CN105490165A - 一种光斑稳定的大功率半导体激光器 - Google Patents

一种光斑稳定的大功率半导体激光器 Download PDF

Info

Publication number
CN105490165A
CN105490165A CN201610048189.0A CN201610048189A CN105490165A CN 105490165 A CN105490165 A CN 105490165A CN 201610048189 A CN201610048189 A CN 201610048189A CN 105490165 A CN105490165 A CN 105490165A
Authority
CN
China
Prior art keywords
ridge
contact layer
layer
power semiconductor
stable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610048189.0A
Other languages
English (en)
Inventor
朱振
张新
徐现刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Huaguang Optoelectronics Co Ltd
Original Assignee
Shandong Huaguang Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Huaguang Optoelectronics Co Ltd filed Critical Shandong Huaguang Optoelectronics Co Ltd
Priority to CN201610048189.0A priority Critical patent/CN105490165A/zh
Publication of CN105490165A publication Critical patent/CN105490165A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • H01S5/2207GaAsP based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32316Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm comprising only (Al)GaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32333Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm based on InGaAsP

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光斑稳定的大功率半导体激光器,自下至上依次包括衬底、下包层、有源区、上包层和接触层;上包层与接触层上设置有脊型结构,脊型结构的两侧形成沟槽,沟槽深度小于上包层与接触层的总厚度;接触层上表面除了脊型以外的部分以及沟槽的表面上包覆有介质膜,介质膜及脊型结构上包覆第一金属电极层,衬底的底面设置有第二金属电极层;第一金属电极层通过焊料烧结在热沉上,焊料与沟槽的底部设置有空气隔离层。上述激光器的上包层较厚,制成脊型结构,工作时有源区产生的热量侧向散发路径被空气隔离层阻断,热量主要通过脊型接触层垂直散发,因而脊型中间部分及靠近沟槽部分的有源区的折射率梯度不会随产热增加而继续变大,近场光斑也更加稳定。

