CN105525918B - Dual lateral logging instrument, electrode system thereof and formation resistivity measuring method - Google Patents
Dual lateral logging instrument, electrode system thereof and formation resistivity measuring method Download PDFInfo
- Publication number
- CN105525918B CN105525918B CN201410572687.6A CN201410572687A CN105525918B CN 105525918 B CN105525918 B CN 105525918B CN 201410572687 A CN201410572687 A CN 201410572687A CN 105525918 B CN105525918 B CN 105525918B
- Authority
- CN
- China
- Prior art keywords
- electrodes
- electrode
- voltage
- mode
- electrode system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 20
- 230000009977 dual effect Effects 0.000 title claims description 29
- 238000005259 measurement Methods 0.000 claims abstract description 19
- 238000012544 monitoring process Methods 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 12
- 239000011810 insulating material Substances 0.000 claims abstract description 4
- 238000000691 measurement method Methods 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
本发明涉及一种双侧向测井仪及其电极系、地层电阻率测量方法,所述电极系包括电极系和绝缘芯棒,由设置在一个绝缘芯棒上的多个电极构成,并通过导线与测量电路连接,多个电极之间采用绝缘材料隔开,绝缘芯棒的中心为一根金属棒,金属棒中心设置有贯通孔,金属棒与所述电极系之间绝缘,所述电极系包括:设置于电极系的中间的主电极A0、A0’;发射屏蔽电流以对主电流进行聚焦的至少一对屏蔽电极A2、A2’和A1、A1’;测量电极电压的多对电压测量电极A1*、A1*’和M0、M0’;以及用于电压监控的至少一对电压监控电极M2、M2’和M1、M1’,其中屏蔽电极A2,A2’短接,主电极A0,A0’短接,其它电极不短接。由此,与硬聚焦方式相比,实现更高的测量精度。
The invention relates to a double lateral logging tool, an electrode system and a method for measuring formation resistivity. The electrode system includes an electrode system and an insulating mandrel, which is composed of a plurality of electrodes arranged on one insulating mandrel, and is passed through the insulating mandrel. The wire is connected to the measurement circuit, and the electrodes are separated by insulating materials. The center of the insulating mandrel is a metal rod. The center of the metal rod is provided with a through hole. The metal rod is insulated from the electrode system. The system includes: main electrodes A0, A0' arranged in the middle of the electrode system; at least one pair of shield electrodes A2, A2' and A1, A1' for emitting shield current to focus the main current; multiple pairs of voltage measurements for measuring electrode voltage Electrodes A1*, A1*' and M0, M0'; and at least one pair of voltage monitoring electrodes M2, M2' and M1, M1' for voltage monitoring, wherein shield electrodes A2, A2' are short-circuited, and main electrodes A0, A0 'Short-circuit, other electrodes are not short-circuited. As a result, higher measurement accuracy is achieved than with the hard focus method.
Description
技术领域technical field
本发明涉及一种用于石油勘探开发的测井装置,特别涉及一种双侧向测井仪及其电极系、地层电阻率测量方法。The invention relates to a logging device for petroleum exploration and development, in particular to a dual lateral logging tool, an electrode system and a method for measuring formation resistivity.
背景技术Background technique
双侧向测井仪是在裸眼井中测量地层电阻率,研究地层侵入变化,估算含油饱和度的主要仪器。传统的双侧向测井仪主要包括电极系、电子线路、绝缘短节,总长约7~10米,深侧向探测深度约1~1.5米,浅侧向探测深度约0.2~0.5米,纵向分辨率约为0.6米。传统双侧向测井仪在进行深侧向测井时,环状电极发射电流进入地层,柱状电极发射屏蔽电流对主电流聚焦,在电子线路中需要有反馈回路调节屏蔽电流,控制监督电极处于等电位。例如,中国专利CN1712995A公开了一种强聚焦双侧向测井仪,其结构组成主要包括绝缘短节、电极系和电子线路部分组成,其中所述的电极系包括一个主电极,并以主电极为中心,和相互对称的监督电极、屏蔽电极、辅助监督电极以及回路电极组成,该仪器保留了常规双侧向探测深度最浅的标准模式,增加了具有双层屏蔽的浅侧向和三层屏蔽的深侧向强聚焦模式。理论上,这种聚焦方式要求放大器具有无限大的增益,但在实际中,由于放大器的增益是有限的,监督电极不是严格地等电位,并在测量结果中引入误差。这一误差在传统双侧向测井中很小,但是在高分辨率双侧向测井中会很大。The dual lateral logging tool is the main tool for measuring formation resistivity in open-hole wells, studying formation invasion changes, and estimating oil saturation. The traditional dual lateral logging tool mainly includes electrode system, electronic circuit, insulation sub joint, the total length is about 7 to 10 meters, the deep lateral detection depth is about 1 to 1.5 meters, and the shallow lateral detection depth is about 0.2 to 0.5 meters. The resolution is about 0.6 meters. When the traditional dual lateral logging tool performs deep lateral logging, the annular electrode emits current into the formation, and the columnar electrode emits shielding current to focus on the main current. Equipotential. For example, Chinese patent CN1712995A discloses a strong focusing double lateral logging tool, the structure of which mainly includes an insulating subsection, an electrode system and an electronic circuit part, wherein the electrode system includes a main electrode, and the main electrode is composed of a main electrode. The instrument is composed of the supervising electrode, the shielding electrode, the auxiliary supervising electrode and the return electrode which are symmetrical with each other. Shielded deep sideways strong focus mode. In theory, this way of focusing requires the amplifier to have infinite gain, but in practice, since the gain of the amplifier is finite, the supervisory electrodes are not strictly equipotential and introduce errors in the measurement results. This error is small in conventional dual-lateral logging, but can be large in high-resolution dual-lateral logging.
