CN105502287B - 带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器 - Google Patents

带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器 Download PDF

Info

Publication number
CN105502287B
CN105502287B CN201610074106.5A CN201610074106A CN105502287B CN 105502287 B CN105502287 B CN 105502287B CN 201610074106 A CN201610074106 A CN 201610074106A CN 105502287 B CN105502287 B CN 105502287B
Authority
CN
China
Prior art keywords
micro
plate
boss
array structure
reformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610074106.5A
Other languages
English (en)
Other versions
CN105502287A (zh
Inventor
梅德庆
冯艳冰
钱淼
贺行
易邹东
易邹东一
陈子辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610074106.5A priority Critical patent/CN105502287B/zh
Publication of CN105502287A publication Critical patent/CN105502287A/zh
Application granted granted Critical
Publication of CN105502287B publication Critical patent/CN105502287B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明公开了一种带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器。包括上盖板、下盖板以及自上而下依次放置的蒸发板、多块重整板和反应载体薄板,相邻的两块重整板之间均设有加热板,并在相邻两块之间的安装面均设有柔性石墨垫;反应载体薄板安装在重整板上表面的重整反应腔中,上表面带有表面多孔化的微凸台阵列结构;每块重整板的下表面开有两道上条形凹槽,加热板上表面开有两道下条形凹槽,两个条形凹槽中间放置陶瓷加热片。本发明能显著增大反应载体薄板的比表面积,并改善催化剂的附着,提高重整器内部传热传质的速度,从而提高醇类转化率和制氢速度;可有效降低反应压降和能耗,可提高能量密度,适合于可移动氢源的重整制氢。