Description

一种光斑稳定的大功率半导体激光器
技术领域
本发明涉及一种光斑稳定的大功率半导体激光器,属于半导体激光器的技术领域。
背景技术
大功率半导体激光器具有体积小、集成度高、电光转换效率高、成本低等优点,被广泛应用于材料加工、激光打印及显示、泵浦固体及光纤激光器等领域。这些应用需要激光器的光功率分布均匀并且稳定,即半导体激光器的近场及远场光斑均匀,并且光斑大小不随电流或温度的波动而发生变化。
大功率半导体激光器为保证高功率输出及其可靠性,一般使用宽条结构来降低腔面的光功率密度及注入电流密度。不同于窄条形的基横模输出的半导体激光器,宽条结构的大功率半导体激光器一般为多横模输出,并且发光区越宽,所含模式越多。当激光器工作条件波动时,这些模式会相互竞争,使得发光区的近场及远场光斑不稳定,表现为光斑不均匀或者光斑侧向展宽,影响激光器的应用。其中热透镜效应是影响宽条形半导体激光器模式不稳定的主要因素之一。由于发光区较宽,散热不均匀,导致器件横向存在折射率梯度,随着温度变化,激光器的输出模式也会发生变化。
文献IEEEPhotonicTech.L.,2013,Vol.25,pp958设计了一种可以形成反型热透镜的宽条半导体激光器,将靠近发光区中心的P接触层通过基座与热沉连接,而发光区两侧位置与热沉不接触,形成空气隔离层。这样发光区产生的热量主要通过P接触层及基座垂直流向热沉,通过两侧的散发的热量较少,从而改变了发光区横向的折射率变化梯度。通过计算机模拟结果可知,在一定工作电流范围内,其输出模式很稳定,并且对器件的输出功率几乎没有影响。但是目前此种方法只是理论设计,由于工艺的复杂性,还不能应用于批量生产。
中国专利文献CN104701733A公开了一种宽条形半导体激光器腔模选择方法。采用体光栅外腔方法,通过光栅平面法线倾斜的高反射体光栅的窄角度光束反馈,对快轴准直的宽条形大功率半导体激光器芯片的内腔横模进行选择,使呈现双峰远场分布的环行模式受到有效的外腔反馈,由于其中一个远场峰受到体光栅的高反射输出限制,实现了单峰远场激射,从而改善宽条形大功率半导体激光器的光束质量。此方法使用外腔选模方法,增加了部件,且会影响光路,在光电集成应用方面会受到影响。
发明内容
针对现有大功率半导体激光器光束存在的不足,本发明提供一种近场光斑稳定、增益特性高的大功率半导体激光器。
本发明的光斑稳定的大功率半导体激光器,采用以下技术方案:
该半导体激光器,自下至上依次包括衬底、下包层、有源区、上包层和接触层;上包层与接触层上设置有脊型结构,脊型结构的两侧形成沟槽,沟槽深度小于上包层与接触层的总厚度;接触层上表面除了脊型以外的部分以及沟槽的表面上包覆有介质膜,介质膜及脊型结构上包覆第一金属电极层,衬底的底面设置有第二金属电极层;第一金属电极层通过焊料烧结在热沉上,焊料与沟槽的底部设置有空气隔离层。
所述接触层为重掺杂Zn的GaAs,掺杂浓度为1×1019~1×1020cm-3
所述上包层与接触层的总厚度为2~3μm。
所述脊型结构的宽度为50~150μm。
所述沟槽的宽度为10~30μm。
所述脊型结构的高度为2~3μm。
本发明具有以下特点:
1.上包层较厚,制成脊型,使沟槽底部与有源区分离,界面缺陷不会吸收有源区发出的光,提高了激光器的增益特性。
2.控制沟槽深度及焊料厚度,使焊料不与槽底浸润,形成空气隔离层。激光器工作时,有源区产生的热量侧向散发路径被空气隔离层阻断,热量主要通过脊型接触层垂直散发,因而脊型中间部分及靠近沟槽部分的有源区的折射率梯度不会随产热增加而继续变大,近场光斑也更加稳定。
附图说明
图1为本发明大功率半导体激光器的结构示意图。
图2为本发明大功率半导体激光器与热沉烧结示意图。
图中,1、衬底,2、下包层,3、有源区,4、上包层,5、接触层,6、脊型结构,7、沟槽,8、介质膜,9、第一金属电极层,10、第二金属电极层,11、热沉,12、焊料,13、空气隔离层。
具体实施方式
如图1所示,本发明的光斑稳定的大功率半导体激光器,自下至上依次包括衬底1、下包层2、有源区3、上包层4和接触层5。衬底1为通用的GaAs衬底。下包层2、有源区3及上包层4采用与GaAs衬底晶格匹配的AlGaInP材料,发射波长约为650nm。接触层5为重掺杂Zn的GaAs,掺杂浓度为1×1019~1×1020cm-3。上包层4与接触层5的总厚度为2~3μm。
通过湿法腐蚀或者干法刻蚀,在上包层4与接触层5上制成脊型结构6,脊型结构6的两侧为沟槽7。为满足高功率输出,脊型结构6的宽度为50~150μm,沟槽7的宽度为10~30μm。为激光模式提供实折射率导引,脊型结构6的高度(或者沟槽7的深度)为2~3μm。
接触层5上表面除了脊型结构6以外的部分以及沟槽7的表面上均包覆有介质膜8,介质膜8可以为氧化硅或者氮化硅,起到电绝缘作用。在介质膜8及脊型结构6上包覆第一金属电极层9,在衬底1的底面包覆第二金属电极层10。对于GaAs材料,第一金属电极层9选择Ti/Pt/Au,第二金属电极层10选择Ge/Ni/Au。
如图2所示,将第一金属电极层9通过焊料12烧结在热沉11上,焊料12的厚度小于沟槽7的深度,以保证沟槽中存在空气隔离层13。既要保证烧结的均匀性,又要使焊料12不与沟槽7的底部浸润,形成空气隔离层13。
上述大功率半导体激光器工作时,有源区3产生的热量主要通过脊型结构6垂直散发至热沉11,而其侧向散发路径被空气隔离层13阻断,因而脊型6中部及靠近沟槽7的有源区3的折射率梯度不会随产热增加而继续变大,激光器的横向模式保持不变,近场光斑及远场光斑也更加稳定。

Claims (6)

1.一种光斑稳定的大功率半导体激光器,自下至上依次包括衬底、下包层、有源区、上包层和接触层;其特征是:上包层与接触层上设置有脊型结构,脊型结构的两侧形成沟槽,沟槽深度小于上包层与接触层的总厚度;接触层上表面除了脊型以外的部分以及沟槽的表面上包覆有介质膜,介质膜及脊型结构上包覆第一金属电极层,衬底的底面设置有第二金属电极层;第一金属电极层通过焊料烧结在热沉上,焊料与沟槽的底部设置有空气隔离层。
2.根据权利要求1所述的光斑稳定的大功率半导体激光器,其特征是:所述接触层为重掺杂Zn的GaAs,掺杂浓度为1×1019~1×1020cm-3
3.根据权利要求1所述的光斑稳定的大功率半导体激光器,其特征是:所述上包层与接触层的总厚度为2~3μm。
4.根据权利要求1所述的光斑稳定的大功率半导体激光器,其特征是:所述脊型结构的宽度为50~150μm。
5.根据权利要求1所述的光斑稳定的大功率半导体激光器,其特征是:所述沟槽的宽度为10~30μm。
6.根据权利要求1所述的光斑稳定的大功率半导体激光器,其特征是:所述脊型结构的高度为2~3μm。
CN201610048189.0A 2016-01-25 2016-01-25 一种光斑稳定的大功率半导体激光器 Pending CN105490165A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610048189.0A CN105490165A (zh) 2016-01-25 2016-01-25 一种光斑稳定的大功率半导体激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610048189.0A CN105490165A (zh) 2016-01-25 2016-01-25 一种光斑稳定的大功率半导体激光器

Publications (1)

Publication Number Publication Date
CN105490165A true CN105490165A (zh) 2016-04-13

Family

ID=55676986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610048189.0A Pending CN105490165A (zh) 2016-01-25 2016-01-25 一种光斑稳定的大功率半导体激光器

Country Status (1)

Country Link
CN (1) CN105490165A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768098A (zh) * 2018-07-27 2020-02-07 山东华光光电子股份有限公司 一种偏脊结构带有焊线图形的半导体激光器的制备方法
WO2023188967A1 (ja) * 2022-03-30 2023-10-05 ローム株式会社 半導体レーザ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768098A (zh) * 2018-07-27 2020-02-07 山东华光光电子股份有限公司 一种偏脊结构带有焊线图形的半导体激光器的制备方法
WO2023188967A1 (ja) * 2022-03-30 2023-10-05 ローム株式会社 半導体レーザ装置

Similar Documents

Publication Publication Date Title
CN106848835A (zh) 一种基于表面光栅的dfb激光器
US6928223B2 (en) Stab-coupled optical waveguide laser and amplifier
US7177335B2 (en) Semiconductor laser array with a lattice structure
CN103915758B (zh) 一种多模干涉结构太赫兹量子级联激光器及制作方法
Piprek Self-consistent far-field blooming analysis for high-power Fabry-Perot laser diodes
Chen et al. High power and narrow vertical divergence laser diodes with photonic crystal structure
US20080112450A1 (en) Homogeneous-Beam Temperature-Stable Semiconductor Laser and Method of Production
JP3891223B2 (ja) レーザーおよびそれに関連する改良
CN105490165A (zh) 一种光斑稳定的大功率半导体激光器
CN205543688U (zh) 一种光斑稳定的大功率半导体激光器
KR20100072048A (ko) 복사 방출 소자의 제조 방법 및 복사 방출 소자
Wang et al. High power conversion efficiency narrow divergence angle photonic crystal laser diodes
CN109038215A (zh) 一种双氧化孔径的高功率高速垂直腔面发射激光器
Liu et al. Thermal Lensing Effect Reduction on High-Power Multi-Mode Diode Lasers
JP2000269600A (ja) 高出力広帯域光源及び光増幅デバイス
JP2022501815A (ja) 利得導波型半導体レーザおよびその製造方法
TW406441B (en) Semiconductor laser and method for manufacturing the same
JP2019129216A (ja) 窒化物半導体レーザ素子及び半導体レーザ装置
JP2019129217A (ja) 半導体レーザ素子及び半導体レーザ装置
JP2846668B2 (ja) ブロードエリアレーザ
CN107134713A (zh) 一种用于大功率vcsel芯片的散热基板
CN100409512C (zh) 具有变折射率的放大部分的激光二极管
US20210367406A1 (en) Semiconductor laser, operating method for a semiconductor laser, and method for determining the optimum fill factor of a semiconductor laser
US4907055A (en) Optical semiconductor device
Zhao et al. Extreme Double/Triple Asymmetric Epitaxial Structure Based Diode Lasers for High Powers and High Efficiencies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160413

RJ01 Rejection of invention patent application after publication