CN105503970B - 一种白藜芦醇苷酯类衍生物及其制备方法和应用 - Google Patents

一种白藜芦醇苷酯类衍生物及其制备方法和应用 Download PDF

Info

Publication number
CN105503970B
CN105503970B CN201510839724.XA CN201510839724A CN105503970B CN 105503970 B CN105503970 B CN 105503970B CN 201510839724 A CN201510839724 A CN 201510839724A CN 105503970 B CN105503970 B CN 105503970B
Authority
CN
China
Prior art keywords
polydatin
lipase
vinyl
ester derivative
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510839724.XA
Other languages
English (en)
Other versions
CN105503970A (zh
Inventor
王朝宇
毕艳红
杨荣玲
赵祥杰
朱春
柳迎春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201510839724.XA priority Critical patent/CN105503970B/zh
Publication of CN105503970A publication Critical patent/CN105503970A/zh
Application granted granted Critical
Publication of CN105503970B publication Critical patent/CN105503970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/203Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开一种白藜芦醇苷酯类衍生物,其结构如下所示其中:R代表2‑18个碳原子的直链或支链的饱和烷酰基或不饱和烷酰基。该白藜芦醇苷酯类衍生物制备方法为将摩尔比为1:1~50的白藜芦醇苷和酰基供体加入到有机溶剂中,白藜芦醇苷在有机溶剂中的浓度为0.1~60mg/mL,然后按脂肪酶与白藜芦醇苷质量比1~20:1加入脂肪酶,混合均匀,在20~80℃、100~300rpm下振荡反应0.5~72 h,分离纯化,得白藜芦醇苷酯类衍生物。具有抑菌性,对金黄色葡萄球菌的抑菌效果显著,同时可用于清除DPPH自由基、羟自由基和超氧阴离子。

