CN105492886A - 用于检测水样品中透明外聚合物颗粒的方法 - Google Patents

用于检测水样品中透明外聚合物颗粒的方法 Download PDF

Info

Publication number
CN105492886A
CN105492886A CN201480045948.7A CN201480045948A CN105492886A CN 105492886 A CN105492886 A CN 105492886A CN 201480045948 A CN201480045948 A CN 201480045948A CN 105492886 A CN105492886 A CN 105492886A
Authority
CN
China
Prior art keywords
water sample
acid
reagent
fluorescent dyeing
dyeing reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480045948.7A
Other languages
English (en)
Other versions
CN105492886B (zh
Inventor
E·萨里
K·卡里萨米尔
M·海萨姆保尔
H·维尔基
M·涅梅莱
E·科尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kemira Oyj
Original Assignee
Kemira Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kemira Oyj filed Critical Kemira Oyj
Publication of CN105492886A publication Critical patent/CN105492886A/zh
Application granted granted Critical
Publication of CN105492886B publication Critical patent/CN105492886B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/36Biological material, e.g. enzymes or ATP
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供了一种用于检测水样品中透明外聚合物颗粒的方法。该方法包括以下步骤:获得水样品并且向水样品中引入荧光染色试剂。该荧光染色试剂对于透明外聚合物颗粒的邻位羟基是特异性的,由此当所述试剂与透明外聚合物颗粒即TEP接触时,所述试剂的荧光信号改变。最后,检测来自水样品的荧光信号并测定样品的TEP水平。

