CN105522444A - 一种降低C/SiC复合材料加工磨削损伤的方法 - Google Patents
一种降低C/SiC复合材料加工磨削损伤的方法 Download PDFInfo
- Publication number
- CN105522444A CN105522444A CN201510874941.2A CN201510874941A CN105522444A CN 105522444 A CN105522444 A CN 105522444A CN 201510874941 A CN201510874941 A CN 201510874941A CN 105522444 A CN105522444 A CN 105522444A
- Authority
- CN
- China
- Prior art keywords
- grinding
- sic composite
- composite material
- ultrasonic vibration
- damage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B1/00—Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
本发明涉及C/SiC复合材料加工工艺,尤其是一种降低C/SiC复合材料加工磨削损伤的方法,将C/SiC复合材料放在超声振动系统的机床上进行加工,该超声振动系统加工用的工具为杯形金刚石砂轮,金刚石磨粒目数为140/170目;金刚石砂轮末端的输出振幅不小于4μm,磨削进给速度为1-2m/min,磨削深度在10μm以下,磨削速度不大于60m/s,超声辅助磨削时杯形金刚石砂轮振动方向平行于磨削表面,砂轮表面工作层磨粒运动轨迹在C/SiC复合材料表面交错重叠,减小了单颗磨粒切厚从而降低了磨削加工损伤。
Description
技术领域
本发明涉及C/SiC复合材料加工工艺,尤其是一种降低C/SiC复合材料加工磨削损伤的方法。
背景技术
碳纤维增强碳化硅基(C/SiC)复合材料具有优良的力学性能以及突出的耐高温、耐磨、轻质等特性,使用温度可达到1650℃,密度为1.7~2.5g/cm3,断裂韧性可达25MPa.m1/2,在国防和航空航天等高新技术领域具有广阔的应用前景。但由于其纤维编织结构,C/SiC复合材料磨削加工时往往出现纤维拔出、纤维阶梯状脆性断裂等缺陷,限制了其应用。
C/SiC复合材料磨削过程中,在磨削力作用下,表层材料受到剪应力与拉应力的综合作用而产生裂纹。由于SiC基体的脆性大于碳纤维,在拉应力作用下,SiC基体首先出现裂纹并沿垂直于纤维/基体界面的方向扩展,到达界面时,裂纹暂时被阻止;纤维/基体界面结合较弱处(孔隙等组织缺陷的存在所致),在基体剪切和纤维、基体的非同步横向收缩作用下,裂纹重新开始扩展,裂纹尺寸增大;随着裂纹的进一步扩展,部分纤维在弱点处也开始出现断裂;最终,纤维出现大规模层状断裂,且部分纤维断头克服界面摩擦阻力从基体中拔出。因此,C/SiC复合材料组织特点决定了其磨削加工表面存在两相交界处微裂纹、纤维层状脆断、纤维拔出的表面形态特点,而磨削过程中的磨削力较大则是产生这些加工损伤的诱导因素。
超声辅助磨削加工是集磨削加工及超声波加工于一体的复合加工技术,在难加工材料加工中具有广阔的应用前景。在超声辅助磨削加工中,金刚石磨料工具在高速旋转的同时以一定振幅沿工具轴向进行超声振动,再辅以某方向的进给运动实现加工。在这一过程中,砂轮工作层金刚石磨粒运动轨迹相互交错重叠,从而使得单颗磨粒切厚减小,磨削力降低,C/SiC复合材料表面磨削加工损伤减小。
发明内容
本发明内容提供一种降低C/SiC复合材料加工磨削损伤的方法,运用这样的方法可以降低磨削加工过程中的磨削力,从而减小C/SiC复合材料加工损伤。
本发明所采用的技术方法是采用超声振动系统、金刚石砂轮和一定的磨削工艺参数范围进行超声辅助磨削加工。具体技术方案如下:
将C/SiC复合材料放在超声振动系统的机床上进行加工,该超声振动系统加工所用的工具为杯形金刚石砂轮,金刚石磨粒目数为140/170目;金刚石砂轮末端的输出振幅不小于4μm,磨削进给速度为1-2m/min,磨削深度在10μm以下,磨削速度不大于60m/s,超声辅助磨削时杯形金刚石砂轮振动方向平行于磨削表面,砂轮表面工作层磨粒运动轨迹在C/SiC复合材料表面交错重叠,减小了单颗磨粒切厚从而降低了磨削加工损伤。
本发明的有益效果
采用超声振动系统、金刚石砂轮和一定的磨削工艺参数范围进行超声辅助磨削加工的C/SiC复合材料表面,具有较小尺寸的纤维脆性断裂尺寸。
附图说明
本发明共有2副附图
图1为超声辅助磨削加工系统示意图;
1-超声振动系统,2-砂轮,3-C/SiC复合材料;
图2超声辅助磨削过程中磨削加工表面磨粒运动轨迹示意图;
具体实施方式
下面结合附图对本发明的实施方式作详细说明。
超声振动系统如图1所示,超声振动系统1和砂轮2用螺栓紧固连接。超声辅助磨削加工时,如图2所示,金刚石砂轮沿Z向进行超声振动,同时沿Y方向做进给运动。金刚石砂轮目数为140/170目。超声辅助磨削时系统谐振频率范围为21.5kHz,杯形金刚石砂轮末端输出振幅为4μm。磨削进给速度为2m/min,磨削深度在10μm以下,磨削速度可达60m/s。超声辅助磨削过程中可定时测量金刚石砂轮末端振幅,以保证超声辅助磨削加工效果。
Claims (1)
1.一种降低C/SiC复合材料加工磨削损伤的方法,其特征在于:将C/SiC复合材料放在超声振动系统的机床上进行加工,该超声振动系统加工用的工具为杯形金刚石砂轮,金刚石磨粒目数为140/170目;金刚石砂轮末端的输出振幅不小于4μm,磨削进给速度为1-2m/min,磨削深度在10μm以下,磨削速度不大于60m/s,超声辅助磨削时杯形金刚石砂轮振动方向平行于磨削表面,砂轮表面工作层磨粒运动轨迹在C/SiC复合材料表面交错重叠,减小了单颗磨粒切厚从而降低了磨削加工损伤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510874941.2A CN105522444A (zh) | 2015-12-02 | 2015-12-02 | 一种降低C/SiC复合材料加工磨削损伤的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510874941.2A CN105522444A (zh) | 2015-12-02 | 2015-12-02 | 一种降低C/SiC复合材料加工磨削损伤的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105522444A true CN105522444A (zh) | 2016-04-27 |