Description

一种白藜芦醇苷酯类衍生物及其制备方法和应用
技术领域
本发明属于生物催化与生物合成领域,涉及一种白藜芦醇苷酯类衍生物及其制备方法和应用。
背景技术
白藜芦醇苷,又名虎杖苷,是一种天然黄酮类活性成分,属羟基二苯乙烯类化合物,在中药虎杖中含量较高,是中药虎杖的主要药效成分之一,具有显著的抗炎、抗病毒、抗氧化、抗肿瘤、抗辐射和免疫调节等诸多生理活性。从自然界中寻找活性先导化合物,再进行结构修饰,是创新药物发现的重要思路,具有风险相对较小、投资少、见效快的特点,适合我国药物研发的实际。如将多羟基糖苷类或核苷类药物侧链上的羟基或羧基酯化,可获得羧酸酯类前药,该类前药在细胞膜穿透性、水溶性、对酶的稳定性、生物利用度及半衰期等方面均较母体药物有很大提高。因此,对白藜芦醇苷中的功能基团进行结构修饰以期获得具有更高药理活性的新型药物化合物的研究工作一直以来都备受关注。
传统黄酮类化合物的酯类衍生物的合成主要采用化学法,包括基团保护法和直接酰化法,其主要弊端是区域选择性差,产生大量的副产物,产物分离困难,产率较低,反应条件苛刻,耗能大,产生的“三废”多,容易造成环境污染,且大量有机溶剂的使用也为酯类衍生物的安全性带来隐患。因此,开发低成本、高效、高选择性的合成工艺方法以取代传统的化学方法具有重要的实践意义。
发明内容
本发明目的在于针对上述不足,提供一种白藜芦醇苷酯类衍生物。同时,还提供了一种生物酶法制备白藜芦醇苷活性酯衍生物的方法,得到的白藜芦醇苷酯类衍生物可应用于抑菌及清除自由基。
为实现上述目的,本发明采取如下技术方案:
一种白藜芦醇苷酯类衍生物,其结构如通式(Ι)所示:
其中:R代表2-18 个碳原子的直链或支链的饱和烷酰基或不饱和烷酰基。
所述的白藜芦醇苷酯类衍生物具体为6''-O-白藜芦醇苷巴豆酸酯、6''-O-白藜芦醇苷山梨酸酯、6''-O-白藜芦醇苷十一碳烯酸乙烯酯,结构式依次如式(Ⅱ)、式(Ⅲ)和式(Ⅳ)所示:
上述白藜芦醇苷酯类衍生物的制备方法:将摩尔比为1:1~50的白藜芦醇苷和酰基供体加入到有机溶剂中,白藜芦醇苷在有机溶剂中的浓度为0.1~60mg/mL,然后按脂肪酶与白藜芦醇苷质量比1~20:1加入脂肪酶,混合均匀,在20~80℃、100~300rpm下振荡反应0.5~72 h,分离纯化,得白藜芦醇苷酯类衍生物。
所述的酰基供体为巴豆酸乙烯酯、山梨酸乙烯酯或十一碳烯酸乙烯酯。
所述的脂肪酶为脂肪酶Candida antarctica B、脂肪酶Thermomyces lanuginosus、脂肪酶Rhizomucor miehei或脂肪酶Burkholderia cepacia
所述的脂肪酶Candida antarctica B,固定化于大孔阴离子树脂,比酶活为44.04U/g;所述的脂肪酶Thermomyces lanuginosus,固定化于大孔阴离子树脂,比酶活为55.02U/g;所述的脂肪酶Rhizomucor miehei,固定化于大孔阴离子树脂,比酶活为12.57U/g;所述的脂肪酶Burkholderia cepacia,固定化于硅藻土,比酶活为12.36U/g。
所述的有机溶剂为叔戊醇、环己酮、2-甲基四氢呋喃、丙酮、叔丁醇、1,4-二氧六环、四氢呋喃和乙腈中的一种或几种。
所述的分离纯化方法为:将反应混合物过滤除酶,滤液用体积比1:4的石油醚/乙酸乙酯梯度洗脱,收集洗脱液旋转蒸发,真空干燥至白色粉末状。
本发明白藜芦醇苷酯类衍生物的应用,其具有抑菌性,对金黄色葡萄球菌的抑菌效果显著,同时可用于清除DPPH自由基、羟自由基和超氧阴离子。
本发明针对白藜芦醇的具体理化性质,通过大量的实验筛选确定了能够生物催化合成白藜芦醇苷酯化衍生物的反应体系。一般认为,酶在疏水性溶剂中的催化活性比在亲水性溶剂中高,酶促反应也就更易进行。对于本发明而言,白藜芦醇苷属于强极性化合物,在疏水性溶剂中的溶解度非常低,这成为酶法修饰白藜芦醇苷生成酯类衍生物的一个巨大的障碍。故前人的研究中,大多选用强极性溶剂,如吡啶、DMSO和DMF等作为反应介质,但强极性的有机溶剂易于夺取酶分子表面的必需水而使酶失活。另一方面,研究表明可以通过改变反应介质来调控反应的选择性,如区域选择性、对映体选择性和底物选择性等。同时,在非水介质中,底物、产物分配的改变,溶剂本身具有的分子毒性和相毒性都可能影响酶的催化活性。为此,本发明在前期大量实验的基础上,选取了九种疏水性不同的有机溶剂(叔戊醇、叔丁醇、环己酮、2-甲基四氢呋喃、DMF、1,4-二氧六环、四氢呋喃、乙腈、丙酮),固定化酶在这些溶剂中催化白藜芦醇苷酰化反应的状况差异较大。尽管底物在强极性溶剂,如DMF中具有高的溶解度,但酶在这些介质中没有表现出活性。白藜芦醇苷在其他溶剂中均有一定的溶解度,且酶在其中均存在一定的反应活性,白藜芦醇苷酯化衍生物的转化率也各不相同。 而其中采用2-甲基四氢呋喃,酶促反应在其中反应速度最快,转化率最高达到99%以上,对酶反应的区域选择性无影响,对合成的几种白藜芦醇苷酯类衍生物具有普遍适用性。
本发明与现有技术相比具有如下的优点:
1)以脂肪酸烯酯为酰基供体,采用脂肪酶催化白藜芦醇苷进行酰化反应,合成白藜芦醇苷酯类衍生物,具有区域选择性高,产率高,产物纯度高,工艺简单可控的优点。
2)本发明反应条件温和,环境友好,克服了传统化学方法选择性低、易生成副产物、需要保护和脱保护操作及产率低等缺点。
3)经过酯化后,白藜芦醇苷酯化衍生物其抗氧化性得到改善,其对金黄色葡萄球菌的抑制活性得到很大提高,其对清除DPPH自由基、羟自由基和超氧阴离子的清除效果明显。
附图说明
图1为实施例10中不同待测液对DPPH自由基清除能力效果对比图;
图2为实施例10中不同待测液对羟自由基清除能力效果对比图;
图3为实施例10中不同待测液对超氧阴离子清除能力效果对比图;
图中:P为白藜芦醇苷;P4为6''-O-白藜芦醇苷巴豆酸酯;P6为6''-O-白藜芦醇苷山梨酸酯;P11为6''-O-白藜芦醇苷十一碳烯酸酯。
具体实施方式
为更好地理解本发明,下面结合实施例对本发明做进一步的详细说明,但是本发明要求保护的范围并不局限于实施例的范围。
下述实施例中所采用的脂肪酶:
脂肪酶Candida antarctica B,固定化于大孔阴离子树脂,比酶活为44.04U/g;
脂肪酶Thermomyces lanuginosus,固定化于大孔阴离子树脂,比酶活为55.02U/g;
脂肪酶Rhizomucor miehei,固定化于大孔阴离子树脂,比酶活为12.57U/g,购买于Novozymes公司;
脂肪酶Burkholderia cepacia,固定化于硅藻土,比酶活为12.36U/g,购买于日本Amano公司。
实施例1:
向带塞反应瓶中加入3 mL叔戊醇,然后加入12 mg白藜芦醇苷和21 mg山梨酸乙烯酯,再加入100 mg 脂肪酶Thermomyces lanuginosus,混合均匀后,置于40℃,200 rpm的水浴恒温振荡器内振荡,利用高效液相色谱监测反应,反应10 h后,过滤除去脂肪酶,滤液用体积比1:4的石油醚/乙酸乙酯梯度洗脱,收集洗脱液旋转蒸发,真空干燥至白色粉末状,即得6''-O-白藜芦醇苷山梨酸酯,产率为68.4%,区域选择性大于99%。
