CN105488935A - 一种基于非对称双Mach-Zehnder干涉的分布式光纤扰动定位系统及其定位方法 - Google Patents

一种基于非对称双Mach-Zehnder干涉的分布式光纤扰动定位系统及其定位方法 Download PDF

Info

Publication number
CN105488935A
CN105488935A CN201510993836.0A CN201510993836A CN105488935A CN 105488935 A CN105488935 A CN 105488935A CN 201510993836 A CN201510993836 A CN 201510993836A CN 105488935 A CN105488935 A CN 105488935A
Authority
CN
China
Prior art keywords
signal
time
disturbance
frequency
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510993836.0A
Other languages
English (en)
Other versions
CN105488935B (zh
Inventor
刘琨
刘铁根
江俊峰
马春宇
柴天娇
何畅
田苗
李志辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201510993836.0A priority Critical patent/CN105488935B/zh
Publication of CN105488935A publication Critical patent/CN105488935A/zh
Priority to PCT/CN2016/103521 priority patent/WO2017107657A1/zh
Priority to US15/567,076 priority patent/US10365126B2/en
Application granted granted Critical
Publication of CN105488935B publication Critical patent/CN105488935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35329Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/181Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
    • G08B13/183Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier
    • G08B13/186Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier using light guides, e.g. optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35335Aspects of emitters or receivers used by an interferometer in an optical fibre sensor arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提出了一种基于非对称双Mach-Zehnder干涉的分布式光纤扰动定位系统及其定位方法,与传统的双Mach-Zehnder分布式光纤扰动传感系统不同,本发明使用两个窄带光源和在探测器前加入了相应的密集波分复用器(DWDM),能够大大滤除光纤背向散射噪声,解决由于背向散射影响在传感距离较长时信噪比过低的问题。同时,提供了一种能够用于以上系统的定位方法,该方法利用基于短时平均频率的快速时频分析方法得到扰动帧信号的时频分布,并将频率最大点附近的点作为有效信号段进行互相关时延估计求得时延,进而获得扰动位置,该方法能够对系统中非对称扰动信号进行定位,具有较高的定位精度和稳定性。