Description

用于检测水样品中透明外聚合物颗粒的方法
本发明涉及一种根据所附独立权利要求的前序部分用于检测水样品中透明外聚合物颗粒的方法。
透明外聚合物颗粒(TEP)可以存在于水性环境中,无论是自然水域还是工业工艺水或废水。它们是主要由来自浮游植物和浮游细菌的酸性多糖组成的透明生物聚合物颗粒,并且可以具有高达几百微米长的可变形带、盘或膜的形式。TEP是很粘的、柔性的和表面活性的,并且它们表现得像凝胶且会增加粘度。它们可以聚结以形成更大的凝胶和多孔网络,并且它们容易引起生物淤积(例如在海水淡化工艺中的膜的淤积),尤其是在藻类大量繁殖期间。
迄今为止,大多忽视了TEP对富水工业中各种工艺问题的重要性,因为对它们的检测和量化非常困难。TEP是透明的,这意味着它们不能被直接检测。U.Passow和A.L.Alldredge(Limnol.Oceanogr.40(7),1995,1326–1335)描述了用于检测TEP的一个方法。在所述方法中,TEP用阳离子染料AlcianBlue染色并且比色测定与TEP络合的染料的量。该检测方法包括多个不同步骤:过滤、染色、洗涤、浸泡和比色测定。很明显,该方法不适合于其中需要快速响应的工业应用。此外,染料和TEP之间的相互作用是基于离子相互作用并且是非选择性的。例如,可能的阴离子聚合物或阴离子杂质会干扰TEP的测定。
本发明的目的是最小化或甚至消除存在于现有技术中的缺点。
本发明的目的还在于提供一种方法,其可以迅速且可靠地检测透明外聚合物颗粒。
本发明的另一个目的是提供一种方法,其可以容易地监测透明外聚合物颗粒的量。
通过具有以下在独立权利要求的特征部分中呈现的特点的本发明实现了这些目的。
根据本发明的用于检测水样品中透明外聚合物颗粒的典型方法包括
-获得水样品,
-向水样品中引入荧光染色试剂,该荧光染色试剂对于透明外聚合物颗粒的邻位羟基是特异性的,由此当试剂与透明外聚合物颗粒即TEP接触时,所述试剂的荧光信号改变,
-检测来自水样品的荧光信号并测定样品的TEP水平。
现在已经意外地发现,如果允许透明外聚合物颗粒与特定的荧光染色试剂相互作用,然后检测荧光信号,可以快速和可靠获得对透明外聚合物颗粒的量的分析。这使得能够产生快速方法,其可以用于不同的天然或工艺水中的TEP工业分析。本发明使得能够改善水密集工艺(water-intensiveproesses)中的操作效率,其中TEP浓度例如由于季节变化可能显著变化。本方法还提供了对水处理工艺获得更多了解的可能性。
在本发明中,向水样品中引入了荧光染色试剂。在本文中,术语“荧光染色”指发荧光的化合物。该试剂以已知的预定量添加,这使得所获得的信号彼此之间是可比的。在无需过多负担的情况下,本领域技术人员可以确定用于各个系统的合适的试剂量。
根据本发明的一个实施方式,荧光染色试剂对于邻位羟基是特异性的。换句话说,该荧光染色试剂对于包含连接在相邻原子上的至少两个羟基的透明外聚合物颗粒是特异性的。因此,该试剂对于例如二醇和三醇是选择性的。当该试剂与透明外聚合物颗粒的邻位羟基接触时,该试剂的荧光信号改变。
根据本发明的一个实施方式,荧光染色试剂是硼酸衍生物,例如苯基硼酸衍生物,如3-(丹酰氨基)苯基硼酸(DAPB)、3,4,5-三氟苯基硼酸、2-氟-5-硝基苯基硼酸、2-甲氧基苯基硼酸、N-苄基-3-吡啶鎓苯基硼酸、邻二甲基氨基甲基苯基硼酸、3-氯-4-氟苯基硼酸或4-溴苯基硼酸。此外,荧光染色试剂可以是硼酸衍生物,如8-喹啉硼酸(8-QBA)、5-喹啉硼酸(5-QBA)、6-(二甲基氨基)-萘-2-硼酸(6-DMANBA)或吩恶噻-4-硼酸(4-POBA)。标志TEP和硼酸衍生物之间的相互作用的响应通过荧光强度的变化经由螯合增强淬灭或螯合增强荧光表达。
根据本发明的一个优选实施方式,荧光染色试剂是3-(丹酰氨基)苯基硼酸(DAPB)。3-(丹酰氨基)苯基硼酸价廉且容易获得,因此其适用于工业用途。DAPB与邻二醇和某些氨基醇相互作用,以形成荧光强度和峰值发射(peakemission)取决于荧光团环境的环状络合物。
根据本发明的一个实施方式,例如当3-(丹酰氨基)苯基硼酸(DAPB)用作荧光染色试剂时,游离的无相互作用的荧光染色试剂的荧光信号被检测。这意味着检测到的信号随TEP浓度的增加而降低。当仍然可获得未反应试剂的典型的荧光信号时,所使用的荧光染色试剂的量是足够的。当所检测到的信号小于预定阈值信号值时,清楚地表明水样品中的TEP浓度已经超过了所允许的水平。
根据本发明的另一个实施方式,例如当8-喹啉硼酸(8-QBA)、5-喹啉硼酸(5-QBA)或6-(二甲基氨基)-萘-2-硼酸(6-DMANBA)用作荧光染色试剂时,相互作用的荧光染色试剂的荧光信号被检测。这意味着检测到的信号随TEP浓度的增加而增强。当所检测到的信号比预定阈值信号值更强时,清楚地表明水样品中的TEP浓度已经超过了所允许的水平。
根据本发明的一个实施方式,待分析TEP的水样品得自水处理工艺,且基于所检测的荧光信号调节和/或选择一种或几种工艺化学品进料。例如,如果所检测的信号表明TEP浓度超过所允许的水平,能够开始向工艺供料新的化学品以降低TEP浓度。可替代的或同时,可以改变连续供料的工艺化学品的剂量以降低TEP浓度。作为可基于所检测的信号来调节和/或选择的进料的这样的化学品的实例为混凝剂和絮凝剂。当基于所检测的信号进行了进料和/或处理化学品的计量时,可以降低化学品成本,因为可以避免过度进料。