1H NMR (DMSO-d 6) δ: 9.63 (br s, 1H, OH phenolic), 9.51 (br s, 1H, OHphenolic), 7.43 (d, 2H, H2'+H6'), 7.18-7.13 (m, 1H, H4'''), 7.05 (d, 1H, Hvinyl),6.91 (d, 1H, H3'''), 6.88 (t, 1H, H2'''), 6.87 (t, 1H, Hvinyl), 6.81 (d, 1H, H3'),6.70 (br s, 1H, H5'), 6.63 (br s, 1H, H2), 6.36 (t, 1H, H6), 6.16-6.12 (m, 1H,H5'''), 5.80 (dd, 1H, H4), 5.42 (br s, 1H, OH2''), 5.36 (br s, 1H, OH3''), 5.24(br s, 1H, OH4''), 4.94 (d, 1H, H1''), 4.47 (d, 1H, H6''), 4.11 (dd, 1H, H6''),3.74-3.71 (m, 1H, H5''), 3.39-3.36 (m, 1H, H2''), 3.32-3.30 (m, 1H, H3''), 3.25-3.22 (m, 1H, H4''), 1.71 (d, 3H, H6'''). 13C NMR (DMSO-d 6) δ: 166.77 (C1'''),159.05 (C3), 158.86 (C5), 157.85 (C4'), 145.64 (C3'''), 140.43(C4'''), 139.82(C1), 129.86 (C2'+C6'), 128.95 (C5'''+C1'), 128.40 (Cvinyl), 125.76 (Cvinyl), 118.75(C2'''), 116.05 (C3'+C5'), 107.62 (C6), 104.79 (C2), 103.37 (C1''), 100.55 (C4),76.89 (C2''), 74.29 (C5''), 73.62 (C3''), 70.59 (C4''), 64.17 (C6''), 18.77(C6''')。
实施例2:
向带塞反应瓶中加入3 mL叔戊醇,然后加入12 mg白藜芦醇苷和24 mg山梨酸乙烯酯,再加入100 mg 脂肪酶Rhizomucor miehei,混合均匀后,置于50℃,180 rpm的水浴恒温振荡器内振荡,利用高效液相色谱监测反应,反应5 h后,过滤除去脂肪酶,滤液用体积比1:4的石油醚/乙酸乙酯梯度洗脱,收集洗脱液旋转蒸发,真空干燥至白色粉末状,即得6''-O-白藜芦醇苷山梨酸酯,产率为5.2%,区域选择性大于99%。
1H NMR (DMSO-d 6) δ: 9.63 (br s, 1H, OH phenolic), 9.51 (br s, 1H, OHphenolic), 7.43 (d, 2H, H2'+H6'), 7.18-7.13 (m, 1H, H4'''), 7.05 (d, 1H, Hvinyl),6.91 (d, 1H, H3'''), 6.88 (t, 1H, H2'''), 6.87 (t, 1H, Hvinyl), 6.81 (d, 1H, H3'),6.70 (br s, 1H, H5'), 6.63 (br s, 1H, H2), 6.36 (t, 1H, H6), 6.16-6.12 (m, 1H,H5'''), 5.80 (dd, 1H, H4), 5.42 (br s, 1H, OH2''), 5.36 (br s, 1H, OH3''), 5.24(br s, 1H, OH4''), 4.94 (d, 1H, H1''), 4.47 (d, 1H, H6''), 4.11 (dd, 1H, H6''),3.74-3.71 (m, 1H, H5''), 3.39-3.36 (m, 1H, H2''), 3.32-3.30 (m, 1H, H3''), 3.25-3.22 (m, 1H, H4''), 1.71 (d, 3H, H6'''). 13C NMR (DMSO-d 6) δ: 166.77 (C1'''),159.05 (C3), 158.86 (C5), 157.85 (C4'), 145.64 (C3'''), 140.43(C4'''), 139.82(C1), 129.86 (C2'+C6'), 128.95 (C5'''+C1'), 128.40 (Cvinyl), 125.76 (Cvinyl), 118.75(C2'''), 116.05 (C3'+C5'), 107.62 (C6), 104.79 (C2), 103.37 (C1''), 100.55 (C4),76.89 (C2''), 74.29 (C5''), 73.62 (C3''), 70.59 (C4''), 64.17 (C6''), 18.77(C6''')。
实施例3:
向带塞反应瓶中加入3 mL 2-甲基四氢呋喃,然后加入12 mg白藜芦醇苷和60 mg山梨酸乙烯酯,再加入60 mg 脂肪酶 Thermomyces lanuginosus,混合均匀后,置于65℃,250 rpm的水浴恒温振荡器内振荡,利用高效液相色谱监测反应,反应5 h后,过滤除去脂肪酶,滤液用体积比1:4的石油醚/乙酸乙酯梯度洗脱,收集洗脱液旋转蒸发,真空干燥至白色粉末状,即得6''-O-白藜芦醇苷山梨酸酯,产率为99%,区域选择性大于99%。
1H NMR (DMSO-d 6) δ: 9.63 (br s, 1H, OH phenolic), 9.51 (br s, 1H, OHphenolic), 7.43 (d, 2H, H2'+H6'), 7.18-7.13 (m, 1H, H4'''), 7.05 (d, 1H, Hvinyl),6.91 (d, 1H, H3'''), 6.88 (t, 1H, H2'''), 6.87 (t, 1H, Hvinyl), 6.81 (d, 1H, H3'),6.70 (br s, 1H, H5'), 6.63 (br s, 1H, H2), 6.36 (t, 1H, H6), 6.16-6.12 (m, 1H,H5'''), 5.80 (dd, 1H, H4), 5.42 (br s, 1H, OH2''), 5.36 (br s, 1H, OH3''), 5.24(br s, 1H, OH4''), 4.94 (d, 1H, H1''), 4.47 (d, 1H, H6''), 4.11 (dd, 1H, H6''),3.74-3.71 (m, 1H, H5''), 3.39-3.36 (m, 1H, H2''), 3.32-3.30 (m, 1H, H3''), 3.25-3.22 (m, 1H, H4''), 1.71 (d, 3H, H6'''). 13C NMR (DMSO-d 6) δ: 166.77 (C1'''),159.05 (C3), 158.86 (C5), 157.85 (C4'), 145.64 (C3'''), 140.43(C4'''), 139.82(C1), 129.86 (C2'+C6'), 128.95 (C5'''+C1'), 128.40 (Cvinyl), 125.76 (Cvinyl), 118.75(C2'''), 116.05 (C3'+C5'), 107.62 (C6), 104.79 (C2), 103.37 (C1''), 100.55 (C4),76.89 (C2''), 74.29 (C5''), 73.62 (C3''), 70.59 (C4''), 64.17 (C6''), 18.77(C6''')。
