CN105489903B - 一种复合材料原位固定化微生物燃料电池阳极微生物的方法 - Google Patents

一种复合材料原位固定化微生物燃料电池阳极微生物的方法 Download PDF

Info

Publication number
CN105489903B
CN105489903B CN201511034634.XA CN201511034634A CN105489903B CN 105489903 B CN105489903 B CN 105489903B CN 201511034634 A CN201511034634 A CN 201511034634A CN 105489903 B CN105489903 B CN 105489903B
Authority
CN
China
Prior art keywords
fuel cell
anode
composite material
microbial fuel
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511034634.XA
Other languages
English (en)
Other versions
CN105489903A (zh
Inventor
刘广立
杨昆鹏
余淑贤
骆海萍
卢耀斌
张仁铎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201511034634.XA priority Critical patent/CN105489903B/zh
Publication of CN105489903A publication Critical patent/CN105489903A/zh
Application granted granted Critical
Publication of CN105489903B publication Critical patent/CN105489903B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

本发明涉及一种复合材料原位固定化微生物燃料电池阳极微生物的方法,属于微生物燃料电池领域,通过聚丙烯酰胺和琼脂糖联合固定化方法原位固定化微生物燃料电池阳极微生物,在琼脂糖固定化阳极产电微生物的基础上,加入丙烯酰胺、引发剂和四甲基乙二胺,使聚丙烯酰胺凝胶与琼脂糖固定化的产电微生物进一步包埋,形成双层固定化,使得微生物料电池可以在高浓度有机物的条件下稳定运行。

Description

一种复合材料原位固定化微生物燃料电池阳极微生物的方法
技术领域
本发明属于微生物燃料电池领域,确定了一种微生物燃料电池阳极产电微生物聚丙烯酰胺和琼脂糖联合固定化方法,可实现稳定处理高浓度有机物的过程。
背景技术
微生物固定化技术是20世纪60年代发展起来的一种新兴技术,主要是通过化学或者物理的方法将游离的细胞或者微生物固定在一个特定空间中,使其保持活性并可反复利用。被固定化的微生物都具有微生物浓度高,反应稳定,对有毒物质和环境变化承受适应能力较强等优点。
微生物固定化技术主要可以分为物理固定法和化学固定法两大类,物理固定法主要有吸附法、包埋法等,化学固定法主要有共价结合法、交联法等。
微生物固定化技术由于有生物量大、处理效率高、占地面积少、产生污泥量少等特点,在废水处理应用中,特别是在特殊工业废水行业中有广阔的应用前景,已引起广泛关注。目前,微生物固定化技术在处理含油废水、氨氮废水、印染废水、重金属废水及难降解有机废水中已有大量的研究。
微生物燃料电池技术作为一种生物废水处理技术,由于产电细菌的生长需要,在处理废水时需要更多地考虑所处理的废水是否对产电细菌产生毒害作用,从而限制了其应用。而微生物固定化技术在废水处理中具有抗毒性冲击能力强,对环境变化不敏感等特点,将其与微生物燃料电池技术相结合能解决微生物燃料电池处理废水所面临的问题。
本发明是以微生物固定化技术为研究对象,在现有的微生物固定化技术研究基础上,采用聚丙烯酰胺和琼脂糖联合固定化方法,通过测试微生物燃料电池反应器的产电性能,确定适用于微生物燃料电池阳极的一种高效、稳定且廉价的适用于微生物燃料电池的双层凝胶固定化方法。
发明内容
本发明的目的是通过聚丙烯酰胺和琼脂糖双层凝胶固定化微生物燃料电池阳极微生物,提供一种复合材料原位固定化微生物燃料电池阳极微生物的方法。
本发明主要解决的技术问题是微生物燃料电池在高浓度下产电微生物活性无法稳定保持,产电性能下降的问题。
为了实现本发明的目的,本发明采用的技术方案是:将微生物燃料电池阳极包埋一层琼脂糖凝胶,再将该琼脂糖固定化阳极放入一定浓度丙烯酰胺的溶液中,在10%的引发剂和四甲基乙二胺催化反应条件下,形成聚丙烯酰胺与琼脂糖的复合凝胶,完成阳极产电微生物的固定化过程。
本发明所提供的一种复合材料原位固定化微生物燃料电池阳极微生物的方法的优点在于:琼脂糖凝胶层的存在对阳极微生物起到一定的保护作用,缓解了聚丙烯酰胺对阳极的损害,聚丙烯酰胺和琼脂糖联合固定化方法是适合微生物燃料电池长期运行、稳定处理高浓度有机物等特点的微生物固定化材料与方法。
附图说明
附图1是聚丙烯酰胺和琼脂糖联合固定化微生物燃料电池的产电曲线示意图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地说明。
一种复合材料原位固定化微生物燃料电池阳极微生物的方法,包括以下步骤:
(1)将微生物燃料电池阳极包埋一层琼脂糖凝胶;
(2)在烧杯中加入一定浓度的丙烯酰胺溶液,溶于磷酸盐缓冲液(8g/L氯化钠、0.2g/L氯化钾、1.44g/L磷酸氢二钠、0.24g/L磷酸二氢钾,调节pH为7.4)中,注意控制体积比为2∶5;
(3)迅速加入10%的引发剂和四甲基乙二胺,控制体积比为10∶1,搅拌均匀后倒入微生物燃料电池反应器中,浸没阳极;
(4)凝胶凝固10~100分钟后取出用大量去离子水冲洗干净;
(5)在反应器中加入基质运行,加入微生物燃料电池测定其产电性能。
根据实验结果验证,采用复合材料固定化后,微生物燃料电池产电稳定,最高输出电压为0.3~0.5伏。
根据实验结果验证,琼脂糖凝胶层的存在对阳极微生物起到一定的保护作用,缓解了聚丙烯酰胺对阳极的损害,聚丙烯酰胺和琼脂糖联合固定化是适合微生物燃料电池运行的微生物固定化材料与方法。