Description

带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器
技术领域
本发明涉及一种制氢微重整器,尤其是一种带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器。
背景技术
能源是人类赖以生存和发展的基石,但随着社会经济的发展和人口数量的提高,能源正以越来越快的速度被消耗。氢能作为一种可再生能源,由于其高效、零污染等优势,是一种极为优越的新能源,并被广泛地应用于各种场合。在众多制氢的方法中,水汽重整制氢具有氢气产量高、长期稳定性好等优势。氢气可以由水或醇类等制取,而水是地球上最为丰富的资源,而乙醇等可以生物发酵等方式制成,都演绎了自然物质循环利用、持续发展的经典过程。采用微反应器进行重整制氢,是一种现场供氢的有效方式,并引起了众多研究者的兴趣与关注。
中国发明专利(申请号200610124078.X)公开了一种用作催化剂载体的定向铜纤维烧结毡及其制造方法,制造铜纤维,并将其按照一定规律缠绕在不锈钢板凹槽中,压紧后用氧化铝粉末覆盖,随后在高温下烧结,得到定向铜纤维烧结毡。该方法制造出的催化剂载体热导性不好,压降较大,不利于催化剂载体的层叠扩展。
其他现有制氢反应器中,存在几种带微凸台阵列结构的微通道反应器,比如反应流体通过圆周排列的多个进口流入环形阵列的微凸台结构,从圆心流出,虽然具有一定比表面积和较好的传热传质性能,但是微凸台阵列结构催化剂载体的表面较为光滑,不利于催化剂的涂覆,同时限制了催化反应的面积。此外,现有的制氢反应器,也存在表面多孔化的微通道结构,但是多孔结构为开式孔隙结构,仅分布在微通道表面,无法显著增大反应载体薄板的比表面积。
从上述分析可以看出,目前的微重整器在催化剂载体比表面积、重整器压降、传热传质速度等方面还有待提高,有必要设计一种具备传热传质效率更高、比表面积更大、压降更低等优势的制氢微重整器。
发明内容
为了进一步提高催化剂载体比表面积和传热传质速度,降低反应压降,本发明提出了一种带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器,具备传热传质效率更高、比表面积更大、压降更低的优势。
本发明采用的技术方案是:
本发明包括上盖板、下盖板以及密封安装在上盖板与下盖板之间自上而下依次放置的一块蒸发板、多块重整板和多块反应载体薄板,相邻的两块重整板之间均设有一块加热板,上盖板、下盖板、蒸发板、重整板和加热板中相邻两块之间的安装面均设有柔性石墨垫;重整板上表面的重整反应腔均设有反应载体薄板,反应载体薄板整体为矩形板,上表面带有微凸台的阵列结构,反应载体薄板的上表面均设有一层多孔涂层;每个重整板的下表面中部一侧开有两道平行的上条形凹槽,加热板上表面中部一侧开有两道与重整板上条形凹槽相对应的下条形凹槽,下条形凹槽与上条形凹槽形成空间内放置陶瓷加热片,重整器采用陶瓷加热片进行加热,并通过热电偶进行重整板的温度测量。
所述微凸台为矩形柱状结构,所有微凸台间隔均布并沿气流流动方向均分为前半部分和后半部分,后半部分微凸台的宽度小于前半部分微凸台宽度。
所述的微凸台的阵列结构上表面与柔性石墨垫之间具有间隙。
所述的上条形凹槽和下条形凹槽槽方向垂直于微凸台的阵列结构上反应气体流动方向。
相邻两个所述重整板的上条形凹槽开槽侧相反。
所述的上盖板顶面设有进口管,下盖板底面设有出口管;
所述的蒸发板上表面开有蒸发腔,蒸发腔与进口管相通,蒸发腔两侧对称分布有三角形的蒸发入口引流腔和蒸发出口引流腔,蒸发出口引流腔处设有蒸发出口通孔;
所述的重整板上表面开有重整反应腔,重整反应腔两侧对称分布有三角形的重整入口引流腔和重整出口引流腔,重整出口引流腔处设有重整出口通孔;
所述的加热板两侧分别设有加热入口通孔和加热出口通孔。
所述的重整板和加热板为层叠放置,除最下层以外其余重整板的重整入口引流腔处均设有重整入口通孔,各层重整板的重整入口通孔、加热板的加热入口通孔和蒸发板的蒸发出口通孔上下对应相通,重整板的重整出口通孔、加热板的加热出口通孔和出口管上下对应相通。
所述的微凸台阵列结构,其截面为矩形,长与宽的尺寸为0.5-2mm,高度尺寸为0.5-3mm,微凸台之间的间距为0.2-2mm,微凸台结构表面与微通道底面多孔涂层的厚度为100-300μm,孔隙率为25-60%,沿流动方向后半部分微凸台结构的宽度为前半部分微凸台宽度的1/3-2/3,微凸台的阵列结构上表面与柔性石墨垫之间具有0.1-0.3mm的间隙。
所述的反应载体薄板首先采用微细铣削或线切割等方法在铜片上加工出带有微凸台的阵列结构,并采用火焰喷涂法或粉末烧结法等工艺加工出表面多孔涂层。
本发明的制氢微重整器,通过多孔微凸台阵列结构反应载体薄板的设计,可以有效提高反应载体薄板的比表面积,提高催化剂与反应载体薄板的附着力,从而增大醇类转化率与反应的稳定性,更加高效地实现醇类重整制氢,同时可以有效降低反应压降从而降低泵入反应物所需的能耗。此外,反应载体薄板的层叠装配可实现重整器的功率扩大,并应用在汽车等大功率的场合。
本发明通过多孔微凸台阵列结构反应载体薄板的设计,多孔涂层与微凸台阵列结构可以有效提高反应载体薄板的比表面积,提高催化剂与反应载体薄板的附着力,从而增大醇类转化率与反应的稳定性。
本发明的多孔微凸台阵列结构反应载体薄板,与多孔材料反应载体薄板相比,热导性好,压降较低,温度分布更均匀,显著降低重整器所需能耗。
本发明的核心部件为多孔微凸台阵列结构反应载体薄板,可以首先采用微细铣削或线切割等方法在铜片上加工出微凸台阵列结构,并采用火焰喷涂法或粉末烧结法等工艺加工出表面多孔涂层,加工成本低,可实现该类型反应载体薄板的大批量生产。
本发明具有的有益效果是:
1)本发明的多孔微凸台阵列结构反应载体薄板,沿流动方向后半部分微凸台的宽度小于前半部分微凸台宽度,可以有效改善反应过程中气体体积增大而导致气阻增加的问题,因而能显著降低反应的压降,从而降低泵入反应物所需的能量;同时,可以减少催化剂的使用量,降低成本;
2)本发明的多孔微凸台阵列结构反应载体薄板,与表面多孔化的微通道反应载体薄板相比,微通道结构表面的多孔涂层可以进一步提高反应载体薄板的比表面积,提高催化剂与反应载体薄板的附着力,并改善微重整器内部的传热传质,从而有利于提高重整制氢过程中的醇类转化率和制氢速率;
3)本发明的层叠型多孔微凸台阵列结构制氢微重整器,采用陶瓷加热片进行加热,可有效减小重整器的体积,从而提高其能量密度。
附图说明
图1是本发明的整体三维爆炸示意图。
图2是本发明反应载体薄板的俯视图。
图3是本发明微凸台阵列结构的表面多孔涂层电镜图。
图4是本发明反应载体薄板截面的剖视示意图。
图5是本发明上盖板的三维结构示意图。
图6是本发明蒸发板的三维结构示意图。
图7是本发明加热板的三维结构示意图。
图8是本发明重整板的三维结构示意图
图9是本发明反应载体薄板上的气体流动简图。
图10是本发明的整体气体流动路径示意图。
图中:1、出口管,2、下盖板,3、反应载体薄板,4、重整板,5、蒸发板,6、上盖板,7、进口管,8、柔性石墨垫,9、加热板,10、陶瓷加热片,11、铜片,12、多孔涂层,13、微通道,14、蒸发出口通孔,15、蒸发出口引流腔,16、蒸发入口引流腔,17、蒸发腔,18、下条形凹槽,19、加热入口通孔,20、加热出口通孔,21、重整出口引流腔,22、重整出口通孔,23、重整反应腔,24、重整入口通孔,25、重整入口引流腔,26、上条形凹槽,27、微凸台。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
如图1所示,本发明包括上盖板6、下盖板2以及密封安装在上盖板6与下盖板2之间自上而下依次放置的一块蒸发板5、多块重整板4和一块反应载体薄板3,相邻的两块重整板4之间均设有一块加热板9,上盖板6、下盖板2、蒸发板5、重整板4和加热板9中相邻两块之间的安装面均设有柔性石墨垫8。
如图1所示,反应载体薄板3安装在重整板4上表面的重整反应腔23中,反应载体薄板3整体为矩形板,上表面带有微凸台27的阵列结构,如图2所示,反应载体薄板3的上表面(包括微凸台27阵列结构表面和微通道13底面)均设有一层多孔涂层12,如图4所示;每个重整板4的下表面中部一侧开有两道平行的上条形凹槽26,加热板9上表面中部一侧开有两道与重整板4上条形凹槽26相对应的下条形凹槽18,下条形凹槽18与上条形凹槽26形成空间内放置陶瓷加热片10。
微凸台27为矩形柱状结构,覆涂涂层后的微凸台阵列结构表面如图3所示,所有微凸台27间隔均布并沿气流流动方向均分为前半部分和后半部分,前半部分的微凸台27的宽度均相同,后半部分的微凸台27的宽度均相同,后半部分微凸台27的宽度小于前半部分微凸台27宽度,所有微凸台27沿气流流动方向的长度相同,如图9所示。微凸台27的阵列结构上表面与柔性石墨垫8之间具有间隙,从而可以提高反应过程的传热速度,降低反应压降。
上条形凹槽26和下条形凹槽18槽方向垂直于微凸台27的阵列结构上反应气体流动方向。
相邻两个重整板4的上条形凹槽26开槽侧相反,利于温度的均匀分布。