实施例4:
向带塞反应瓶中加入3mL 2-甲基四氢呋喃,然后加入12mg白藜芦醇苷和50 mg巴豆酸乙烯酯,再加入200mg 脂肪酶 Burkholderia cepacia,混合均匀后,置于 65℃,200rpm的水浴恒温振荡器内振荡,利用高效液相色谱监测反应,反应36h 后,过滤除去脂肪酶,滤液用体积比1:4的石油醚/乙酸乙酯梯度洗脱,收集洗脱液旋转蒸发,真空干燥至白色粉末状,即得6''-O-白藜芦醇苷巴豆酸酯,产率为99.6%,纯度大于99%。
1H NMR (DMSO-d 6) δ: 9.63 (br s, 1H, OH phenolic), 9.51 (br s, 1H, OHphenolic), 7.44 (d, 2H, H2'+H6'), 7.07 (d, 1H, Hvinyl), 6.93 (d, 1H, H3'''), 6.92(br s, 1H, H2'''), 6.88-6.87 (m, 1H, Hvinyl), 6.82 (d, 1H, H3'), 6.71 (br s, 1H,H5'), 6.64 (br s, 1H, H2), 6.37 (t, 1H, H6), 5.85 (dd, 1H, H4), 5.42 (d, 1H,OH2''), 5.36 (d, 1H, OH3''), 5.26 (d, 1H, OH4''), 4.95 (d, 1H, H1''), 4.47 (d,1H, H6''), 4.11 (dd, 1H, H6''), 3.74-3.71 (m, 1H, H5''), 3.39-3.36 (m, 1H, H2''),3.33-3.29 (m, 1H, H3''), 3.26-3.22 (m, 1H, H4''), 1.68 (dd, 3H, H4'''). 13C NMR(DMSO-d 6) δ: 165.94 (C1'''), 159.04 (C3), 158.88 (C5), 157.81 (C4'), 145.88(C3'''), 139.79 (C1), 128.96 (C2'+C6'), 128.42 (C1'), 128.39 (Cvinyl), 125.70(Cvinyl), 122.46 (C2'''), 116.04 (C3'+C5'), 107.63 (C6), 104.82 (C2), 103.27(C1''), 100.50 (C4), 76.88 (C2''), 74.20 (C5''), 73.60 (C3''), 70.61 (C4''), 64.03(C6''), 17.94 (C4''')。
实施例5:
向带塞反应瓶中加入3mL 1,4-二氧六环,然后加入12mg白藜芦醇苷和70 mg巴豆酸乙烯酯,再加入80mg 脂肪酶 Candida antarctica B,混合均匀后,置于60℃,200rpm的水浴恒温振荡器内振荡,利用高效液相色谱监测反应,反应20h后,过滤除去脂肪酶,滤液用体积比1:4的石油醚/乙酸乙酯梯度洗脱,收集洗脱液旋转蒸发,真空干燥至白色粉末状,即得6''-O-白藜芦醇苷巴豆酸酯,产率为30.8%,纯度大于99%。
1H NMR (DMSO-d 6) δ: 9.63 (br s, 1H, OH phenolic), 9.51 (br s, 1H, OHphenolic), 7.44 (d, 2H, H2'+H6'), 7.07 (d, 1H, Hvinyl), 6.93 (d, 1H, H3'''), 6.92(br s, 1H, H2'''), 6.88-6.87 (m, 1H, Hvinyl), 6.82 (d, 1H, H3'), 6.71 (br s, 1H,H5'), 6.64 (br s, 1H, H2), 6.37 (t, 1H, H6), 5.85 (dd, 1H, H4), 5.42 (d, 1H,OH2''), 5.36 (d, 1H, OH3''), 5.26 (d, 1H, OH4''), 4.95 (d, 1H, H1''), 4.47 (d,1H, H6''), 4.11 (dd, 1H, H6''), 3.74-3.71 (m, 1H, H5''), 3.39-3.36 (m, 1H, H2''),3.33-3.29 (m, 1H, H3''), 3.26-3.22 (m, 1H, H4''), 1.68 (dd, 3H, H4'''). 13C NMR(DMSO-d 6) δ: 165.94 (C1'''), 159.04 (C3), 158.88 (C5), 157.81 (C4'), 145.88(C3'''), 139.79 (C1), 128.96 (C2'+C6'), 128.42 (C1'), 128.39 (Cvinyl), 125.70(Cvinyl), 122.46 (C2'''), 116.04 (C3'+C5'), 107.63 (C6), 104.82 (C2), 103.27(C1''), 100.50 (C4), 76.88 (C2''), 74.20 (C5''), 73.60 (C3''), 70.61 (C4''), 64.03(C6''), 17.94 (C4''')。
实施例6:
向带塞反应瓶中加入3mL丙酮,然后加入12mg白藜芦醇苷和20 mg巴豆酸乙烯酯,再加入40mg 脂肪酶 Burkholderia cepacia,混合均匀后,置于45℃,120rpm的水浴恒温振荡器内振荡,利用高效液相色谱监测反应,反应 10h后,过滤除去脂肪酶,滤液用体积比1:4的石油醚/乙酸乙酯梯度洗脱,收集洗脱液旋转蒸发,真空干燥至白色粉末状,即得6''-O-白藜芦醇苷巴豆酸酯,产率为85.7%,纯度大于99%。