Claims (3)

1.一种复合材料原位固定化微生物燃料电池阳极微生物的方法,其特征在于,包括以下步骤:
(1)将微生物燃料电池阳极包埋一层琼脂糖凝胶;
(2)加入丙烯酰胺溶液,溶于磷酸盐缓冲液,控制所述丙烯酰胺溶液和所述磷酸盐缓冲液体积比为2:5;所述磷酸盐缓冲液的组成为:8g/L氯化钠、0.2g/L氯化钾、1.44g/L磷酸氢二钠、0.24g/L磷酸二氢钾;所述磷酸盐缓冲液的pH为7.4;
(3)迅速加入10%的引发剂和四甲基乙二胺,控制(2)得到的溶液与(3)中加入的引发剂和四甲基乙二胺的体积比为10∶1,搅拌均匀后倒入微生物燃料电池反应器中,浸没阳极;
(4)凝胶凝固10~100分钟后取出用大量去离子水冲洗干净;
(5)在反应器中加入基质运行,加入微生物燃料电池测定其产电性能。
2.根据权利要求1所述的一种复合材料原位固定化微生物燃料电池阳极微生物的方法,其特征是:采用聚丙烯酰胺和琼脂糖联合固定化方法。
3.根据权利要求1所述的一种复合材料原位固定化微生物燃料电池阳极微生物的方法,其特征是:采用复合材料固定化后,最高输出电压为0.3~0.5伏。
CN201511034634.XA 2015-12-30 2015-12-30 一种复合材料原位固定化微生物燃料电池阳极微生物的方法 Active CN105489903B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511034634.XA CN105489903B (zh) 2015-12-30 2015-12-30 一种复合材料原位固定化微生物燃料电池阳极微生物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511034634.XA CN105489903B (zh) 2015-12-30 2015-12-30 一种复合材料原位固定化微生物燃料电池阳极微生物的方法

Publications (2)

Publication Number Publication Date
CN105489903A CN105489903A (zh) 2016-04-13
CN105489903B true CN105489903B (zh) 2018-06-22