Family
ID=55765149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510874941.2A Pending CN105522444A (zh) | 2015-12-02 | 2015-12-02 | 一种降低C/SiC复合材料加工磨削损伤的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105522444A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106272118A (zh) * | 2016-10-13 | 2017-01-04 | 江苏理工学院 | 超声辅助磨削砂轮磨粒排布策略及磨粒切厚模型建立方法 |
CN109048510A (zh) * | 2018-08-31 | 2018-12-21 | 武汉理工大学 | 一种碳纤维加工过程中的分层控制方法 |
CN112405125A (zh) * | 2020-11-17 | 2021-02-26 | 武汉理工大学 | 一种改性碳纤维复合材料超声辅助磨削装置及磨削方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09290356A (ja) * | 1996-04-24 | 1997-11-11 | Nikon Corp | 超音波振動を用いた平面トラバース研削装置 |
JP2010069594A (ja) * | 2008-09-19 | 2010-04-02 | Toyota Motor Corp | 研削研磨装置と研削研磨方法 |
CN102152175A (zh) * | 2011-01-18 | 2011-08-17 | 哈尔滨工业大学 | 用于微结构表面精密加工的超声振动辅助磨削装置 |
CN102152176A (zh) * | 2011-01-28 | 2011-08-17 | 河南理工大学 | 单激励二维超声振动辅助超精密金刚石砂轮磨削装置 |
CN102166725A (zh) * | 2011-02-15 | 2011-08-31 | 哈尔滨工业大学 | 超硬线性微结构表面的超声振动辅助磨削方法 |
JP2012020370A (ja) * | 2010-07-14 | 2012-02-02 | Denso Corp | 放電超音波重畳研削加工方法 |
JP2014037012A (ja) * | 2012-08-13 | 2014-02-27 | Nagaoka Univ Of Technology | 研削液供給装置 |
CN103769959A (zh) * | 2014-01-27 | 2014-05-07 | 河北工业大学 | 一种超声微磨削加工设备及工艺 |
CN104227510A (zh) * | 2013-06-14 | 2014-12-24 | 无锡市森信精密机械厂 | 一种超声振动辅助磨削加工整体硬质合金刀具的磨削工艺 |
CN104647147A (zh) * | 2013-11-25 | 2015-05-27 | 大连康赛谱科技发展有限公司 | 一种碳纤维复合材料旋转超声铣磨加工装置及方法 |
-
2015
- 2015-12-02 CN CN201510874941.2A patent/CN105522444A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09290356A (ja) * | 1996-04-24 | 1997-11-11 | Nikon Corp | 超音波振動を用いた平面トラバース研削装置 |
JP2010069594A (ja) * | 2008-09-19 | 2010-04-02 | Toyota Motor Corp | 研削研磨装置と研削研磨方法 |
JP2012020370A (ja) * | 2010-07-14 | 2012-02-02 | Denso Corp | 放電超音波重畳研削加工方法 |
CN102152175A (zh) * | 2011-01-18 | 2011-08-17 | 哈尔滨工业大学 | 用于微结构表面精密加工的超声振动辅助磨削装置 |
CN102152176A (zh) * | 2011-01-28 | 2011-08-17 | 河南理工大学 | 单激励二维超声振动辅助超精密金刚石砂轮磨削装置 |
CN102166725A (zh) * | 2011-02-15 | 2011-08-31 | 哈尔滨工业大学 | 超硬线性微结构表面的超声振动辅助磨削方法 |
JP2014037012A (ja) * | 2012-08-13 | 2014-02-27 | Nagaoka Univ Of Technology | 研削液供給装置 |
CN104227510A (zh) * | 2013-06-14 | 2014-12-24 | 无锡市森信精密机械厂 | 一种超声振动辅助磨削加工整体硬质合金刀具的磨削工艺 |
CN104647147A (zh) * | 2013-11-25 | 2015-05-27 | 大连康赛谱科技发展有限公司 | 一种碳纤维复合材料旋转超声铣磨加工装置及方法 |
CN103769959A (zh) * | 2014-01-27 | 2014-05-07 | 河北工业大学 | 一种超声微磨削加工设备及工艺 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106272118A (zh) * | 2016-10-13 | 2017-01-04 | 江苏理工学院 | 超声辅助磨削砂轮磨粒排布策略及磨粒切厚模型建立方法 |
CN106272118B (zh) * | 2016-10-13 | 2018-09-18 | 江苏理工学院 | 超声辅助磨削砂轮磨粒排布策略及磨粒切厚模型建立方法 |
CN109048510A (zh) * | 2018-08-31 | 2018-12-21 | 武汉理工大学 | 一种碳纤维加工过程中的分层控制方法 |
CN112405125A (zh) * | 2020-11-17 | 2021-02-26 | 武汉理工大学 | 一种改性碳纤维复合材料超声辅助磨削装置及磨削方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Su et al. | Novel drill bit based on the step-control scheme for reducing the CFRP delamination | |
Karataş et al. | A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials | |
Geng et al. | Rotary ultrasonic elliptical machining for side milling of CFRP: Tool performance and surface integrity | |
Xiang et al. | Ultrasonic longitudinal-torsional vibration-assisted cutting of Nomex® honeycomb-core composites | |
Liu et al. | Influence of grinding fiber angles on grinding of the 2D–Cf/C–SiC composites | |
Liu et al. | Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP) | |
Liu et al. | Rotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP): a study on cutting force model | |
Zhang et al. | Understanding the machining characteristic of plain weave ceramic matrix composite in ultrasonic-assisted grinding | |
Mehbudi et al. | Applying ultrasonic vibration to decrease drilling-induced delamination in GFRP laminates | |
JP5729554B2 (ja) | 繊維強化型複合材料の加工方法及びその工具 | |
CN105522444A (zh) | 一种降低C/SiC复合材料加工磨削损伤的方法 | |
Su et al. | Study of thrust forces and delamination in drilling carbon-reinforced plastics (CFRPs) using a tapered drill-reamer | |
Dong et al. | Investigation on grinding force and machining quality during rotary ultrasonic grinding deep-small hole of fluorophlogopite ceramics | |
Gao et al. | Sawing stress of SiC single crystal with void defect in diamond wire saw slicing | |
Shan et al. | Three-dimensional numerical simulation for drilling of 2.5 D carbon/carbon composites | |
Li et al. | Hole exit damage and tool wear during the drilling of CFRP with a double-point angle drill | |
Yan et al. | Surface generation mechanism of ceramic matrix composite in ultrasonic assisted wire sawing | |
Chen et al. | Experimental research on wear mechanism of diamond wheels for grinding Cf/SiC composites grooves | |
Li et al. | Research on the rotary ultrasonic facing milling of ceramic matrix composites | |
Wang et al. | Surface grinding of CFRP composites using rotary ultrasonic machining: effects of ultrasonic power | |
Wang et al. | Influence of fiber orientation on machined surface quality in milling of unidirectional CFRP laminates | |
Ding et al. | Experimental study on ultrasonic assisted grinding of C/SiC composites | |
Xu et al. | Machinability of submillimeter holes in ceramic matrix composites by high-frequency ultrasonic vibration-assisted drilling | |
Bai et al. | Wear and breakage behaviors of PCD small-diameter end-mill: a case study on machining 2A12 aluminum alloy | |
Li et al. | Theoretical investigation of vertical elliptic vibration-assisted grinding (EVAG) technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160427 |
|
WD01 | Invention patent application deemed withdrawn after publication |