1H NMR (DMSO-d 6) δ: 9.63 (br s, 1H, OH phenolic), 9.51 (br s, 1H, OHphenolic), 7.44 (d, 2H, H2'+H6'), 7.07 (d, 1H, Hvinyl), 6.93 (d, 1H, H3'''), 6.92(br s, 1H, H2'''), 6.88-6.87 (m, 1H, Hvinyl), 6.82 (d, 1H, H3'), 6.71 (br s, 1H,H5'), 6.64 (br s, 1H, H2), 6.37 (t, 1H, H6), 5.85 (dd, 1H, H4), 5.42 (d, 1H,OH2''), 5.36 (d, 1H, OH3''), 5.26 (d, 1H, OH4''), 4.95 (d, 1H, H1''), 4.47 (d,1H, H6''), 4.11 (dd, 1H, H6''), 3.74-3.71 (m, 1H, H5''), 3.39-3.36 (m, 1H, H2''),3.33-3.29 (m, 1H, H3''), 3.26-3.22 (m, 1H, H4''), 1.68 (dd, 3H, H4'''). 13C NMR(DMSO-d 6) δ: 165.94 (C1'''), 159.04 (C3), 158.88 (C5), 157.81 (C4'), 145.88(C3'''), 139.79 (C1), 128.96 (C2'+C6'), 128.42 (C1'), 128.39 (Cvinyl), 125.70(Cvinyl), 122.46 (C2'''), 116.04 (C3'+C5'), 107.63 (C6), 104.82 (C2), 103.27(C1''), 100.50 (C4), 76.88 (C2''), 74.20 (C5''), 73.60 (C3''), 70.61 (C4''), 64.03(C6''), 17.94 (C4''')。
实施例7:
向带塞反应瓶中加入2mL四氢呋喃,然后加入12mg白藜芦醇苷和95 mg 十一碳烯酸乙烯酯,再加入100mg 脂肪酶 Burkholderia cepacia,混合均匀后,置于70℃, 200rpm的水浴恒温振荡器内振荡,利用高效液相色谱监测反应,反应2 h后,过滤除去脂肪酶,滤液用体积比1:4的石油醚/乙酸乙酯梯度洗脱,收集洗脱液旋转蒸发,真空干燥至白色粉末状,即得6''-O-白藜芦醇苷十一碳烯酸酯,产率为35.8%,纯度大于99%。
1H NMR (DMSO-d 6) δ: 9.58 (br s, 1H, OH phenolic), 9.45 (br s, 1H, OHphenolic), 7.40 (d, 2H, H2'+H6'), 7.03 (d, 1H, Hvinyl), 6.88 (s, 1H, Hvinyl), 6.86(br s, 1H, H3'), 6.78 (d, 1H, H5'), 6.67 (br s, 1H, H2), 6.37 (t, 1H, H6),5.77-5.74 (m, 2H, H4+H10'''), 5.39 (d, 1H, OH2''), 5.31 (d, 1H, OH3''), 5.23 (d,1H, OH4''), 4.99-4.88 (m, 3H, H1''+H11'''), 4.35 (d, 1H, H6''), 4.09 (dd, 1H,H6''), 3.66-3.63 (m, 1H, H5''), 3.34-3.32 (m, 1H, H2''), 3.30-3.27 (m, 1H, H3''),3.21-3.18 (m, 1H, H4''), 3.35-3.18 (m, 2H, H2'''), 2.25-2.22 (m, 2H, H9'''),1.98-1.95 (m, 2H, H3'''), 1.42-1.10 (m, 10H, H4'''+H5'''+H6'''+H7'''+H8'''). 13C NMR(DMSO-d 6) δ: 173.33 (C1'''), 159.03 (C3), 158.88 (C5), 157.83 (C4'), 139.78(C10'''), 139.32 (C1), 128.96 (C2'+C6'), 128.38 (C1'), 128.31 (Cvinyl), 125.69(Cvinyl), 115.99 (C11'''), 115.00 (C3'+C5'), 107.54 (C6), 104.97 (C2), 103.31(C1''), 100.56 (C4), 76.88 (C2''), 74.21 (C5''), 73.61 (C3''), 70.65 (C4''), 63.93(C6''), 33.89 (C9'''), 33.66 (C2'''), 29.17-28.74 (C4'''+C5'''+C6'''+C7'''+C8'''),24.85 (C3''')]。
实施例8:
向带塞反应瓶中加入3mL 丙酮,然后加入12mg 白藜芦醇苷和 120mg 十一碳烯酸乙烯酯,再加入150mg 脂肪酶 Burkholderia cepacia,混合均匀后,置于65℃, 200rpm的水浴恒温振荡器内振荡,利用高效液相色谱监测反应,反应30 h后,过滤除去脂肪酶,滤液用体积比1:4的石油醚/乙酸乙酯梯度洗脱,收集洗脱液旋转蒸发,真空干燥至白色粉末状,即得6''-O-白藜芦醇苷十一碳烯酸酯,产率为52.5%,纯度大于99%。
1H NMR (DMSO-d 6) δ: 9.58 (br s, 1H, OH phenolic), 9.45 (br s, 1H, OHphenolic), 7.40 (d, 2H, H2'+H6'), 7.03 (d, 1H, Hvinyl), 6.88 (s, 1H, Hvinyl), 6.86(br s, 1H, H3'), 6.78 (d, 1H, H5'), 6.67 (br s, 1H, H2), 6.37 (t, 1H, H6),5.77-5.74 (m, 2H, H4+H10'''), 5.39 (d, 1H, OH2''), 5.31 (d, 1H, OH3''), 5.23 (d,1H, OH4''), 4.99-4.88 (m, 3H, H1''+H11'''), 4.35 (d, 1H, H6''), 4.09 (dd, 1H,H6''), 3.66-3.63 (m, 1H, H5''), 3.34-3.32 (m, 1H, H2''), 3.30-3.27 (m, 1H, H3''),3.21-3.18 (m, 1H, H4''), 3.35-3.18 (m, 2H, H2'''), 2.25-2.22 (m, 2H, H9'''),1.98-1.95 (m, 2H, H3'''), 1.42-1.10 (m, 10H, H4'''+H5'''+H6'''+H7'''+H8'''). 13C NMR(DMSO-d 6) δ: 173.33 (C1'''), 159.03 (C3), 158.88 (C5), 157.83 (C4'), 139.78(C10'''), 139.32 (C1), 128.96 (C2'+C6'), 128.38 (C1'), 128.31 (Cvinyl), 125.69(Cvinyl), 115.99 (C11'''), 115.00 (C3'+C5'), 107.54 (C6), 104.97 (C2), 103.31(C1''), 100.56 (C4), 76.88 (C2''), 74.21 (C5''), 73.61 (C3''), 70.65 (C4''), 63.93(C6''), 33.89 (C9'''), 33.66 (C2'''), 29.17-28.74 (C4'''+C5'''+C6'''+C7'''+C8'''),24.85 (C3''')]。
实施例9:
向带塞反应瓶中加入3mL 2-甲基四氢呋喃,然后加入12mg 白藜芦醇苷和 60 mg十一碳烯酸乙烯酯,再加入200mg 脂肪酶 Candida antarctica B,混合均匀后,置于50℃,200rpm的水浴恒温振荡器内振荡,利用高效液相色谱监测反应,反应12 h后,过滤除去脂肪酶,滤液用体积比1:4的石油醚/乙酸乙酯梯度洗脱,收集洗脱液旋转蒸发,真空干燥至白色粉末状,即得6''-O-白藜芦醇苷十一碳烯酸酯,产率为97.2%,纯度大于99%。
1H NMR (DMSO-d 6) δ: 9.58 (br s, 1H, OH phenolic), 9.45 (br s, 1H, OHphenolic), 7.40 (d, 2H, H2'+H6'), 7.03 (d, 1H, Hvinyl), 6.88 (s, 1H, Hvinyl), 6.86(br s, 1H, H3'), 6.78 (d, 1H, H5'), 6.67 (br s, 1H, H2), 6.37 (t, 1H, H6),5.77-5.74 (m, 2H, H4+H10'''), 5.39 (d, 1H, OH2''), 5.31 (d, 1H, OH3''), 5.23 (d,1H, OH4''), 4.99-4.88 (m, 3H, H1''+H11'''), 4.35 (d, 1H, H6''), 4.09 (dd, 1H,H6''), 3.66-3.63 (m, 1H, H5''), 3.34-3.32 (m, 1H, H2''), 3.30-3.27 (m, 1H, H3''),3.21-3.18 (m, 1H, H4''), 3.35-3.18 (m, 2H, H2'''), 2.25-2.22 (m, 2H, H9'''),1.98-1.95 (m, 2H, H3'''), 1.42-1.10 (m, 10H, H4'''+H5'''+H6'''+H7'''+H8'''). 13C NMR(DMSO-d 6) δ: 173.33 (C1'''), 159.03 (C3), 158.88 (C5), 157.83 (C4'), 139.78(C10'''), 139.32 (C1), 128.96 (C2'+C6'), 128.38 (C1'), 128.31 (Cvinyl), 125.69(Cvinyl), 115.99 (C11'''), 115.00 (C3'+C5'), 107.54 (C6), 104.97 (C2), 103.31(C1''), 100.56 (C4), 76.88 (C2''), 74.21 (C5''), 73.61 (C3''), 70.65 (C4''), 63.93(C6''), 33.89 (C9'''), 33.66 (C2'''), 29.17-28.74 (C4'''+C5'''+C6'''+C7'''+C8'''),24.85 (C3''')]。
实施例10:白藜芦醇苷酯类衍生物抗氧化活性
(1)清除DPPH的能力
称取白藜芦醇苷及实施例中制备的三种白藜芦醇苷酯类衍生物、Vc和BHT,用无水乙醇作为溶剂配成0.04、0.08、0.12、0.16、0.20 mg/mL 五个浓度的待测液,各取2mL的待测液于10mL的具塞管中,再分别加入2mL浓度为2×10-4moL/L的DPPH 乙醇溶液,避光反应30min,在517nm处用无水乙醇调零,并测定吸光值 A1。将 DPPH 乙醇溶液用等体积的无水乙醇代替,其他操作相同,测定吸光值 A2。将样品溶液用等体积无水乙醇溶液代替,其他操作相同,测定吸光值 A0。平行测定三次,取平均值。根据公式 计算白藜芦醇苷酯类衍生物对DPPH自由基的清除能力。不同待测液对DPPH自由基清除能力效果对比,如图1所示。
清除自由基的机制在于抗氧化剂抑制脂质过氧化,由图1可以看出:Vc、BHT、白藜芦醇甘及其酯衍生物对DPPH自由基都有清除作用,且酯化后的衍生物对DPPH的清除效果比未酯化的高。
(2)清除羟基自由基的能力
称取白藜芦醇苷及实施例中制备的三种白藜芦醇苷酯类衍生物、Vc和BHT,用无水乙醇作为溶剂配成0.2、0.4、0.6、0.8、1 mg/mL 五个浓度的待测液。采用芬顿法,在15mL的具塞试管中分别加入1mL 6mmol/L FeSO4水溶液,1mL 6mmol/L的水杨酸-乙醇溶液,再分别加入1mL五个浓度的待测液,最后加入1mL H2O2于37℃水浴反应30min后,在510nm处测吸光度,以蒸馏水代替样品作空白组,以蒸馏水代替H2O2作对照组。
羟基自由基清除率/%=[A0-( Ai-Ai 0)]×100 / A0
A0、Ai、Ai 0分别是空白组、样品组以及对照组的吸光度。
不同待测液对羟基自由基清除能力效果对比,见图2。
由图2看到:这几种受试物对羟基自由基都有一定的清除能力,其清除效果也都随着浓度的增大而增强。且酯化衍生物的清除效果高于白藜芦醇苷。
(3)清除超氧阴离子的能力
称取白藜芦醇苷及实施例中制备的三种白藜芦醇苷酯类衍生物、Vc和BHT,用无水乙醇作为溶剂配成0.05、0.1、0.15、0.20、0.25 mg/mL 五个浓度的待测液。采用邻苯三酚自氧化的方法,取2mL的Tris-HCl缓冲液(50mmol/L pH=8.2)于具塞管中,25℃预热20min后加入2mL的不同浓度的待测液、Vc、BHT和0.3mL浓度为3mmol/L的邻苯三酚水溶液,混匀后于25℃反应2min,然后加入1mL的浓度为8mol/L的 HCl 终止反应,立即于325nm处测定吸光度,以蒸馏水代替样品作空白。
超氧基自由基清除率/%=(A0 - Ai)× 100 / A0
A0、Ai分别是空白组和样品组的吸光度。
不同待测液对超氧阴离子清除能力效果对比,见图3。
由图3可以看出:这几种受试物对超氧阴离子都有一定的清除能力,其清除效果也都随着浓度的增大而增强。酯化衍生物对超氧阴离子的清除率均略高于白藜芦醇苷。
实施例11:白藜芦醇苷酯类衍生物抑菌性
在无菌平板中倒入2%的硬琼脂,待琼脂凝固后放入直径为6mm的牛津杯。用无菌移液枪吸取0.1mL稀释好的菌悬液(无菌生理盐水配制的每毫升含有106~107CFU的菌悬液)加入到灭好菌并冷却到50°C的牛肉膏蛋白胨培养基试管中,每只试管盛有15mL培养基,用涡旋仪混匀后,倒入平板内,待其凝固后,用无菌镊子取出牛津杯形成小孔,用移液枪往孔内分别加入白藜芦醇苷活性酯类衍生物(用无水乙醇配成浓度为8mg/mL的待测试样),每孔l00uL。4℃扩散1h后,细菌放入37℃培养箱培养24h后,用游标卡尺以十字交叉法测量抑菌圈直径,通过二倍稀释法测定最低抑菌浓度。结果如表1、表2所示。
表1 白藜芦醇苷及其酯衍生物对不同菌种的抑菌效果
表2 白藜芦醇苷及其酯衍生物对金黄色葡萄球菌的抑菌效果
注:+标示有抑菌圈出现 ---表示无抑菌圈出现。
由表1可以看出,白藜芦醇苷和酯类衍生物对大肠杆菌无明显抑菌效果;白藜芦醇苷对金黄色葡萄球菌无明显抑菌效果,但经酯化后,其酯类衍生物对金黄色葡萄球菌均呈现出了较好的抑菌效果。三种酯类衍生物的最低抑菌浓度分别为2mg/mL(6''-O-白藜芦醇苷巴豆酸酯)、0.5mg/mL(6''-O-白藜芦醇苷山梨酸酯)、0.0625mg/mL(6''-O-白藜芦醇苷十一碳烯酸酯)。

Claims (5)

1.一种白藜芦醇苷酯类衍生物的制备方法,其特征在于:
将摩尔比为1:1~50的白藜芦醇苷和酰基供体加入到有机溶剂中,白藜芦醇苷在有机溶剂中的浓度为0.1~60mg/mL,然后按脂肪酶与白藜芦醇苷质量比1~20:1加入脂肪酶,混合均匀,在20~80℃、100~300rpm下振荡反应0.5~72 h,分离纯化,得白藜芦醇苷酯类衍生物;
所述的酰基供体为巴豆酸乙烯酯、山梨酸乙烯酯或十一碳烯酸乙烯酯;
所述的白藜芦醇苷酯类衍生物具体为6''-O-白藜芦醇苷巴豆酸酯、6''-O-白藜芦醇苷山梨酸酯、6''-O-白藜芦醇苷十一碳烯酸酯,结构式依次如式(Ⅱ)、式(Ⅲ)和式(Ⅳ)所示
2.根据权利要求1所述的制备方法,其特征在于:所述的脂肪酶为脂肪酶Candida antarctica B、脂肪酶Thermomyces lanuginosus、脂肪酶Rhizomucor miehei或脂肪酶Burkholderia cepacia
3.根据权利要求2所述的制备方法,其特征在于:所述的脂肪酶Candida antarcticaB,固定化于大孔阴离子树脂,比酶活为44.04U/g;所述的脂肪酶Thermomyces lanuginosus,固定化于大孔阴离子树脂,比酶活为55.02U/g;所述的脂肪酶Rhizomucor miehei,固定化于大孔阴离子树脂,比酶活为12.57U/g;所述的脂肪酶Burkholderia cepacia,固定化于硅藻土,比酶活为12.36U/g。
4.根据权利要求1所述的制备方法,其特征在于:所述的有机溶剂为2-甲基四氢呋喃、1,4-二氧六环、四氢呋喃、乙腈和环己酮中的一种或几种。
5.根据权利要求1所述的制备方法,其特征在于:所述的分离纯化方法为:将反应混合物过滤除酶,滤液用体积比1:4的石油醚/乙酸乙酯梯度洗脱,收集洗脱液旋转蒸发,真空干燥至白色粉末状。
CN201510839724.XA 2015-11-27 2015-11-27 一种白藜芦醇苷酯类衍生物及其制备方法和应用 Active CN105503970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510839724.XA CN105503970B (zh) 2015-11-27 2015-11-27 一种白藜芦醇苷酯类衍生物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510839724.XA CN105503970B (zh) 2015-11-27 2015-11-27 一种白藜芦醇苷酯类衍生物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105503970A CN105503970A (zh) 2016-04-20
CN105503970B true CN105503970B (zh) 2018-07-13