随着油气勘探开发的深入,薄互层等储层也逐渐成为勘探的重点,这就需要具有高分辨率的测井仪,而传统的双侧向测井仪的分辨率一般为0.6m,不能满足勘探的需要,与此同时,测井作业鼠洞长度短,大斜度井、水平井、鱼骨分支井等复杂井眼条件的作业量逐年增加,传统双侧向测井仪器长度约7~10m,不利于井场施工作业和组合测井,在大斜度井、水平井、鱼骨分支井等复杂井眼条件下遇卡几率大大增加。With the deepening of oil and gas exploration and development, thin interbeds and other reservoirs have gradually become the focus of exploration, which requires high-resolution logging tools, while the resolution of traditional dual lateral logging tools is generally 0.6m. It cannot meet the needs of exploration. At the same time, the length of the rat hole in the logging operation is short, and the operation volume of complex wellbore conditions such as highly deviated wells, horizontal wells, and fishbone lateral wells is increasing year by year. The length of traditional dual lateral logging tools is about 7-10m, which is not conducive to well site construction operations and combined logging, and greatly increases the probability of sticking in complex wellbore conditions such as highly deviated wells, horizontal wells, and fishbone lateral wells.
由中国电子科技集团公司第22研究所提出的申请号为201210233337的专利申请公开了一种高分辨率方位电阻率侧向测井仪及测井方法,该高分辨率方位电阻率侧向测井仪主要由方位电极系和测量电子电路组成,所述电极系是由镶嵌在绝缘载体上的多个不同宽度的侧向电极环以及方位电极环M0组成,电极系中央为M0,14个不同宽度的电极环以M0为对称轴,按照不同的间隔排列,各同名电极环用导线短接保持等电位,所述各同名电极环、方位电极环、参考电极N以及回路B各通过导线连接测量电路。虽然该高分辨率方位电阻率测井仪及测井方法采用数字聚焦模式与硬聚焦模式,相比原来硬聚焦电路采集量增多,测量精度大大提高,测量信息也更加丰富,但由于其采用各同名电极环用导线短接的方式,依然没有解决在仪器中心形成的垂直电位梯度的影响,从而难以达到更高的测量精度。Patent application No. 201210233337 filed by the 22nd Research Institute of China Electronics Technology Group Corporation discloses a high-resolution azimuthal resistivity lateral logging tool and a logging method. The high-resolution azimuthal resistivity lateral logging The instrument is mainly composed of an azimuth electrode system and a measuring electronic circuit. The electrode system is composed of a plurality of lateral electrode rings of different widths embedded on an insulating carrier and an azimuth electrode ring M0. The center of the electrode system is M0, 14 different widths. The electrode rings with the same name take M0 as the axis of symmetry and are arranged at different intervals. Each electrode ring with the same name is short-circuited with a wire to maintain the equipotential. . Although the high-resolution azimuthal resistivity logging tool and logging method adopts digital focusing mode and hard focusing mode, compared with the original hard focusing circuit, the collection quantity is increased, the measurement accuracy is greatly improved, and the measurement information is also richer, but due to the use of various The electrode ring of the same name is short-circuited with wires, which still does not solve the influence of the vertical potential gradient formed in the center of the instrument, so it is difficult to achieve higher measurement accuracy.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是:针对现有技术存在的上述缺陷,提供一种基于软件聚焦方式的高分辨率的双侧向测井仪、双侧向测井仪电极系以及电阻率测量方法。The technical problem to be solved by the present invention is to provide a high-resolution dual lateral logging tool, an electrode system of the dual lateral logging tool, and a resistivity measurement method based on a software focusing method for the above-mentioned defects in the prior art. .
为了解决上述现有技术中存在的问题,本发明提供一种双侧向测井仪电极系,包括电极系和绝缘芯棒,所述电极系由设置在一个所述绝缘芯棒上的多个电极构成,并通过导线与测量电路连接,其中In order to solve the above-mentioned problems in the prior art, the present invention provides a double lateral logging tool electrode system, including an electrode system and an insulating mandrel, the electrode system is composed of a plurality of electrodes arranged on one of the insulating mandrels The electrodes are formed and connected to the measurement circuit by wires, where
所述多个电极之间采用绝缘材料隔开,所述绝缘芯棒的中心为一根金属棒,所述金属棒中心设置有贯通孔,所述金属棒与所述电极系之间绝缘,所述电极系包括:The plurality of electrodes are separated by insulating materials, the center of the insulating core rod is a metal rod, the center of the metal rod is provided with a through hole, and the metal rod is insulated from the electrode system, so the The electrode system includes:
设置于所述电极系的中间的主电极A0、A0’;main electrodes A0, A0' arranged in the middle of the electrode system;
发射屏蔽电流以对主电流进行聚焦的至少一对屏蔽电极A2、A2’和A1、A1’;at least one pair of shield electrodes A2, A2' and A1, A1' that emit a shield current to focus the main current;
测量电极电压的多对电压测量电极A1*、A1*’和M0、M0’;以及Pairs of voltage measuring electrodes A1*, A1*' and M0, M0' for measuring electrode voltage; and
用于电压监控的至少一对电压监控电极M2、M2’和M1、M1’,at least one pair of voltage monitoring electrodes M2, M2' and M1, M1' for voltage monitoring,
其中所述屏蔽电极A2,A2’短接,所述主电极A0,A0’短接,其它电极不短接。The shielding electrodes A2 and A2' are short-circuited, the main electrodes A0 and A0' are short-circuited, and the other electrodes are not short-circuited.
优选地,在上述双侧向测井仪电极系中,所述多对电压测量电极之中的一对电极M0、M0’位于电极系中间,分别用来测量所述主电极A0、A0’的电压。Preferably, in the electrode system of the dual lateral logging tool, a pair of electrodes M0, M0' among the plurality of pairs of voltage measuring electrodes are located in the middle of the electrode system, and are used to measure the voltage of the main electrodes A0, A0' respectively. Voltage.
优选地,在上述双侧向测井仪电极系中,所述多个电极从电极系的一端至另一端依次排列为电极A2、电极A1*、电极A1、电极M2、电极M1、电极A0、电极M0、电极M0’、电极A0’、电极M1’、电极M2’、电极A1’、电极A1*’、电极A2’。Preferably, in the electrode system of the dual lateral logging tool, the plurality of electrodes are sequentially arranged from one end to the other end of the electrode system as electrode A2, electrode A1*, electrode A1, electrode M2, electrode M1, electrode A0, Electrode M0, Electrode M0', Electrode A0', Electrode M1', Electrode M2', Electrode A1', Electrode A1*', Electrode A2'.
本发明还提供一种双侧向测井仪,用于地层电阻率的测量,其具有上述的双侧向测井仪电极系。The present invention also provides a dual lateral logging tool for measuring formation resistivity, which has the above-mentioned dual lateral logging tool electrode system.
另外,本发明还提供一种地层电阻率的测量方法,采用上述双侧向测井仪进行地层电阻率测量,其特征在于,使上述双向测井仪工作在如下三种模式下:In addition, the present invention also provides a method for measuring formation resistivity, which adopts the above-mentioned dual lateral logging tool to measure formation resistivity, and is characterized in that the above-mentioned two-way logging tool is operated in the following three modes:
在模式1中,输出模块输出的电流加载在电极A1、A1’和电极A2、A2’上,辅助监督电路模块保持电极A1*与电极A2等电位,数据采集模块记录该模式下的电极M2、M2’以及电极M1、M1’的电位,并记为、、、,同时记录电极N的电位,记为;In
在模式2中,输出模块输出的电流加载在电极A1,A1’上,并且返回电极A2、A2’上,数据采集模块记录该模式下的电极M2、M2’,电极M1、M1’的电位,并记为、、、,同时记录电极N电位,记为;In mode 2, the current output by the output module is loaded on the electrodes A1, A1', and returns to the electrodes A2, A2', the data acquisition module records the potentials of the electrodes M2, M2', and the electrodes M1, M1' in this mode, and denoted as , , , , while recording the electrode N potential, denoted as ;
在模式3中,输出模块输出的电流加载在电极A0,A0’上,并且返回电极A1、A1’和电极A2、A2’上,监督回路模块保持电极A1*与电极A2等电位,电极A1*’与电极A2’等电位,数据采集模块记录该模式下电极M2、M2’,电极M1、M1’,电极M0、M0’的电位,并记为、、、、、,同时记录电极N电位,记为;记录电极A0、A0’上的电流,记为、。In mode 3, the current output by the output module is loaded on electrodes A0, A0', and returns to electrodes A1, A1' and A2, A2', the supervisory circuit module keeps electrodes A1* and A2 equipotential, and electrodes A1* 'Equipotential with electrode A2', the data acquisition module records the potentials of electrodes M2, M2', electrodes M1, M1', electrodes M0, M0' in this mode, and recorded as , , , , , , while recording the electrode N potential, denoted as ; The current on the recording electrodes A0 and A0', denoted as , .