Family

ID=55676747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511034634.XA Active CN105489903B (zh) 2015-12-30 2015-12-30 一种复合材料原位固定化微生物燃料电池阳极微生物的方法

Country Status (1)

Country Link
CN (1) CN105489903B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854394A (zh) * 2019-11-29 2020-02-28 福州大学 用作微生物燃料电池固定化阳极的铜基复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1869674A (zh) * 2006-06-25 2006-11-29 襄樊学院 琼脂糖水凝胶固定化酶电极及其制备方法和应用
CN101475931A (zh) * 2009-01-22 2009-07-08 厦门大学 一种包埋固定化有效微生物凝胶小球的制备方法
CN101497880A (zh) * 2009-03-11 2009-08-05 清华大学 一种改进pva固定化微生物的新方法
CN103380527A (zh) * 2011-02-24 2013-10-30 索尼公司 微生物燃料电池、所述燃料电池的燃料和微生物、生物反应器和生物传感器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018635A (ja) * 2009-06-08 2011-01-27 Sony Corp 燃料電池、燃料電池の製造方法、電子機器、酵素固定化電極、バイオセンサー、エネルギー変換素子、細胞、細胞小器官および細菌

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1869674A (zh) * 2006-06-25 2006-11-29 襄樊学院 琼脂糖水凝胶固定化酶电极及其制备方法和应用
CN101475931A (zh) * 2009-01-22 2009-07-08 厦门大学 一种包埋固定化有效微生物凝胶小球的制备方法
CN101497880A (zh) * 2009-03-11 2009-08-05 清华大学 一种改进pva固定化微生物的新方法
CN103380527A (zh) * 2011-02-24 2013-10-30 索尼公司 微生物燃料电池、所述燃料电池的燃料和微生物、生物反应器和生物传感器

Also Published As

Publication number Publication date
CN105489903A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
Zhang et al. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia
CN104176836B (zh) 一种原位修复污染水体和底泥的微生物电化学装置及原位修复污染水体和底泥的方法
Li et al. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies
Wu et al. Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor
Liu et al. Applying an electric field in a built-in zero valent iron–anaerobic reactor for enhancement of sludge granulation
Geng et al. Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor
Jiang et al. A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation
Lee et al. Effects of an applied voltage on direct interspecies electron transfer via conductive materials for methane production
Jia et al. Enhancing simultaneous response and amplification of biosensor in microbial fuel cell-based upflow anaerobic sludge bed reactor supplemented with zero-valent iron
CN103117405B (zh) 多功能反硝化微生物燃料电池
CN108448144B (zh) 一种微生物燃料电池
Cucu et al. Microbial fuel cell for nitrate reduction
Wang et al. Enhanced U (VI) bioreduction by alginate-immobilized uranium-reducing bacteria in the presence of carbon nanotubes and anthraquinone-2, 6-disulfonate
Zhou et al. Electron transfer of Pseudomonas aeruginosa CP1 in electrochemical reduction of nitric oxide
Bayrakdar et al. Simultaneous nitrate and sulfide removal using a bio-electrochemical system
Rani et al. Statistical optimization of operating parameters of microbial electrolysis cell treating dairy industry wastewater using quadratic model to enhance energy generation
CN111115842B (zh) 一种高氯酸铵废水的处理方法
CN202594925U (zh) 一种污水厂污泥再生利用装置
Racho et al. Enhanced biogas production from modified tapioca starch wastewater
CN105489903B (zh) 一种复合材料原位固定化微生物燃料电池阳极微生物的方法
Cristiani et al. Electron recycle concept in a microbial electrolysis cell for biogas upgrading
Han et al. Simultaneous recovery of nutrients and power generation from source-separated urine based on bioelectrical coupling with the hydrophobic gas permeable tube system
CN103265142A (zh) 一种处理酸性矿井废水的方法
Yang et al. Enhanced self-powered system with graphene oxide modified electrode for simultaneous remediation of nitrate-contaminated groundwater and river sediment
CN105304923A (zh) 一种提高可降解苯酚的微生物燃料电池能量利用率的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant