CN105510840A - 应用于高精度荷电状态估算的脉冲宽度选取方法 - Google Patents

应用于高精度荷电状态估算的脉冲宽度选取方法 Download PDF

Info

Publication number
CN105510840A
CN105510840A CN201510973419.XA CN201510973419A CN105510840A CN 105510840 A CN105510840 A CN 105510840A CN 201510973419 A CN201510973419 A CN 201510973419A CN 105510840 A CN105510840 A CN 105510840A
Authority
CN
China
Prior art keywords
battery
pulse width
state
soc
rsqb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510973419.XA
Other languages
English (en)
Other versions
CN105510840B (zh
Inventor
高静
高天野
罗韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201510973419.XA priority Critical patent/CN105510840B/zh
Publication of CN105510840A publication Critical patent/CN105510840A/zh
Application granted granted Critical
Publication of CN105510840B publication Critical patent/CN105510840B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及电动汽车电池动力领域,为实现在面对变化的电流时也可以有良好的荷电状态估算精度。为此,本发明采取的技术方案是,应用于高精度荷电状态估算的脉冲宽度选取方法,步骤是,在离线标定的实验条件下,用满下式的脉冲宽度测量出一组对应各种电池的荷电状态水平的脉冲响应并将它们储存在一个查找表中,即将电池有效电池的荷电状态值的全范围均分成n个独立值,每个值对应一个确定的脉冲响应hn[k];完成脉冲响应的查找表,比较路端电压的测量值和应用查找表中的脉冲响应计算出的卷积值,确定此状态下电池的电池的荷电状态。本发明主要应用于电动汽车电池动力计量场合。

Description

应用于高精度荷电状态估算的脉冲宽度选取方法
技术领域
本发明涉及电动汽车电池动力领域,尤其涉及动力锂电池在使用状态时荷电状态的估计问题。具体讲,涉及应用于高精度荷电状态估算的脉冲宽度选取方法。
技术背景
近年来,为了解决能源与环境的双重问题,具有低排放低噪音的电动汽车成为了各大汽车制造商关注的焦点。在电动汽车的电源管理系统中,电池的荷电状态(SoC,StateofCharge)是十分重要的关键参数,因为它表征了电池内储存剩余能量的多少。一般来讲,令锂离子电池的SoC保持在一个合适的范围内,例如20%~95%,有利于保护电池的功能完整性。
开路电压法是一种相对很精确的SoC估算方法,由于开路电压在SoC变化的全范围内均不同,表明开路电压与SoC存在定量的线性关系,因此可通过放电实验测量开路电压来估算对应的SoC值。开路电压法需要将电池组经历一个静态存放过程使其内部达到平衡,故无法应用于电动汽车等动态环境中。基于脉冲响应的荷电状态估算方法将开路电压法间接的应用在了电池的使用过程中,但是在面对变化的电流时,该方法的精度较低,对荷电状态的估计误差较大。
发明内容
为克服现有技术的不足,实现在面对变化的电流时也可以有良好的荷电状态估算精度。为此,本发明采取的技术方案是,应用于高精度荷电状态估算的脉冲宽度选取方法,步骤是,在离线标定的实验条件下,用满下式的脉冲宽度测量出一组对应各种电池的荷电状态水平的脉冲响应并将它们储存在一个查找表中,即将电池有效电池的荷电状态值的全范围均分成n个独立值,每个值对应一个确定的脉冲响应hn[k];
&Delta; < 0.2 w = T 10 &pi; - - - ( 8 )
式中,△代表脉冲宽度,T是电流周期,w是角频率;
完成脉冲响应的查找表后,在给定时间区间内电池的输出电压通过工作电流的测量值与查找表中存储的全体冲激响应的卷积和计算出来,这样,对任意一个工作电流可计算出一组共n个输出电压,如下式:
U n &lsqb; k &rsqb; = i &lsqb; k &rsqb; * h n &lsqb; k &rsqb; &DoubleRightArrow; U n &lsqb; k &rsqb; = &Sigma; j = 1 N i &lsqb; j &rsqb; * h n &lsqb; k - j &rsqb; - - - ( 9 )
其中,UN[k]表示路端电压,i[k]表示电流,hn[k]表示脉冲响应,k表示离散时间。
比较路端电压的测量值和应用查找表中的脉冲响应计算出的卷积值,选取最佳匹配,便可确定电池此状态对应的正确脉冲响应,从而确定此状态下电池的电池的荷电状态。
本发明的特点及有益效果是:本发明具有开路电压法估算准确的优点,并且在电池电流变化时有较高的荷电状态估算精度。使用查找表的方式来估算电池的荷电状态,整个方法简单易行。
附图说明:
图1电池的戴维南等效电路模型。
图2一种典型的输入脉冲波形。
图3Uoc-UL实际响应曲线。
图4误差曲线。
具体实施方式
本发明提出一种应用于高精度荷电状态估算的脉冲宽度选取方法,通过对脉冲宽度的合理选取,使得该方法在面对变化的电流时也可以有良好的荷电状态估算精度。
在一般的基于脉冲响应的荷电状态估算方法中,脉冲宽度要小于电池系统时间常数τ的2/9,而锂电池的时间常数一般在30s至60s不等,所以脉冲宽度的选取一般为1s,脉冲强度为1A。这种选取在电池的输出电流变化不大时可以较为准确地估算电池的SOC,但在实际应用中,电池的电流可能存在变化,这样的脉冲宽度选取显然不能满足精度的要求。在电流变化频率较快时,脉冲宽度的选取不仅与电池的时间常数有关,还与电流的变化频率有关。
建立一个合理的电池模型对于模拟仿真电池的激励响应关系以及提高SoC估算精度有十分重要的意义。戴维南等效电路模型结构清楚,物理意义明确,便于对动态响应特性进行仿真或用数学方法计算其状态空间方程,因而在目前的研究中得到了广泛的应用。考察图1所示的锂电池一阶戴维南行将电路模型,R0表示电池的电极和封装电阻;Rp表示电池的内阻;Cp是电池的电容。三者构成了一个线性时不变系统。Uoc表示电池的开路电压,UL表示电池的路端电压,即Uoc-UL为一个线性时不变系统。令模型中的线性时不变系统的单位冲激响应为h(t),脉冲函数如图2所示,输入f(t)=sinwt。那么系统的实际响应应为h(t)与f(t)的卷积h(t)*f(t),而在应用的过程中计算得到的响应为h(t)*I(t)*f(t)。若让I(t)近似可以看成单位冲激函数,那么f(t)≈I(t)*f(t)。
f(t)的拉普拉斯变换为
F ( s ) = w w 2 + s 2 - - - ( 1 )
那么I(t)*f(t)的拉普拉斯变换为
U ( s ) = 1 &Delta; s ( 1 - e - &Delta; s ) w w 2 + s 2 - - - ( 2 )
将式(2)中e-Δs项在s=0处展开成泰勒级数,得:
U ( s ) = &lsqb; 1 - &Delta; s 2 ! + ( - &Delta; s ) 2 3 ! - ( - &Delta; s ) 3 4 ! + ... &rsqb; w w 2 + s 2 = w w 2 + s 2 - &Delta; w s 2 ! ( w 2 + s 2 ) + &Delta; 2 ws 2 3 ! ( w 2 + s 2 ) - &Delta; 3 ws 3 4 ! ( w 2 + s 2 ) + ... - - - ( 3 )
为了I(t)满足单位冲激响应的性质,式中除第一项应该均为0,所以
&Delta; w &RightArrow; 0 &DoubleRightArrow; &Delta; < < 1 w = T 2 &pi; - - - ( 4 )
至此证明,如果输入I(t)的脉冲宽度Δ远小于电流变化周期T与2π的比值,则可以认为I(t)在变化电流sinwt下是单位冲激函数的一个工程近似。
下面继续讨论脉冲宽度与电流变化频率的关系,以便进一步量化电流脉冲宽度的标准。考察式(3)中的前两项,认为其余高阶项非常小而可以忽略。那么
U ( s ) = w w 2 + s 2 - &Delta; w s 2 ! ( w 2 + s 2 ) - - - ( 5 )
U ( t ) = sin w t - &Delta; w 2 ! cos w t - - - ( 6 )
由上式可以看出,U(t)对于sinwt来说有一个周期变化的误差,现规定该误差的变化幅值小于sinwt幅值的10%可以忽略第二项,则
&Delta; w 2 ! < 0.1 - - - ( 7 )
&Delta; < 0.2 w = T 10 &pi; - - - ( 8 )
式中,△代表脉冲宽度,T是电流周期,w是角频率;
由式(8)可知,当电流变化较快时,为了保证计算Uoc-UL时的误差在10%以内,脉冲宽度的选取应满足式(8)。在离线标定的实验条件下,用满足式(8)的脉冲宽度测量出一组对应各种SOC水平的脉冲响应并将它们储存在一个查找表中,即将电池有效SOC值的全范围均分成n个独立值,每个值对应一个确定的脉冲响应(hn[k]);完成脉冲响应的查找表后,在给定时间区间内电池的输出电压可以通过工作电流的测量值与查找表中存储的全体冲激响应的卷积和计算出来。这样,对任意一个工作电流可计算出一组共n个输出电压,如下式:
U n &lsqb; k &rsqb; = i &lsqb; k &rsqb; * h n &lsqb; k &rsqb; &DoubleRightArrow; U n &lsqb; k &rsqb; = &Sigma; j = 1 N i &lsqb; j &rsqb; * h n &lsqb; k - j &rsqb; - - - ( 9 )
其中,UN[k]表示路端电压,i[k]表示电流,hn[k]表示脉冲响应,k表示离散时间。
比较路端电压的测量值和应用查找表中的脉冲响应计算出的卷积值,选取最佳匹配,便可以确定电池此状态对应的正确脉冲响应。由于对应每个脉冲响应的SOC值是已知的,故此状态下电池的SOC便确定了。
该方法具有开路电压法估算准确的优点,并且在电池电流变化时有较高的荷电状态估算精度。使用查找表的方式来估算电池的荷电状态,整个方法简单易行。
本文使用了一组实际的锂电池模型参数为例来描述电池的脉冲响应,其具体参数如下:电池的荷电状态为4%,R0=88mΩ,Cp=581.29F,τ=48.96s。令w=2π,则Uoc-UL的实际如图3所示。图4表示的是不同脉冲宽度下Uoc-UL的估算误差曲线。
由曲线可以看出,电流的变化频率为1Hz时,若取Δ=1s则计算误差非常大,误差大小与响应幅值相当,这是因为在sinwt的电流下,1s的脉冲宽度不能再近似成单位冲激函数。当Δ=0.1s时误差减小。当脉冲宽度满足式(8),即Δ=0.03s时,其最大误差在8mV左右,对荷电状态影响较小,可以更为准确地估算荷电状态。
使用本方法来估算锂电池的SoC关键在于脉冲宽度的选取,要根据实际的使用情况来决定建立查找表时所使用的脉冲宽度,在实际工程应用中,脉冲宽度的选取,要依据电流的最大变化频率来选择,在电流时常变化的环境中应该取更小的脉冲宽度,以保证更精确的荷电状态估算。脉冲宽度不仅要小于电池系统时间常数τ的2/9,还应满足式(8)。

Claims (1)

1.一种应用于高精度荷电状态估算的脉冲宽度选取方法,其特征是,在离线标定的实验条件下,用满下式的脉冲宽度测量出一组对应各种电池的荷电状态水平的脉冲响应并将它们储存在一个查找表中,即将电池有效电池的荷电状态值的全范围均分成n个独立值,每个值对应一个确定的脉冲响应hn[k];
&Delta; < 0.2 w = T 10 &pi; - - - ( 8 )
式中,Δ代表脉冲宽度,T是电流周期,w是角频率;
完成脉冲响应的查找表后,在给定时间区间内电池的输出电压通过工作电流的测量值与查找表中存储的全体冲激响应的卷积和计算出来,这样,对任意一个工作电流可计算出一组共n个输出电压,如下式:
U n &lsqb; k &rsqb; = i &lsqb; k &rsqb; * h n &lsqb; k &rsqb; &DoubleRightArrow; U n &lsqb; k &rsqb; = &Sigma; j = 1 N i &lsqb; j &rsqb; * h n &lsqb; k - j &rsqb; - - - ( 9 )
其中,UN[k]表示路端电压,i[k]表示电流,hn[k]表示脉冲响应,k表示离散时间;
比较路端电压的测量值和应用查找表中的脉冲响应计算出的卷积值,选取最佳匹配,便可确定电池此状态对应的正确脉冲响应,从而确定此状态下电池的电池的荷电状态。
CN201510973419.XA 2015-12-18 2015-12-18 应用于高精度荷电状态估算的脉冲宽度选取方法 Expired - Fee Related CN105510840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510973419.XA CN105510840B (zh) 2015-12-18 2015-12-18 应用于高精度荷电状态估算的脉冲宽度选取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510973419.XA CN105510840B (zh) 2015-12-18 2015-12-18 应用于高精度荷电状态估算的脉冲宽度选取方法

Publications (2)

Publication Number Publication Date
CN105510840A true CN105510840A (zh) 2016-04-20
CN105510840B CN105510840B (zh) 2018-08-07

Family

ID=55718952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510973419.XA Expired - Fee Related CN105510840B (zh) 2015-12-18 2015-12-18 应用于高精度荷电状态估算的脉冲宽度选取方法

Country Status (1)

Country Link
CN (1) CN105510840B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156393A (ja) * 2000-11-22 2002-05-31 Nec Corp 電池電圧測定回路
US20120306504A1 (en) * 2011-06-01 2012-12-06 Johannes Petrus Maria Van Lammeren Battery impedance detection system, apparatus and method
CN104422541A (zh) * 2013-08-23 2015-03-18 中兴通讯股份有限公司 移动终端的电池检测电路、方法及移动终端
US20150145520A1 (en) * 2013-11-26 2015-05-28 Infineon Technologies Ag Circuit and method for evaluating cells in a battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156393A (ja) * 2000-11-22 2002-05-31 Nec Corp 電池電圧測定回路
US20120306504A1 (en) * 2011-06-01 2012-12-06 Johannes Petrus Maria Van Lammeren Battery impedance detection system, apparatus and method
CN104422541A (zh) * 2013-08-23 2015-03-18 中兴通讯股份有限公司 移动终端的电池检测电路、方法及移动终端
US20150145520A1 (en) * 2013-11-26 2015-05-28 Infineon Technologies Ag Circuit and method for evaluating cells in a battery
CN104678307A (zh) * 2013-11-26 2015-06-03 英飞凌科技股份有限公司 用于评估电池中的电池单元的电路和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AMIR HOSSEIN RANJBAR ET.: "Online Estimation of State of Charge in Li-Ion Batteries Using Impulse Response Concept", 《IEEE TRANSACTION ON SMART GRID》 *

Also Published As

Publication number Publication date
CN105510840B (zh) 2018-08-07

Similar Documents

Publication Publication Date Title
CN102445663B (zh) 一种电动汽车电池健康状态估算的方法
CN102680795B (zh) 一种二次电池内阻的实时在线估计方法
EP2321663B1 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
US10254322B2 (en) System and method for the measurement and prediction of the charging efficiency of accumulators
CN103250066B (zh) 感测电池容量的系统和方法
US20130069660A1 (en) Method for in situ battery diagnostic by electrochemical impedance spectroscopy
CN103675683A (zh) 一种锂电池荷电状态(soc)估算方法
CN105353313A (zh) 电池荷电状态的估算方法和装置
CN104749529A (zh) 锂电池充放电特性的标定方法及充放电特性标定仪
CN104392080A (zh) 一种锂电池分数阶变阶等效电路模型及其辨识方法
CN104407298A (zh) 一种锂离子电池组可用剩余容量计算方法
CN105334462A (zh) 电池容量损失在线估算方法
CN105388426A (zh) 估计电池健康寿命soh的方法和装置
CN113433464A (zh) 一种适用于富锂锰基电池的高阶模型参数辨识方法和系统
CN104267261A (zh) 基于分数阶联合卡尔曼滤波的二次电池简化阻抗谱模型参数在线估计方法
CN110045288A (zh) 一种基于支持向量回归的锂离子电池容量在线估计方法
EP3594705A1 (en) Method and device for estimating service capacity and state of health of cell and battery system
Tan et al. Joint estimation of ternary lithium-ion battery state of charge and state of power based on dual polarization model
CN110554321A (zh) 一种实时检测退役动力电池soc的方法
CN105093129A (zh) 一种储能电池剩余容量检测方法
CN104122884A (zh) 一种电池管理系统的模拟测试装置
CN111142025A (zh) 一种电池soc估算方法、装置、存储介质及电动汽车
CN110210147A (zh) 估算电池健康状态的仿真装置及仿真方法
CN111624505A (zh) 复合电源用功率型锂电池内阻测量方法
CN110716146A (zh) 一种动力电池开路电压的估计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180807

Termination date: 20181218

CF01 Termination of patent right due to non-payment of annual fee