温30~60min,进行低温回复,然后空冷至室温,再进行冷轧,获得无取向高硅钢冷轧板。
2.根据权利要求1所述的优化无取向高硅钢冷轧板板型的方法,其特征在于所述的硅钢铸带厚度为2.3~2.5mm。
3.根据权利要求1所述的优化无取向高硅钢冷轧板板型的方法,其特征在于所述的保护气氛为氮气。
4.根据权利要求1所述的优化无取向高硅钢冷轧板板型的方法,其特征在于步骤(1)中的热轧温度为900~1050℃,总压下量为40~60%。
5.根据权利要求1所述的优化无取向高硅钢冷轧板板型的方法,其特征在于步骤(3)中冷轧的总压下量为30~50%。
CN201610098385.9A 2016-02-23 2016-02-23 一种优化无取向高硅钢冷轧板板型的方法 Active CN105543672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610098385.9A CN105543672B (zh) 2016-02-23 2016-02-23 一种优化无取向高硅钢冷轧板板型的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610098385.9A CN105543672B (zh) 2016-02-23 2016-02-23 一种优化无取向高硅钢冷轧板板型的方法

Publications (2)

Publication Number Publication Date
CN105543672A true CN105543672A (zh) 2016-05-04
CN105543672B CN105543672B (zh) 2017-10-31

Family

ID=55823224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610098385.9A Active CN105543672B (zh) 2016-02-23 2016-02-23 一种优化无取向高硅钢冷轧板板型的方法

Country Status (1)

Country Link
CN (1) CN105543672B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4272576B2 (ja) * 2004-04-08 2009-06-03 新日本製鐵株式会社 磁束密度の高い無方向性電磁鋼板の製造方法
CN101745794A (zh) * 2008-12-15 2010-06-23 鞍钢股份有限公司 一种无取向高牌号硅钢制备技术
CN102367547A (zh) * 2011-10-31 2012-03-07 山西太钢不锈钢股份有限公司 一种高硅铝含量无取向硅钢带的制造方法
CN103551381A (zh) * 2013-10-31 2014-02-05 北京科技大学 一种利用柱状晶板坯制备取向磁致伸缩薄板的方法
CN105063473A (zh) * 2015-09-07 2015-11-18 东北大学 基于薄带铸轧和did制造无取向高硅钢冷轧薄板的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4272576B2 (ja) * 2004-04-08 2009-06-03 新日本製鐵株式会社 磁束密度の高い無方向性電磁鋼板の製造方法
CN101745794A (zh) * 2008-12-15 2010-06-23 鞍钢股份有限公司 一种无取向高牌号硅钢制备技术
CN102367547A (zh) * 2011-10-31 2012-03-07 山西太钢不锈钢股份有限公司 一种高硅铝含量无取向硅钢带的制造方法
CN103551381A (zh) * 2013-10-31 2014-02-05 北京科技大学 一种利用柱状晶板坯制备取向磁致伸缩薄板的方法
CN105063473A (zh) * 2015-09-07 2015-11-18 东北大学 基于薄带铸轧和did制造无取向高硅钢冷轧薄板的方法

Also Published As

Publication number Publication date
CN105543672B (zh) 2017-10-31

Similar Documents

Publication Publication Date Title
JP6574307B2 (ja) 高強靭性継目無鋼管及びその製造方法
CN104073715B (zh) 一种高磁感无取向电工钢的制造方法
CN104046760B (zh) 一种电工钢板的生产方法
CN103589948B (zh) 低碳铝镇静钢热镀锌板及其生产方法
CN103667879A (zh) 磁性能和机械性能优良的无取向电工钢及生产方法
CN103725995A (zh) 一种取向高硅电工钢的制备方法
CN105063473B (zh) 基于薄带铸轧和did制造无取向高硅钢冷轧薄板的方法
CN110578095A (zh) 一种1200MPa级热轧超高强钢板及其制造方法
CN102899571A (zh) 一种预硬型塑料模具钢及其制造方法
CN104726761A (zh) 一种低成本高磁感取向硅钢的生产方法
CN106399819A (zh) 一种取向硅钢及其制备方法
CN103614638A (zh) 一种高铌q460级耐火钢及其制造方法
CN102965575A (zh) 一种355MPa级船板钢的超快冷制备方法
CN103882304A (zh) 一种超低硬度免退火冷镦钢生产方法
CN101358318A (zh) 一种综合性能好的无取向电工钢的成分设计及制备方法
CN104451421A (zh) 一种高强韧性双金属带锯条背材用钢及其制备方法
CN101492791B (zh) 可大线能量焊接的电磁钢板及其制造方法
CN104018071A (zh) 低碳当量高韧性q420e钢板及其生产方法
CN104232868A (zh) 一种采用超快速冷却控制奥氏体组织的优化控制轧制方法
CN108441613A (zh) 一种时效硬化型塑料模具钢防白点控制方法
CN105063311A (zh) 一种改善trip钢表面质量的加工方法
CN103589838A (zh) 一种30Cr13马氏体不锈钢的罩式退火工艺
CN106011543A (zh) 改良型铁钴钒合金及其制造方法
CN103045958A (zh) 一种高强度-50℃低温用钢板及其制备方法
CN103194676A (zh) 一种1000MPa超级铁素体钢及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant