CN105513080B - 一种红外图像目标显著性评估方法 - Google Patents
一种红外图像目标显著性评估方法 Download PDFInfo
- Publication number
- CN105513080B CN105513080B CN201510962050.2A CN201510962050A CN105513080B CN 105513080 B CN105513080 B CN 105513080B CN 201510962050 A CN201510962050 A CN 201510962050A CN 105513080 B CN105513080 B CN 105513080B
- Authority
- CN
- China
- Prior art keywords
- super
- pixel
- infrared image
- segmentation
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10048—Infrared image
Landscapes
- Image Processing (AREA)
- Radiation Pyrometers (AREA)
- Image Analysis (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510962050.2A CN105513080B (zh) | 2015-12-21 | 2015-12-21 | 一种红外图像目标显著性评估方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510962050.2A CN105513080B (zh) | 2015-12-21 | 2015-12-21 | 一种红外图像目标显著性评估方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105513080A CN105513080A (zh) | 2016-04-20 |
CN105513080B true CN105513080B (zh) | 2019-05-03 |
Family
ID=55721037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510962050.2A Active CN105513080B (zh) | 2015-12-21 | 2015-12-21 | 一种红外图像目标显著性评估方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105513080B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107016409A (zh) * | 2017-03-20 | 2017-08-04 | 华中科技大学 | 一种基于图像显著区域的图像分类方法和系统 |
CN106887002B (zh) * | 2017-04-01 | 2019-09-20 | 南京师范大学 | 一种红外图像序列显著性检测方法 |
CN108802062B (zh) * | 2017-04-27 | 2020-12-18 | 珠海汇金科技股份有限公司 | 一种检测盖章图像印油情况的检测方法及盖章设备 |
CN110415208B (zh) * | 2019-06-10 | 2023-10-17 | 西安电子科技大学 | 一种自适应目标检测方法及其装置、设备、存储介质 |
CN110796650A (zh) * | 2019-10-29 | 2020-02-14 | 杭州阜博科技有限公司 | 图像质量的评估方法及装置、电子设备、存储介质 |
CN112581446A (zh) * | 2020-12-15 | 2021-03-30 | 影石创新科技股份有限公司 | 一种图像的显著性物体检测方法、装置、设备及存储介质 |
CN115439474B (zh) * | 2022-11-07 | 2023-01-24 | 山东天意机械股份有限公司 | 一种电力设备故障快速定位方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102005054A (zh) * | 2010-11-24 | 2011-04-06 | 中国电子科技集团公司第二十八研究所 | 一种实时红外图像目标跟踪方法 |
US8005264B2 (en) * | 2008-06-09 | 2011-08-23 | Arcsoft, Inc. | Method of automatically detecting and tracking successive frames in a region of interesting by an electronic imaging device |
CN102637253A (zh) * | 2011-12-30 | 2012-08-15 | 清华大学 | 基于视觉显著性和超像素分割的视频前景目标提取方法 |
CN102855622A (zh) * | 2012-07-18 | 2013-01-02 | 中国科学院自动化研究所 | 一种基于显著性分析的红外遥感图像海面船只检测方法 |
CN103093454A (zh) * | 2012-12-20 | 2013-05-08 | 杭州电子科技大学 | 一种面向视觉显著性检测的中央周围环绕优化方法 |
CN104574402A (zh) * | 2015-01-12 | 2015-04-29 | 东华大学 | 一种改进的显著性检测方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8175376B2 (en) * | 2009-03-09 | 2012-05-08 | Xerox Corporation | Framework for image thumbnailing based on visual similarity |
-
2015
- 2015-12-21 CN CN201510962050.2A patent/CN105513080B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8005264B2 (en) * | 2008-06-09 | 2011-08-23 | Arcsoft, Inc. | Method of automatically detecting and tracking successive frames in a region of interesting by an electronic imaging device |
CN102005054A (zh) * | 2010-11-24 | 2011-04-06 | 中国电子科技集团公司第二十八研究所 | 一种实时红外图像目标跟踪方法 |
CN102637253A (zh) * | 2011-12-30 | 2012-08-15 | 清华大学 | 基于视觉显著性和超像素分割的视频前景目标提取方法 |
CN102855622A (zh) * | 2012-07-18 | 2013-01-02 | 中国科学院自动化研究所 | 一种基于显著性分析的红外遥感图像海面船只检测方法 |
CN103093454A (zh) * | 2012-12-20 | 2013-05-08 | 杭州电子科技大学 | 一种面向视觉显著性检测的中央周围环绕优化方法 |
CN104574402A (zh) * | 2015-01-12 | 2015-04-29 | 东华大学 | 一种改进的显著性检测方法 |
Non-Patent Citations (3)
Title |
---|
Learning to Detect A Salient Object;Tie Liu 等;《IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE》;20100318;第33卷(第2期);353-367 |
Na Tong等.Saliency Detection with Multi-Scale Superpixels.《IEEE Signal Processing Letters》.2014, |
Saliency Detection in Aerial Imagery Using Multi-Scale;Samir Sahli 等;《IPCV 2012》;20120731;第2页第2.1节 |
Also Published As
Publication number | Publication date |
---|---|
CN105513080A (zh) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105513080B (zh) | 一种红外图像目标显著性评估方法 | |
US10607089B2 (en) | Re-identifying an object in a test image | |
CN106096561B (zh) | 基于图像块深度学习特征的红外行人检测方法 | |
Xu et al. | Depth information guided crowd counting for complex crowd scenes | |
US9158985B2 (en) | Method and apparatus for processing image of scene of interest | |
Zhang et al. | Moving vehicles detection based on adaptive motion histogram | |
CN104978567B (zh) | 基于场景分类的车辆检测方法 | |
US9904868B2 (en) | Visual attention detector and visual attention detection method | |
CN104517095B (zh) | 一种基于深度图像的人头分割方法 | |
CN110110755B (zh) | 基于ptgan区域差距与多重分支的行人重识别检测方法及装置 | |
WO2016165064A1 (zh) | 基于多视角学习的鲁棒性前景检测方法 | |
CN104766065B (zh) | 基于多视角学习的鲁棒性前景检测方法 | |
CN112991238B (zh) | 基于纹理色彩混合式的食物图像分割方法、系统、介质 | |
CN104732534B (zh) | 一种图像中显著目标的抠取方法及系统 | |
JP2004062605A (ja) | シーン識別方法および装置ならびにプログラム | |
CN104715251A (zh) | 一种基于直方图线性拟合的显著目标检测方法 | |
Riaz et al. | Traffic congestion classification using motion vector statistical features | |
CN112465735B (zh) | 行人检测方法、装置及计算机可读存储介质 | |
Ahuja et al. | A survey of recent advances in crowd density estimation using image processing | |
Delibasoglu et al. | Motion detection in moving camera videos using background modeling and FlowNet | |
Sitaram et al. | Still image processing techniques for intelligent traffic monitoring | |
CN110298253A (zh) | 一种基于人口大数据的城市建筑体虚拟显示方法及系统 | |
Mouats et al. | Fusion of thermal and visible images for day/night moving objects detection | |
Wu et al. | Vehicle detection in high-resolution images using superpixel segmentation and CNN iteration strategy | |
Lin et al. | Foreground object detection in highly dynamic scenes using saliency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20160420 Assignee: Nanjing Nanyou Information Industry Technology Research Institute Co. Ltd. Assignor: Nanjing Post & Telecommunication Univ. Contract record no.: X2019980001257 Denomination of invention: Infrared image target salience evaluating method Granted publication date: 20190503 License type: Common License Record date: 20191224 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: NANJING NANYOU INSTITUTE OF INFORMATION TECHNOVATION Co.,Ltd. Assignor: NANJING University OF POSTS AND TELECOMMUNICATIONS Contract record no.: X2019980001257 Date of cancellation: 20220304 |
|
EC01 | Cancellation of recordation of patent licensing contract |