如图5所示,上盖板6顶面设有进口管7,如图1所示,下盖板2底面设有出口管1;如图6所示,蒸发板5上表面开有蒸发腔17,蒸发腔17与进口管7相通,蒸发腔17两侧对称分布有三角形的蒸发入口引流腔16和蒸发出口引流腔15,蒸发出口引流腔15处设有蒸发出口通孔14;如图8所示,重整板3上表面开有重整反应腔23,重整反应腔23两侧对称分布有三角形的重整入口引流腔25和重整出口引流腔21,重整出口引流腔21处设有重整出口通孔22;如图7所示,加热板9两侧分别设有加热入口通孔19和加热出口通孔20,加热入口通孔19和加热出口通孔20分别与重整板4上的重整入口通孔24和重整出口通孔22对应相通。
如图10所示,重整板4和加热板9为层叠放置,除最下层以外其余重整板4的重整入口引流腔25处均设有重整入口通孔24,最下层的重整板4的重整入口引流腔25处不设有重整入口通孔24,各层重整板4的重整入口通孔24、加热板9的加热入口通孔19和蒸发板5的蒸发出口通孔14同轴且上下对应相通,重整板4的重整出口通孔22、加热板9的加热出口通孔20和出口管1同轴且上下对应相通。
微凸台27阵列结构,其截面为矩形,长与宽的尺寸为0.5-2mm,高度尺寸为0.5-3mm,微凸台之间的间距为0.2-2mm,微凸台27结构表面与微通道13底面多孔涂层12的厚度为100-300μm,孔隙率为25-60%,沿流动方向后半部分微凸台27结构的宽度为前半部分微凸台27宽度的1/3-2/3,微凸台的阵列结构上表面与柔性石墨垫之间具有0.1-0.3mm的间隙。
如图4所示,反应载体薄板3首先采用微细铣削或线切割等方法在铜片11上加工出带有微凸台27的阵列结构,并采用火焰喷涂法或粉末烧结法等工艺加工出表面多孔涂层12。
本发明的实施例及其具体工作过程如下:
具体实施中,重整板4与加热板9层叠放置,包含三个重整板4,两个加热板9,总共三个多孔微凸台27阵列结构反应载体薄板3,微凸台27阵列结构的截面为矩形,长与宽的尺寸为1mm,高度尺寸为1mm,微凸台27之间的间距为1mm,微凸台27结构表面与微通道13底面多孔涂层12的厚度为200μm,孔隙率为40%,沿流动方向后半部分微凸台27结构的宽度为前半部分微凸台27宽度的1/2,微凸台的阵列结构上表面与柔性石墨垫之间具有0.1的间隙。
本发明的整体气体流动路径示意图和反应载体薄板3上的气体流动如图10所示,微重整器通过陶瓷加热片10进行加热,达到目标温度并保持,随后醇类、水的混合液,经过上盖板6上的进口管7进入微重整器,并从蒸发板5上的蒸发入口引流腔16进入蒸发腔17,在高温下变为气体反应物;随后,混合气体从蒸发板5上的蒸发出口引流腔15流出到蒸发出口通孔14,并进入重整板上的重整入口引流腔25,随后流经反应载体薄板3,在催化剂的作用下,发生重整制氢反应,重整气体产物随后经过重整板4上的重整出口引流腔21和重整出口通孔22,最后到达下盖板2上的出口管1,并进行重整气体产物的分析和收集。
实施例采用的醇类为甲醇或者乙醇等低碳醇,本发明用甲醇作为原料详细阐述本发明的工作原理:
采用硝酸盐溶液浸渍法在反应载体薄板3上涂覆铜基催化剂后,进行甲醇水汽重整。
反应载体薄板3的清洗:在负载催化剂前,为有效去除表面的杂质和有机物,利用超声波清洗机将反应载体薄板4放在乙醇中清洗10min,随后干燥;
催化剂混合液的制备:将Cu(NO3)2、Zn(NO3)2、Al(NO3)3、Zr(NO3)4按11:6:4:1的摩尔比例配成混合液,其中铜离子含量为4.6%,再与Al3O2溶胶混合制成催化剂前驱体混合液;
催化剂的负载:采用两层浸渍方法,将多孔微凸台27阵列结构反应载体薄板3放在催化剂的前驱体混合液中进行充分浸渍,再在鼓风干燥箱里面烘干,如此反复进行浸渍-烘干过程直到催化剂负载完毕;
干燥和焙烧:将上述得到的反应载体薄板3放入马弗炉中,以15℃/min中的速度升温至400℃,焙烧3h后打开马弗炉,自然冷却。
制氢反应开始前,要进行催化剂的还原和反应系统内杂质气体的清除。使用陶瓷加热片10对微重整器进行加热,并保持在300℃;将氮气和氢气的混合气体通入微重整器中,对反应载体薄板3上的铜基催化剂进行还原1h;随后,将甲醇和水的混合液体泵入微反应器,进行醇类水汽重整的反应,产生氢气,在重整器出口处进行氢气的提纯和收集。
由此,本发明的制氢微重整器,通过多孔微凸台阵列结构反应载体薄板的设计,可以有效提高反应载体薄板的比表面积,提高催化剂与反应载体薄板的附着力,从而增大醇类转化率与反应的稳定性,更加高效地实现醇类重整制氢,同时可以有效降低反应压降从而降低泵入反应物所需的能耗。此外,反应载体薄板的层叠装配可实现重整器的功率扩大,并应用在汽车等大功率的场合。

Claims (8)

1.一种带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器,其特征在于:包括上盖板(6)、下盖板(2)以及密封安装在上盖板(6)与下盖板(2)之间自上而下依次放置的一块蒸发板(5)、多块重整板(4)和多块反应载体薄板(3),相邻的两块重整板(4)之间均设有一块加热板(9),上盖板(6)、下盖板(2)、蒸发板(5)、重整板(4)和加热板(9)中相邻两块之间的安装面均设有柔性石墨垫(8);反应载体薄板(3)安装在重整板(4)上表面的重整反应腔(23)中,反应载体薄板(3)整体为矩形板,上表面带有微凸台(27)的阵列结构,反应载体薄板(3)的上表面均设有一层多孔涂层(12);每个重整板(4)的下表面中部一侧开有两道平行的上条形凹槽(26),加热板(9)上表面中部一侧开有两道与重整板(4)上条形凹槽(26)相对应的下条形凹槽(18),下条形凹槽(18)与上条形凹槽(26)形成空间内放置陶瓷加热片(10);
所述微凸台(27)为矩形柱状结构,所有微凸台(27)间隔均布并沿气流流动方向均分为前半部分和后半部分,后半部分微凸台(27)的宽度小于前半部分微凸台(27)宽度。
2.根据权利要求1所述的一种带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器,其特征在于:所述的微凸台(27)的阵列结构上表面与柔性石墨垫(8)之间具有间隙。
3.根据权利要求1所述的一种带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器,其特征在于:所述的上条形凹槽(26)和下条形凹槽(18)槽方向垂直于微凸台(27)的阵列结构上反应气体流动方向。
4.根据权利要求1所述的一种带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器,其特征在于:相邻两个所述重整板(4)的上条形凹槽(26)开槽侧相反。
5.根据权利要求1所述的一种带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器,其特征在于:所述的上盖板(6)顶面设有进口管(7),下盖板(2)底面设有出口管(1);
所述的蒸发板(5)上表面开有蒸发腔(17),蒸发腔(17)与进口管(7)相通,蒸发腔(17)两侧对称分布有三角形的蒸发入口引流腔(16)和蒸发出口引流腔(15),蒸发出口引流腔(15)处设有蒸发出口通孔(14);
所述的重整板(3)上表面开有重整反应腔(23),重整反应腔(23)两侧对称分布有三角形的重整入口引流腔(25)和重整出口引流腔(21),重整出口引流腔(21)处设有重整出口通孔(22);
所述的加热板(9)两侧分别设有加热入口通孔(19)和加热出口通孔(20)。
6.根据权利要求5所述的一种带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器,其特征在于:所述的重整板(4)和加热板(9)为层叠放置,除最下层以外其余重整板(4)的重整入口引流腔(25)处均设有重整入口通孔(24),各层重整板(4)的重整入口通孔(24)、加热板(9)的加热入口通孔(19)和蒸发板(5)的蒸发出口通孔(14)上下对应相通,重整板(4)的重整出口通孔(22)、加热板(9)的加热出口通孔(20)和出口管(1)上下对应相通。
7.根据权利要求1所述的一种带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器,其特征在于:所述的微凸台(27)阵列结构,其截面为矩形,长与宽的尺寸为0.5-2mm,高度尺寸为0.5-3mm,微凸台之间的间距为0.2-2mm,微凸台(27)结构表面与微通道(13)底面多孔涂层(12)的厚度为100-300μm,孔隙率为25-60%,沿流动方向后半部分微凸台(27)结构的宽度为前半部分微凸台(27)宽度的1/3-2/3,微凸台(27)的阵列结构上表面与柔性石墨垫(8)之间具有0.1-0.3mm的间隙。
8.根据权利要求1所述的一种带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器,其特征在于:所述的反应载体薄板(3)首先采用微细铣削或线切割等方法在铜片(11)上加工出带有微凸台的(27)阵列结构,并采用火焰喷涂法或粉末烧结法等工艺加工出表面多孔涂层(12)。
CN201610074106.5A 2016-02-02 2016-02-02 带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器 Expired - Fee Related CN105502287B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610074106.5A CN105502287B (zh) 2016-02-02 2016-02-02 带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610074106.5A CN105502287B (zh) 2016-02-02 2016-02-02 带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器