根据本发明的一个实施方式,在引入荧光染色试剂之前将水样品的pH调节至恒定值。已经观察到,至少对于某些试剂而言,所检测到的荧光信号可能还取决于样品的pH,在这样的情况下,优选将pH调节至恒定值以消除所检测到的信号的pH依赖性。可以通过向水样品引入合适的缓冲剂例如硼酸/氯化钾/氢氧化钠,或通过引入合适的强碱如NaOH,或酸进行pH的调节。在这样的pH为恒定并且非常接近于试剂的荧光强度最大值处的pH值的工艺中,不需要pH调节步骤。本领域技术人员通过使用已知方法能够确定所使用的荧光试剂以及各个样品系统的最佳pH范围。
当使用苯基硼酸衍生物如3-(丹酰氨基)苯基硼酸(DAPB)作为荧光试剂时,可以将样品的pH调节至>7,更优选>8的水平,以优化荧光信号的强度。可以将水样品的pH调节至7至10的范围,更通常为8.5至9.5。
当使用8-喹啉硼酸(8-QBA)作为荧光试剂时,可以将样品的pH调节至4至10,更优选4.5至7.5,以优化荧光信号的强度。
当使用5-喹啉硼酸(5-QBA)作为荧光试剂时,可以将样品的pH调节至pH>4,更优选pH>7.5,以优化荧光信号的强度。可以将水样品的pH调节至7至10的范围,更通常为8.5至9.5。
当使用吩恶噻-4-硼酸(4-POBA)作为荧光试剂时,可以将样品的pH调节至2至7,更优选2至4,以优化荧光信号的强度。
优选地,从来自例如包括预处理单元和反渗透单元的水处理工艺中的水性工艺流获得水样品或将其看作侧流。可以在预处理单元之前或之后提取水样品。可以向水样品侧流引入pH调节剂如缓冲剂,并且优选地,在达到所期望的pH水平后,可以将荧光染色试剂连续地或以预定的时间间隔引入至水样品的侧流,并且可以分别连续地或在预定的时间间隔下测定荧光信号。可以任选地过滤(如果需要)所检测的信号和/或对所检测的信号进行数学分析。通过比较所检测的信号与预定的参比信号来测定工艺流中的TEP水平。
可以通过比较所检测的信号与预定的参比信号来测定工艺流中的TEP水平。例如,当检测TEP存在下荧光染色试剂信号淬灭时,可以使用超纯水中的试剂的荧光信号作为参比信号,由此获得无任何TEP的最大信号。可替代地,可以通过比较所检测到的信号与超纯水的信号来计算TEP量的相对值。超纯水的信号被赋予为100的值,如果样品中存在TEP,信号的淬灭则按比例相应地调整。
因为天然水域可以是混浊的介质,光散射的主导可能变得显著并且使荧光发射光谱畸变。在这种情况下,能够例如通过考虑拉曼散射来校正检测到的荧光信号。
根据本发明的一个实施方式,通过使用分光光度计或荧光分光光度计来检测荧光信号,例如通过使用比色皿、流通型比色皿或探针。所有这些检测方法是本领域技术人员已知的。
根据本发明的方法适用于其中可能存在TEP的所有水密集工艺。这样的工艺的例子是不同的水净化工艺,如海水淡化、预处理,和水密集制造工艺,如制浆和造纸。通常,可以使用本发明的这样的工艺包括至少一个微滤、超滤、纳滤和/或反渗透步骤。
可以使用本文所描述的方法来检测或测定胞外多糖(EPS)。
实验
用不同剂量的氯化铁(商品名:PIX-111,KemiraOyj)在pH5.5下处理微咸水。提取750μl经处理的水样品和未处理的对照水,并且添加250μl缓冲液硼酸/氯化钾/氢氧化钠(pH为9)。
通过将3-(丹酰氨基)苯基硼酸(DAPB)试剂溶解于1ml二甲基亚砜并用水将其稀释至50ml来制备2.00*10-4M的3-(丹酰氨基)苯基硼酸(DAPB)试剂。将20μl该DAPB溶液添加至各个经缓冲的水样品中,并且使用荧光分光光度计测定样品的荧光,激发波长为325nm,并且对470至600nm之间的发射强度进行积分。然后用发射总和除以650nm处的拉曼散射峰强度。然后将结果与超纯水的参比样品进行比较。单位是样品vs超纯水(参比)的相对强度的减少(%)。
为了比较,还使用Villacorte方法(VillacorteLO,KennedyMD,AmyGL,SchippersJC(2009):Thefateoftransparentexopolymerparticles(TEP)inintegratedmembranesystems:Removalthroughpre-treatmentprocessesanddepositiononreverseosmosismembranes.WaterResearch43:5039-5052)测定了来自相同水样品的透明外聚合物颗粒并且比较了结果,见表1。从结果可以看出,根据本发明的方法的相对结果与用Villacorte方法得到的结果相符合。Villacorte方法中的测量单位是黄原胶毫克当量/升(mgXanthanequivalentperliter),所使用的任意校准因子为0.114mgXeq。
表1.TEP测量的相对结果。
即使参照目前似乎是最实用和优选的实施方式描述了本发明,要理解的是本发明不应限于上述实施方式,而是本发明意在覆盖所附权利要求范围内的不同修改与等效技术方案。

Claims (15)

1.一种用于检测水样品中透明外聚合物颗粒的方法,所述方法包括
-获得水样品,
-向所述水样品引入荧光染色试剂,所述荧光染色试剂对于透明外聚合物颗粒的邻位羟基是特异性的,由此当该试剂与透明外聚合物颗粒即TEP接触时,该试剂的荧光信号改变,
-检测来自所述水样品的荧光信号并测定样品的TEP水平。
2.根据权利要求1所述的方法,其特征在于,所述荧光染色试剂是硼酸衍生物,如8-喹啉硼酸(8-QBA)、5-喹啉硼酸(5-QBA)、6-(二甲基氨基)-萘-2-硼酸(6-DMANBA)或吩恶噻-4-硼酸(4-POBA)。
3.根据权利要求1所述的方法,其特征在于,所述荧光染色试剂是苯基硼酸衍生物,如3-(丹酰氨基)苯基硼酸(DAPB)、3,4,5-三氟苯基硼酸、2-氟-5-硝基苯基硼酸、2-甲氧基苯基硼酸、N-苄基-3-吡啶鎓苯基硼酸、邻二甲基氨基甲基苯基硼酸、3-氯-4-氟苯基硼酸或4-溴苯基硼酸,优选3-(丹酰氨基)苯基硼酸(DAPB)。
4.根据权利要求1所述的方法,其特征在于,从水处理工艺获得所述水样品,并且基于所检测的荧光信号调节和/或选择一种或几种工艺化学品进料。
5.根据前述权利要求1至4中任一项所述的方法,其特征在于,在引入所述荧光染色试剂之前将所述水样品的pH调节至恒定值。
6.根据权利要求5所述的方法,其特征在于,所述荧光染色试剂是苯基硼酸衍生物,如3-(丹酰氨基)苯基硼酸,并且所述水样品的pH被调节至>7,更优选>8的水平。
7.根据权利要求5所述的方法,其特征在于,所述荧光染色试剂是8-喹啉硼酸(8-QBA),并且所述水样品的pH被调节至4至10的pH,更优选4.5至7.5的pH。
8.根据权利要求5所述的方法,其特征在于,所述荧光染色试剂是5-喹啉硼酸(5-QBA),并且所述水样品的pH被调节至pH>4,更优选pH>7.5。
9.根据权利要求5所述的方法,其特征在于,所述荧光染色试剂是吩恶噻-4-硼酸(4-POBA),并且所述水样品的pH被调节至2至7的pH,更优选2至4的pH。
10.根据前述权利要求1至9中任一项所述的方法,其特征在于,
-从水性工艺流获得水样品作为侧流,
-向所述侧流引入所述荧光染色试剂并且检测荧光信号,
-任选地过滤所述信号,
-通过比较所检测的信号与预定的参比信号来检测工艺流中的TEP水平。
11.根据权利要求1所述的方法,其特征在于,检测游离的无相互作用的荧光染色试剂的荧光信号。
12.根据权利要求1所述的方法,其特征在于,检测相互作用的荧光染色试剂的荧光信号。
13.根据权利要求1所述的方法,其特征在于,通过使用分光光度计或荧光分光光度计来检测荧光信号。
14.根据权利要求1至13中任一项所述的方法在监测水密集工艺,如水净化工艺,或水密集制造工艺中的透明外聚合物颗粒的量中的用途。
15.根据权利要求14所述的用途,其特征在于,所述工艺包括至少一个微滤、超滤、纳滤和/或反渗透步骤。
CN201480045948.7A 2013-08-26 2014-08-26 用于检测水样品中透明外聚合物颗粒的方法 Expired - Fee Related CN105492886B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20135857A FI126456B (en) 2013-08-26 2013-08-26 Method for detecting transparent exopolymers in a water sample
FI20135857 2013-08-26
PCT/FI2014/050648 WO2015028711A1 (en) 2013-08-26 2014-08-26 Method for detecting transparent exopolymer particles in a water sample

Publications (2)

Publication Number Publication Date
CN105492886A true CN105492886A (zh) 2016-04-13
CN105492886B CN105492886B (zh) 2018-01-02

Family

ID=51539294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480045948.7A Expired - Fee Related CN105492886B (zh) 2013-08-26 2014-08-26 用于检测水样品中透明外聚合物颗粒的方法

Country Status (11)

Country Link
US (1) US20160202189A1 (zh)
EP (1) EP3039403B1 (zh)
CN (1) CN105492886B (zh)
CA (1) CA2920745A1 (zh)
DK (1) DK3039403T3 (zh)
ES (1) ES2687710T3 (zh)
FI (1) FI126456B (zh)
IL (1) IL243960B (zh)
PT (1) PT3039403T (zh)
SA (1) SA516370627B1 (zh)
WO (1) WO2015028711A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117594151A (zh) * 2023-11-27 2024-02-23 北京航空航天大学 一种利用图像识别实现tep定性定量的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI129722B (en) * 2018-12-28 2022-07-29 Kemira Oyj Monitoring and regulation of hydrophobic components in a pulping process

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487981A (en) * 1993-07-30 1996-01-30 The United States Of America As Represented By The Secretary Of The Navy Apparatus for and method of detecting/identifying microbial contamination in ultra-pure water systems
US7470420B2 (en) * 2000-12-05 2008-12-30 The Regents Of The University Of California Optical determination of glucose utilizing boronic acid adducts
AU2003249636A1 (en) * 2002-05-14 2003-11-11 North Carolina State University Fluorescent sensor compounds for detecting saccharides
US6699684B2 (en) * 2002-07-23 2004-03-02 Nalco Company Method of monitoring biofouling in membrane separation systems
US7358094B2 (en) * 2003-05-01 2008-04-15 Bell Michael L Sensor system for saccharides
US7767817B2 (en) * 2003-09-05 2010-08-03 Binghe Wang Water soluble boronic acid fluorescent reporter compounds and methods of use thereof
US20070036682A1 (en) * 2005-08-15 2007-02-15 Honeywell International Inc. Microoptic glucose detector
US8202731B2 (en) * 2007-08-06 2012-06-19 Glumetrics, Inc. HPTS-mono and bis Cys-MA polymerizable fluorescent dyes for use in analyte sensors
WO2011016410A1 (ja) * 2009-08-06 2011-02-10 住友電気工業株式会社 水処理装置及び水処理方法
WO2013110005A1 (en) * 2012-01-18 2013-07-25 Wisconsin Alumni Research Foundation Boronate-mediated delivery of molecules into cells