优选地,在上述地层电阻率测量方法中,利用所述模式1与所述模式3组合,可以得到深侧向视电阻率:Preferably, in the above-mentioned formation resistivity measurement method, the deep lateral apparent resistivity can be obtained by using the combination of the
其中,为深侧向仪器系数,in, is the deep lateral instrument coefficient,
。 .
优选地,在上述地层电阻率测量方法,利用所述模式2与所述模式3组合,可以得到浅侧向视电阻率:Preferably, in the above-mentioned formation resistivity measurement method, using the combination of the mode 2 and the mode 3, the shallow lateral apparent resistivity can be obtained:
其中,为浅侧向仪器系数,in, is the shallow lateral instrument coefficient,
。 .
优选地,在上述地层电阻率测量方法,利用所述3种工作模式下采集的数据还可以计算得到如下的高分辨率深、浅侧向视电阻率曲线:Preferably, in the above-mentioned formation resistivity measurement method, the following high-resolution deep and shallow lateral apparent resistivity curves can be obtained by using the data collected in the three working modes:
其中,、分别为高分辨率深、浅侧向仪器系数,in, , are the high-resolution deep and shallow lateral instrument coefficients, respectively,
。 .
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
本发明解决了传统双侧向采用硬件聚焦方式,电路通过闭环实现主监控控制,受外围环境影响大,聚焦效果偏差等问题,避免了硬聚焦中监督电极间剩余电位的影响,大幅度地提高了纵向分辨率。同时,解决了仪器中心形成的垂直梯度,进一步增强了仪器的聚焦能力,提高仪器的测量精度。The invention solves the problems such as the traditional double-sided hardware focusing method, the circuit realizes the main monitoring control through a closed loop, is greatly affected by the peripheral environment, and the focusing effect is deviated, avoids the influence of the residual potential between the monitoring electrodes in the hard focusing, and greatly improves the vertical resolution. At the same time, the vertical gradient formed by the center of the instrument is solved, which further enhances the focusing ability of the instrument and improves the measurement accuracy of the instrument.
另外,本发明可以同时获得2条标准深、浅电阻率曲线和2条高分辨率深、浅电阻率曲线;高分辨率测井曲线能识别0.1m的薄层,并且能测量得到0.4m薄层的真实电阻率。In addition, the present invention can simultaneously obtain two standard deep and shallow resistivity curves and two high-resolution deep and shallow resistivity curves; the high-resolution logging curve can identify a thin layer of 0.1 m, and can measure a thin layer of 0.4 m. The true resistivity of the layer.
再者,本发明的高分辨率双侧向测井仪电极系的设计方案可以有效缩短仪器长度,提高仪器在复杂井眼环境下的适用性。Furthermore, the design scheme of the electrode system of the high-resolution dual lateral logging tool of the present invention can effectively shorten the length of the tool and improve the applicability of the tool in a complex wellbore environment.
附图说明Description of drawings
图1为本发明的高分辨率双侧向测井仪电极系的结构示意图。FIG. 1 is a schematic structural diagram of the electrode system of the high-resolution dual lateral logging tool of the present invention.
图2A、图2B分别为本发明的高分辨率双侧向测井仪的模式1、模式3;图2C为采用本发明的高分辨率双侧向测井仪合成得到的深侧向测井模式。Fig. 2A and Fig. 2B are respectively
图3A、图3B分别为本发明的高分辨率双侧向测井仪的模式2、模式3;图3C为采用本发明的高分辨率双侧向测井仪合成得到的浅侧向测井模式。Fig. 3A and Fig. 3B are respectively Mode 2 and Mode 3 of the high-resolution dual-lateral logging tool of the present invention; Fig. 3C is the shallow lateral logging synthesized by using the high-resolution dual-lateral logging tool of the present invention model.