Publications (2)

Publication Number Publication Date
CN105502287A CN105502287A (zh) 2016-04-20
CN105502287B true CN105502287B (zh) 2018-04-27

Family

ID=55710674

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610074106.5A Expired - Fee Related CN105502287B (zh) 2016-02-02 2016-02-02 带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器

Country Status (1)

Country Link
CN (1) CN105502287B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106076220A (zh) * 2016-08-02 2016-11-09 杭州沈氏节能科技股份有限公司 一种气固相微反应器
CN111186815A (zh) * 2018-11-14 2020-05-22 中国科学院大连化学物理研究所 一种模块化的燃料重整制氢反应器
CN110155946B (zh) * 2019-05-17 2021-03-23 浙江大学 一种具有分形结构催化剂载体的制氢微重整器
CN111874866B (zh) * 2020-07-03 2021-10-15 湖南大学 一种多孔陶瓷及其制备方法和应用
CN112536071A (zh) * 2020-12-08 2021-03-23 佛山科学技术学院 一种多孔微通道的载体及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205527732U (zh) * 2016-02-02 2016-08-31 浙江大学 带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205527732U (zh) * 2016-02-02 2016-08-31 浙江大学 带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器

Also Published As

Publication number Publication date
CN105502287A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
CN105502287B (zh) 带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器
CN104671204B (zh) 层叠式双面多蛇形微通道重整制氢反应器
Ke et al. Porous copper fiber sintered felts with surface microchannels for methanol steam reforming microreactor for hydrogen production
CN106629598B (zh) 填充高温相变材料的自热型重整制氢反应器
CN205527732U (zh) 带表面多孔化微凸台阵列结构催化剂载体的制氢微重整器
CN102910584B (zh) 一种自热型层叠式微通道重整制氢反应器
CN103601151B (zh) 自热错排微凸台阵列型醇类重整器
CN206666114U (zh) 一种填充高温相变材料的自热型重整制氢反应器
CN110155945B (zh) 集成co选择甲烷化的自热型甲醇重整制氢反应器
CN104555920B (zh) 带余热回收功能的自热型重整制氢微反应器
CN110801785B (zh) 一种以蜂窝状SiC陶瓷为催化剂载体的制氢反应器
CN107244653A (zh) 带等孔径孔隙率渐变催化剂载体的制氢微反应器
CN104555919A (zh) 反应载体表面多孔化的自热型醇类制氢微重整器
CN113830733A (zh) 变催化剂分布的泡沫铜一体化重整器
CN110143575B (zh) 一种波纹基板-多孔金属自热型甲醇重整制氢反应器
CN204454569U (zh) 一种层叠式双面多蛇形微通道重整制氢反应器
CN101531336A (zh) 小型高效自热式天然气制氢设备
CN204454565U (zh) 一种带余热回收功能的自热型重整制氢微反应器
CN210366978U (zh) 一种甲醇重整制氢反应器
CN112038656A (zh) 一种燃料电池流场板及燃料电池
CN104162454A (zh) 带多孔微通道结构的多尺度反应载体及其制备方法
CN206970200U (zh) 一种带等孔径孔隙率渐变催化剂载体的制氢微反应器
CN110155946B (zh) 一种具有分形结构催化剂载体的制氢微重整器
CN205076799U (zh) 一种带超声辅助汽化的重整制氢微反应器
CN203033764U (zh) 一种自热型层叠式微通道重整制氢反应器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180427

Termination date: 20210202

CF01 Termination of patent right due to non-payment of annual fee