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
L O VILLACORTE ET AL.: "《Characterisation of transparent exopolymer particles(TEP) produced during algal bloom: a membrane treatment perspective》", 《DESALINATION AND WATER TREATMENT》 *
PASSOW N, ET AL.: "《A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles(TEP)》", 《LIMNOLOGY AND OCEANOGRAPHY》 *
马丽丽 等.: "《北白令海透明胞外聚合颗粒物的含量与来源》", 《海洋学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117594151A (zh) * 2023-11-27 2024-02-23 北京航空航天大学 一种利用图像识别实现tep定性定量的方法

Also Published As

Publication number Publication date
US20160202189A1 (en) 2016-07-14
WO2015028711A1 (en) 2015-03-05
EP3039403B1 (en) 2018-06-20
FI20135857A (fi) 2015-02-27
CN105492886B (zh) 2018-01-02
EP3039403A1 (en) 2016-07-06
CA2920745A1 (en) 2015-03-05
SA516370627B1 (ar) 2017-11-14
IL243960A0 (en) 2016-04-21
IL243960B (en) 2020-11-30
DK3039403T3 (en) 2018-10-08
PT3039403T (pt) 2018-10-22
ES2687710T3 (es) 2018-10-26
FI126456B (en) 2016-12-15

Similar Documents

Publication Publication Date Title
Berman et al. Transparent exopolymer particles (TEP): A critical factor in aquatic biofilm initiation and fouling on filtration membranes
JP5075639B2 (ja) 処理剤残留物のモニタ及び水処理プロセスにおける処理剤投与量の制御方法
Jeong et al. Foulant analysis of a reverse osmosis membrane used pretreated seawater
Koyuncu et al. Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures
Öztürk et al. Boron removal from aqueous solution by reverse osmosis
Mehta et al. Removal of substituted phenyl urea pesticides by reverse osmosis membranes: laboratory scale study for field water application
Van Der Merwe et al. Flow cytometric assessment of microbial abundance in the near-field area of seawater reverse osmosis concentrate discharge
KR20040106309A (ko) 막 분리 공정 모니터링 방법
US20130233804A1 (en) Application of fluorescent dyes to trace and quantify chemical dosage in industrial wastewater
CN105492886A (zh) 用于检测水样品中透明外聚合物颗粒的方法
Inaba et al. Microbiomes and chemical components of feed water and membrane-attached biofilm in reverse osmosis system to treat membrane bioreactor effluents
JP6118799B2 (ja) 光透過性粒子測定方法及び光透過性粒子測定装置
Sanchez et al. Fluorescent compounds retained by ultrafiltration membranes for water reuse
EP3117209B1 (en) Systems and methods for controlling cationic water treatment additives
Ouni et al. The effect of surfactant on dye removal by polyelectrolyte enhanced ultrafiltration
Moons et al. Removal of micropollutants during drinking water production from surface water with nanofiltration
Rodrigues et al. Selective determination of sulphide based on photoluminescence quenching of MPA-capped CdTe nanocrystals by exploiting a gas-diffusion multi-pumping flow method
WO2013129111A1 (ja) 造水方法
Resosudarmo et al. Effect of physical and chemical stress on ultrafiltration membrane performance during marine algal blooms
Korus et al. UV spectrophotometric studies of Cu (II) ions separation by ultrafiltration enhanced with poly (sodium acrylate)
Wang et al. Impacts of water hardness on coagulation-UF-NF process using aluminum salts
Masmoudi et al. Surfactants role in the enhancement of the treatment efficiency of the dyeing effluents with combination of membrane processes
KR20070097114A (ko) 수처리 공정에서 처리제 잔존물의 모니터링 및 처리제투여량 조절 방법
Salinas-Rodriguez et al. Methods for Assessing Fouling and Scaling of Saline Water in Membrane-Based Desalination
Kibbey et al. Model stream channel testing of a UV-transparent polymer-based passive sampler for ultra-low-cost water screening applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180102

Termination date: 20200826