具体实施方式Detailed ways
传统的双侧向测井仪采用硬件聚焦方式,电路通过闭环实现主监控控制,受外围环境影响大(温度变化,电源波动等),残余电压无法消除,聚焦效果偏差(逻辑双侧向主监控放大倍数达到25000倍,接近电路设计的极限)。而本发明采用了软件聚焦方式。软件聚焦是一种崭新的聚焦方式,它利用电场叠加原理,由两个非聚焦状态的电流合成为聚焦电流,聚焦条件被无条件满足,故可防止硬件聚焦过程中监督电极间剩余电流的影响,从而成为提高纵向分辨率的有效方法。The traditional dual lateral logging tool adopts the hardware focusing method, and the circuit realizes the main monitoring control through a closed loop, which is greatly affected by the external environment (temperature changes, power supply fluctuations, etc.) The magnification reaches 25,000 times, which is close to the limit of circuit design). The present invention adopts the software focusing method. Software focusing is a brand-new focusing method. It uses the principle of electric field superposition to synthesize the focusing current from the currents in two non-focusing states. The focusing conditions are unconditionally satisfied, so it can prevent the influence of the residual current between the monitoring electrodes during the hardware focusing process. Thus, it becomes an effective method to improve the vertical resolution.
本发明的高分辨率双侧向测井仪电极系的结构如图1所示,它主要由电极系、绝缘芯棒两部分构成,电极系通过导线与测量电路连接,在整个系统中还包含有参考电极N(未图示),回路电极B。另外,电极系是由设置在一绝缘芯棒上的14个电极构成,从电极系的一端至另一端电极名称依次为A2、A1*、A1、M2、M1、A0、M0、M0’、A0’、M1’、M2’、A1’、A1*’、A2’,并串装在一根绝缘芯棒上,电极之间采用绝缘材料隔开,且绝缘芯棒的中心为一根金属棒,金属棒中心有贯通孔,金属棒与电极系之间绝缘。其中,电极A2、A2’和电极A1、A1’为屏蔽电极,位于电极系的两端,且上述屏蔽电极A2、A2’之间通过导线连接,用来发射屏蔽电流以对主电流进行聚焦。电极A0、A0’为主电极,位于电极系的中间,其被电极M0、M0’分成两部分,电极A0、A0’之间通过导线连接,用来发射主电流。电极系中还包括电极A1*、A1*’、电极M2、M2’、电极M1、M1’和电极M0、M0’等环状电极,该环状电极A1*、A1*’分别用来测量屏蔽电极A1、A1’的电压。另外,两对环状电极M2、M2’和电极M1、M1’用作电压监控,而环状电极M0、M0’位于电极系中间,分别用来测量电极A0、A0’的电压。The structure of the electrode system of the high-resolution dual lateral logging tool of the present invention is shown in Figure 1. It is mainly composed of two parts: an electrode system and an insulating mandrel. The electrode system is connected with the measurement circuit through wires. The whole system also includes There are reference electrode N (not shown) and return electrode B. In addition, the electrode system is composed of 14 electrodes arranged on an insulating mandrel. From one end of the electrode system to the other end, the electrode names are A2, A1*, A1, M2, M1, A0, M0, M0', A0. ', M1', M2', A1', A1*', A2', and are connected in series on an insulating mandrel, the electrodes are separated by insulating materials, and the center of the insulating mandrel is a metal rod, There is a through hole in the center of the metal rod, and the metal rod is insulated from the electrode system. Wherein, electrodes A2, A2' and electrodes A1, A1' are shield electrodes, located at both ends of the electrode system, and the above-mentioned shield electrodes A2, A2' are connected by wires to emit shield current to focus the main current. The electrodes A0, A0' are main electrodes, located in the middle of the electrode system, which are divided into two parts by the electrodes M0, M0', and the electrodes A0, A0' are connected by wires to emit the main current. The electrode system also includes electrodes A1*, A1*', electrodes M2, M2', electrodes M1, M1', electrodes M0, M0' and other ring electrodes, the ring electrodes A1*, A1*' are respectively used to measure the shielding Voltage of electrodes A1, A1'. In addition, two pairs of ring electrodes M2, M2' and electrodes M1, M1' are used for voltage monitoring, while ring electrodes M0, M0' are located in the middle of the electrode system, and are used to measure the voltages of electrodes A0, A0' respectively.
也就是说,在本发明中,电极A2,A2’之间直接用导线连接在一起,然后与电路连接;电极A0,A0’之间直接用导线连接在一起,然后与电路连接,而其它电极直接与电路连接在一起。That is to say, in the present invention, the electrodes A2 and A2' are directly connected together by wires, and then connected to the circuit; the electrodes A0 and A0' are directly connected by wires, and then connected to the circuit, while the other electrodes are connected by wires. connected directly to the circuit.
本实施方式公开了一种采用该高分辨率双侧向测井仪的测井方法。根据软件聚焦中的电场叠加原理,本发明的测井方法可分解为模式1、模式2和模式3这三个不同频率的独立模式,而深、浅侧向的聚焦方式可采用这三种模式两两组合来加以实现。This embodiment discloses a logging method using the high-resolution dual lateral logging tool. According to the electric field superposition principle in software focusing, the logging method of the present invention can be decomposed into three independent modes of different frequencies, namely
图2A、图2B分别为本发明的高分辨率双侧向测井仪的模式1、模式3。图3A、图3B分别为本发明的高分辨率的双侧向测井仪的模式2、模式3。2A and 2B are respectively
如附图2A所示,在模式1中,输出模块输出的电流加载在电极A1、A1’和电极A2、A2’上,辅助监督电路模块保持电极A1*与电极A2等电位,电极A1*’与电极A2’等电位,数据采集模块记录该模式下的电极M2、M2’以及电极M1、M1’的电位,并记为、、、,同时记录电极N的电位,记为。As shown in FIG. 2A, in
如附图3A所示,在模式2中,输出模块输出的电流加载在电极A1,A1’上,并且返回电极A2、A2’上。数据采集模块记录该模式下的电极M2、M2’,电极M1、M1’的电位,并记为、、、,同时记录电极N电位,记为。As shown in FIG. 3A, in mode 2, the current output by the output module is loaded on the electrodes A1, A1' and returned to the electrodes A2, A2'. The data acquisition module records the potentials of electrodes M2, M2', and electrodes M1 and M1' in this mode, and denote them as , , , , while recording the electrode N potential, denoted as .
如附图2B和附图3B所示,在模式3中,输出模块输出的电流加载在电极A0,A0’上,并且返回电极A1、A1’和电极A2、A2’上,监督回路模块保持电极A1*与电极A2等电位,电极A1*’与电极A2’等电位。数据采集模块记录该模式下电极M2、M2’,电极M1、M1’,电极M0、M0’的电位,并记为、、、、、,同时记录电极N电位,记为;同时记录电极A0、A0’上的电流,记为、。As shown in FIG. 2B and FIG. 3B, in mode 3, the current output by the output module is loaded on the electrodes A0, A0', and on the return electrodes A1, A1' and the electrodes A2, A2', the supervision loop module keeps the electrodes A1* is equipotential with electrode A2, and electrode A1*' is equipotential with electrode A2'. The data acquisition module records the potentials of electrodes M2, M2', electrodes M1, M1', electrodes M0, M0' in this mode, and recorded as , , , , , , while recording the electrode N potential, denoted as ; Simultaneously record the current on electrodes A0 and A0', denoted as , .
实施例1Example 1
图2C为采用本发明的高分辨率双侧向测井仪合成得到的深侧向测井模式。利用以上3种工作模式下采集的数据即可计算地层视电阻率。如附图2C所示,利用模式1与模式3组合,可以得到深侧向视电阻率:Fig. 2C is a deep lateral logging pattern synthesized by using the high-resolution dual lateral logging tool of the present invention. The formation apparent resistivity can be calculated using the data collected in the above three working modes. As shown in Figure 2C, the deep lateral apparent resistivity can be obtained by combining
其中,为深侧向仪器系数,in, is the deep lateral instrument coefficient,
。 .
实施例2Example 2
图3C为采用本发明的高分辨率双侧向测井仪合成得到的浅侧向测井模式。利用以上3种工作模式下采集的数据即可计算地层视电阻率。如附图3C所示,利用模式2与模式3组合,能够得到浅侧向视电阻率:FIG. 3C is a shallow lateral logging pattern synthesized by using the high-resolution dual lateral logging tool of the present invention. The formation apparent resistivity can be calculated using the data collected in the above three working modes. As shown in FIG. 3C, the shallow lateral apparent resistivity can be obtained by combining Mode 2 and Mode 3:
其中,为浅侧向仪器系数,in, is the shallow lateral instrument coefficient,
。 .
利用上述的3种工作模式下采集的数据还可以计算得到如下的高分辨率深、浅侧向视电阻率曲线:Using the data collected in the above three working modes, the following high-resolution deep and shallow lateral apparent resistivity curves can also be calculated:
其中,、分别为高分辨率深、浅侧向仪器系数,in, , are the high-resolution deep and shallow lateral instrument coefficients, respectively,
。 .
本发明中,电极A2,A2’短接,电极A0,A0’短接,其它电极不短接。采用驱动回路控制电极A1,A1’之间的电位差消除在仪器中心形成的垂直梯度,即实现,提供更加精确的聚焦条件。In the present invention, electrodes A2 and A2' are short-circuited, electrodes A0 and A0' are short-circuited, and other electrodes are not short-circuited. Use the driving loop to control the potential difference between electrodes A1 and A1' to eliminate the vertical gradient formed in the center of the instrument, that is, to achieve , providing more precise focusing conditions.
本发明采用软聚焦方式,电路实现采用开环方式,受外围环境影响较小,提高了地层电阻率测量时的测量精度,能够有效缩短双侧向测井仪的长度,提高仪器在复杂井眼环境下的适用性。同时,该测井仪及测井方法能够识别探测0.1m的薄层与薄互层,为薄层测井提供有效的测井曲线。The invention adopts the soft focusing method, and the circuit implementation adopts the open-loop method, which is less affected by the peripheral environment, improves the measurement accuracy of the formation resistivity measurement, can effectively shorten the length of the double lateral logging tool, and improves the performance of the tool in complex wellbore. suitability in the environment. At the same time, the logging tool and logging method can identify and detect thin layers and thin interlayers of 0.1 m, and provide effective logging curves for thin layer logging.
以上实施例仅用以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,但本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。The above embodiments are only used to illustrate rather than limit the technical solutions of the present invention. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that the present invention can still be modified or equivalently replaced without Any modifications or partial substitutions that depart from the spirit and scope of the present invention should be included in the scope of the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410572687.6A CN105525918B (en) | 2014-10-24 | 2014-10-24 | Dual lateral logging instrument, electrode system thereof and formation resistivity measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410572687.6A CN105525918B (en) | 2014-10-24 | 2014-10-24 | Dual lateral logging instrument, electrode system thereof and formation resistivity measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105525918A CN105525918A (en) | 2016-04-27 |
CN105525918B true CN105525918B (en) | 2021-09-03 |
Family
ID=55768402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410572687.6A Active CN105525918B (en) | 2014-10-24 | 2014-10-24 | Dual lateral logging instrument, electrode system thereof and formation resistivity measuring method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105525918B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106837320A (en) * | 2017-01-05 | 2017-06-13 | 杭州迅美科技有限公司 | A kind of the Electrical imaging measurement apparatus and method of the backflow of pole plate internal emission |
CN108729898B (en) * | 2017-04-17 | 2023-11-28 | 中国石油集团长城钻探工程有限公司 | Lateral logging instrument electrode system and lateral logging instrument |
CN108729910B (en) * | 2017-04-17 | 2023-07-14 | 中国石油集团长城钻探工程有限公司 | Dual laterolog tool probe and dual laterolog tool with the probe |
CN109281661B (en) * | 2017-07-19 | 2021-09-14 | 中国石油化工股份有限公司 | Quantitative evaluation method and device for double-laterolog |
CN107524438B (en) * | 2017-07-26 | 2024-09-27 | 杭州迅美科技有限公司 | Drill collar azimuth array lateral logging instrument with edge detection capability and measuring method thereof |
CN107762497B (en) * | 2017-09-20 | 2020-12-01 | 中国石油天然气集团公司 | While-drilling electrode current type dual-lateral resistivity logging instrument and method |
CN107816344B (en) * | 2017-09-20 | 2021-03-30 | 中国石油天然气集团公司 | While-drilling lateral electrode system main-screen integrated electrode structure and preparation method thereof |
CN108254620A (en) * | 2017-12-21 | 2018-07-06 | 中国电子科技集团公司第二十二研究所 | Resistivity measurement instrument |
CN109138995B (en) * | 2018-08-13 | 2022-03-01 | 中国石油天然气集团有限公司 | System and method for measuring apparent resistivity while drilling during rotation of drilling tool |
CN111042806A (en) * | 2019-12-19 | 2020-04-21 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | A laboratory array resistivity focusing system and focusing method |
CN111364984B (en) * | 2020-04-24 | 2025-02-11 | 西安思坦仪器股份有限公司 | A high temperature resistant constant power dual lateral logging tool |
CN114198097B (en) * | 2022-02-18 | 2022-06-14 | 东营仪锦能源科技有限公司 | Drilling-following type double lateral logging instrument |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4087740A (en) * | 1973-01-19 | 1978-05-02 | Schlumberger Technology Corporation | Spherical focusing method and apparatus for determining the thickness of a zone in an earth formation traversed by a borehole |
CN2093238U (en) * | 1991-04-26 | 1992-01-15 | 河南石油勘探局测井公司 | Shallow, medium and deep investigation lateral viewing resistivity logging apparatus |
CN1089400C (en) * | 1999-03-30 | 2002-08-21 | 石油大学(北京) | Whole three-dimentional resistivity logging method |
WO2012067599A1 (en) * | 2010-11-15 | 2012-05-24 | Halliburton Energy Services, Inc. | Multi-array laterolog tools and methods |
CN102767367A (en) * | 2012-07-05 | 2012-11-07 | 中国电子科技集团公司第二十二研究所 | High-resolution lateral logger and resistivity-measuring method |
CN102767364A (en) * | 2012-07-05 | 2012-11-07 | 中国电子科技集团公司第二十二研究所 | High-resolution dual-side-direction logging instrument and resistivity measurement method |
CN202788799U (en) * | 2012-08-28 | 2013-03-13 | 中国石油集团川庆钻探工程有限公司 | Electronic circuit of dual laterolog instrument |
US9575201B2 (en) * | 2014-04-11 | 2017-02-21 | Well Resolutions Technology | Apparatus and method for downhole resistivity measurements |
-
2014
- 2014-10-24 CN CN201410572687.6A patent/CN105525918B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4087740A (en) * | 1973-01-19 | 1978-05-02 | Schlumberger Technology Corporation | Spherical focusing method and apparatus for determining the thickness of a zone in an earth formation traversed by a borehole |
CN2093238U (en) * | 1991-04-26 | 1992-01-15 | 河南石油勘探局测井公司 | Shallow, medium and deep investigation lateral viewing resistivity logging apparatus |
CN1089400C (en) * | 1999-03-30 | 2002-08-21 | 石油大学(北京) | Whole three-dimentional resistivity logging method |
WO2012067599A1 (en) * | 2010-11-15 | 2012-05-24 | Halliburton Energy Services, Inc. | Multi-array laterolog tools and methods |
CN102767367A (en) * | 2012-07-05 | 2012-11-07 | 中国电子科技集团公司第二十二研究所 | High-resolution lateral logger and resistivity-measuring method |
CN102767364A (en) * | 2012-07-05 | 2012-11-07 | 中国电子科技集团公司第二十二研究所 | High-resolution dual-side-direction logging instrument and resistivity measurement method |
CN202788799U (en) * | 2012-08-28 | 2013-03-13 | 中国石油集团川庆钻探工程有限公司 | Electronic circuit of dual laterolog instrument |
US9575201B2 (en) * | 2014-04-11 | 2017-02-21 | Well Resolutions Technology | Apparatus and method for downhole resistivity measurements |
Non-Patent Citations (1)
Title |
---|
基于合成聚焦的高分辨率侧向测井仪数值模拟研究;胡海涛等;《地球物理学进展》;20141015;第29卷(第5期);第2178-2182页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105525918A (en) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105525918B (en) | Dual lateral logging instrument, electrode system thereof and formation resistivity measuring method | |
US11982144B2 (en) | Method and system for generating a virtual core | |
CN102650208B (en) | Nuclear magnetic resonance logger probe while drilling and nuclear magnetic resonance logger while drilling | |
US7689363B2 (en) | Dual standoff resistivity imaging instrument, methods and computer program products | |
CN109143390B (en) | A shallow transient electromagnetic fine exploration method based on geometric factor | |
US8030938B2 (en) | Apparatus and method for imaging subsurface materials using a pad having a plurality of electrode sets | |
CN103821506B (en) | Well all resistivity of media cubical arraies imaging measurement method | |
US20160070019A1 (en) | Estimating subsurface formation and invasion properties | |
US7899622B2 (en) | Sequential resistivity imaging with asymmetric electrode arrays | |
CN102767364A (en) | High-resolution dual-side-direction logging instrument and resistivity measurement method | |
US20120265442A1 (en) | Obm resistivity image enhancement using principal component analysis with first moment estimation | |
US20150134254A1 (en) | Focused array laterolog tool | |
CN105093336B (en) | Resistance scan measuring system is visited before focus current method geology | |
CN108729898B (en) | Lateral logging instrument electrode system and lateral logging instrument | |
CN101762825B (en) | Data collecting way by high density electrical method | |
CN108729910B (en) | Dual laterolog tool probe and dual laterolog tool with the probe | |
US10488547B2 (en) | Estimating subsurface formation and invasion properties | |
CN111965712A (en) | A method for correcting the static effect of controllable source audio magnetotelluric method | |
US9328604B2 (en) | Methods and systems for determining standoff between a downhole tool and a geological formation | |
US20100097068A1 (en) | Method and apparatus for borehole wall resisitivity imaging with full circumferential coverage | |
CN108873075B (en) | A fault zone activity monitoring method, exploration method and device | |
CN103643948B (en) | A kind of Dual-electrical azimuthal imaging logging instrument and method | |
US2388896A (en) | Electrical method and apparatus for logging boreholes | |
US2470224A (en) | Ionization chamber | |
CN202645547U (en) | High-resolution azimuthal resistivity dual laterolog tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241202 Address after: 100007 Oil Mansion, 9 North Avenue, Dongcheng District, Beijing, Dongzhimen Patentee after: CHINA NATIONAL PETROLEUM Corp. Country or region after: China Patentee after: CNPC GREATWALL DRILLING Co. Patentee after: CHINA NATIONAL LOGGING Corp. Patentee after: CHINA PETROLEUM LOGGING Co.,Ltd. Address before: 100101 No.101, Anli Road, Chaoyang District, Beijing Patentee before: CNPC GREATWALL DRILLING Co. Country or region before: China Patentee before: CHINA NATIONAL LOGGING Corp. |
|
TR01 | Transfer of patent right |