Family

ID=55712325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510839724.XA Active CN105503970B (zh) 2015-11-27 2015-11-27 一种白藜芦醇苷酯类衍生物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105503970B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2673942B1 (es) * 2016-11-23 2019-04-09 Consejo Superior Investigacion Compuestos acilados para el tratamiento de patologias oculares
CN106834369A (zh) * 2016-11-29 2017-06-13 大连工业大学 一种白藜芦醇‑二十碳五烯酸酯的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2514426A1 (en) * 2009-12-15 2012-10-24 Consejo Superior De Investigaciones Científicas (CSIC) Compounds having anti-inflammatory activity
CN103251516A (zh) * 2013-05-15 2013-08-21 苏州谷力生物科技有限公司 一种护肤型消毒杀菌洗手液的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2514426A1 (en) * 2009-12-15 2012-10-24 Consejo Superior De Investigaciones Científicas (CSIC) Compounds having anti-inflammatory activity
CN103251516A (zh) * 2013-05-15 2013-08-21 苏州谷力生物科技有限公司 一种护肤型消毒杀菌洗手液的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Preventive Oral Treatment with Resveratrol Pro-prodrugs Drastically Reduce Colon Inflammation in Rodents;Mar Larrosa,等;《J. Med. Chem.》;20100924;第53卷;第7365-7376页 *
Resveratrol and Some Glucosyl, Glucosylacyl, and Glucuronide Derivatives Reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes Scott A Adhesion to Colonic Epithelial Cell Lines;María V. Selma,等;《Journal of Agricultural and Food Chemistry》;20120704;第60卷;第7367-7374页 *
毛脉蓼化学成分及抑菌活性的研究;戚欢阳,等;《中国药学杂志》;20050630;第40卷(第11期);第819-822页 *

Also Published As

Publication number Publication date
CN105503970A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
Martin et al. Studies on the biosynthesis of the erythromycins. II. Isolation and structure of a biosynthetic intermediate, 6-deoxyerythronolide B
Wang et al. New chlorinated diphenyl ethers and xanthones from a deep-sea-derived fungus Penicillium chrysogenum SCSIO 41001
JP2013540769A (ja) フルクトシル化プエラリンおよびその調製方法と用途
CN105503970B (zh) 一种白藜芦醇苷酯类衍生物及其制备方法和应用
CN108640968A (zh) 一种混源萜类化合物及其在制备抗炎药物中的用途
Zhang et al. Kumemicinones A–G, cytotoxic angucyclinones from a deep sea-derived actinomycete of the genus Actinomadura
Cloutier et al. Total synthesis, isolation, surfactant properties, and biological evaluation of ananatosides and related macrodilactone-containing rhamnolipids
Zheng et al. Landscape of lankacidin biomimetic synthesis: structural revisions and biogenetic implications
Zhang et al. Preparation of a novel bridged bis (β-cyclodextrin) chiral stationary phase by thiol–ene click chemistry for enhanced enantioseparation in HPLC
Kim et al. Penidioxolanes A and B, 1, 3-dioxolane containing azaphilone derivatives from marine-derived Penicillium sp. KCB12C078
CN107286220A (zh) 1,2,4‑三氮唑偶联的二氢杨梅素衍生物及其制备方法和应用
JPH04352783A (ja) 12員環マクロライド系化合物
CN101307082B (zh) 半乳糖-青蒿素及其制备方法
CN103435622B (zh) 一种螺环吲哚二酮哌嗪类生物碱及其合成方法和应用
Schummer et al. Antibiotics from gliding bacteria, LXXV. Absolute configuration and biosynthesis of tartrolon B, a boron‐containing macrodiolide from Sorangium cellulosum
CN110003153A (zh) 一种苯并呋喃类化合物及其制备方法和用途
CN110330544A (zh) 一种4,4,1-双环甾类化合物及其制备方法和用途
Tabata et al. PF1092A, B and C, New Nonsteroidal Progesterone Receptor Ligands Produced by Penicillium oblatum II. Physico-chemical Properties and Structure Elucidation
CN103483354B (zh) 一类色酮类化合物及其制备方法和在制备抗肿瘤与酶抑制剂药物中的应用
CN110156808B (zh) 具有杀菌活性的防己诺林碱-氨基甲酸酯类衍生物
CN105037337B (zh) 一种水飞蓟宾醚类衍生物及其合成方法与应用
CN105968078B (zh) 一种黄酮醇类天然产物衍生物的制备方法和用途
CN111850061B (zh) 一种井冈羟胺a酯化物的制备方法
CN102558261A (zh) 一种核苷酸类似物及其合成和应用
CN102603769B (zh) 一类含硫色酮类化合物及其制备方法和在制备抗肿瘤药物中的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wang Chaoyu

Inventor after: Bi Yanhong

Inventor after: Yang Rongling

Inventor after: Zhao Xiangjie

Inventor after: Zhu Chun

Inventor after: Liu Yingchun

Inventor before: Wang Chaoyu

Inventor before: Du Wenying

Inventor before: Bi Yanhong

Inventor before: Yuan Xiaotian

Inventor before: Yang Rongling

Inventor before: Ding Chengxin

Inventor before: Zhao Xiangjie

Inventor before: Zhou Wenhong

GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20160420

Assignee: Zibo Hefeng Seed Technology Co.,Ltd.

Assignor: HUAIYIN INSTITUTE OF TECHNOLOGY

Contract record no.: X2021990000798

Denomination of invention: Resveratrol glycoside ester derivative and its preparation method and Application

Granted publication date: 20180713

License type: Common License

Record date: 20211220