Description

一种基于非对称双Mach-Zehnder干涉的分布式光纤扰动定位系统及其定位方法
技术领域
本发明属于传感及检测技术领域,特别涉及一种基于非对称干涉的分布式光纤扰动传感定位系统。
背景技术
双马赫-曾德(Mach-Zehnder)型分布式光纤扰动传感系统采用光波干涉技术实现入侵扰动检测及定位,具有长距离监控、高精度定位功能、低能源依赖性、高环境耐受性、抗电磁干扰、抗腐蚀等特性。近年来,谢尚然等(ShangranXie,et,al.PositioningerrorpredictiontheoryfordualMach-Zehnderinterferometricvibrationsensor,JournalofLightwaveTechnology,2011,29:362-368)分析了系统中多种噪声对定位精度的影响,并对不同信噪比下的系统定位精度进行预测。陈沁楠等(QinnanChen,et,al.AnEliminationMethodofPolarization-InducedPhaseShiftandFadinginDualMach-ZehnderInterferometryDisturbanceSensingSystem,JournalofLightwaveTechnology,2013,31:3135-3141)通过高效偏振控制方法对系统中偏振噪声进行补偿,提高了系统定位精度。黄翔东等(XiangdongHuang,et,al.ConfigurableFilter-BasedEndpointDetectioninDMZIVibrationSystem,PhotoicsTechnologyLetters,2014,26:1956-1959)利用全相位滤波器对扰动起始点准确定位。
目前,当传感距离较短时,双Mach-Zehnder分布式光纤扰动传感系统的定位精度可以达到20m以内(采样率10MS/s,理论精度为10m)。然而受限于系统光路结构,随着传感距离增加,光纤中背向散射噪声对系统信噪比影响愈发明显,严重影响系统定位精度,制约着该系统的传感距离。
发明目的
本发明的目的是解决双Mach-Zehnder分布式光纤扰动传感系统由于背向散射影响在传感距离较长时信噪比过低的问题,提出一种非对称型双Mach-Zehnder分布式光纤扰动传感系统。该系统利用光学滤波的方法消除光纤背向散射光对信号的影响,大大提高了系统在长距离应用时的信噪比。
本发明技术方案是:
一种基于非对称双Mach-Zehnder干涉的分布式光纤扰动定位系统,其特征在于该系统包括:
光源:采用两个波长为1550nm附近窄带宽分布式反馈激光器(DFB),两光源波长差大于本系统所用密集波分复用器(DWDM)的波长间隔;
光环行器:用来将光源发出的光传输到待检测物体并收集反射信号光;
DWDM:工作波长1500nm附近两个商用单通道DWDM,光谱透射范围分别只包含系统所用的一只光源的波长;
光电探测器:铟镓砷光电探测器(PD),接收光信号,进行光电转换并放大;
光纤耦合器:3dB光纤耦合器,用于1:2分光;
偏振控制器:调整两路干涉信号偏振态,保证信号可见度;
传感光缆:G.652D通信光缆,用于感知外界扰动及传导光信号;
数据采集卡:采样率为10MS/s双通道数据采集卡(DAQ),对两个光电探测器的电压信号进行采集,并送入计算机处理;
处理单元:包括通用计算机和嵌入式计算系统,采集卡接收的干涉信号进行处理,最终获取扰动信息。
进一步的,光源和相应的DWDM所构成的背向散射光滤除装置为任意波长光源和光滤波器组合。
进一步的,当光源功率较大时,采用光纤耦合器替代光环行器。
本发明还提供了一种可以应用与上述系统的定位方法,利用基于短时平均频率的时频分析方法得到扰动帧信号的时频分布,并将频率最大点附近的点作为有效信号段进行互相关时延估计,求得时延d,进而获得扰动位置x,具体算法流程如下:
1)设一对阈值门限δ1、δ2和一个幅值阈值ε,其中δ1<0,δ2>0且|δ1|=|δ2|=ε(为了滤除电路噪声,2ε需要大于噪声的幅值)。针对任意一个阈值门限,求得过阈值点位置的公式如下:
其中x(m)为信号段中第m点的幅值,Ci(m)为所求的过阈值点位置,把δ=δ1、δ=δ2分别代入公式中并依次对一帧点数为N的信号进行处理即可求得各自的过门限点位置C1(m)和C2(n),m,n∈[1,N-1]。
2)取C1(m)和C2(n)中大于0的项按从小到大共同排序,我们选取其中满足C1(m)<C2(n)的相邻两项来确定信号的过零点位置Z(k),其中Z(k)=[C1(m)+C2(n)]/2,k=1,2,3...,位于相邻两过零位置间信号的短时平均频率可以表示为:f(k)=1/[Z(k+1)-Z(k)];
3)对求得的短时平均频率点进行三次样条差值拟合,用拟合曲线来代表信号的时频分布,将频率最大点附近的点作为有效信号段,对两路有效信号的时频分布曲线进行归一化和时域上的互相关估计,即可确定时延d,进而算出扰动位置x。
进一步的,所述方法中扰动信号的时频分布曲线为现有技术任一时频分析方法获得扰动信号的时频分布曲线,再进行互相关求得时延d,进而获得扰动位置x。
本发明有益效果是:与传统的双Mach-Zehnder分布式光纤扰动传感系统不同,本发明系统使用两个窄带光源和在探测器前加入了相应的密集波分复用器(DWDM),能够大大滤除光纤背向散射噪声,解决由于背向散射影响在传感距离较长时信噪比过低的问题。同时,提供的能够用于以上系统的定位方法,利用基于短时平均频率的快速时频分析方法得到扰动帧信号的时频分布,并将频率最大点附近的点作为有效信号段进行互相关时延估计求得时延,进而获得扰动位置。该方法能够对系统中非对称扰动信号进行定位,具有较高的定位精度和稳定性。
附图说明
图1是分布式光纤扰动定位系统定位原理图;
图2是分布式光纤扰动定位系统示意图;
图3是扰动信号的原始信号图;
图4是扰动信号的时频分布图;
具体实施方式
1、本发明所提供的非对称型双Mach-Zehnder光纤扰动传感系统原理如下:
基于非对称型双Mach-Zehnder干涉原理的分布式光纤传感系统原理如图1所示,光源1和光源2发出的两束光在传感环路中分别沿顺时针和逆时针方向传播,并在对端的耦合器发生干涉。由光源1发出的光传播路径为C1-PC1-C2-C3-C4-DWDM2-PD2。光源2发出的光传播路径为C4-PC2-C3-C2-C1-DWDM1-PD1。其中,C1、C4为环形器,C2、C3为3dB耦合器,PC1、PC2为偏振控制器,DWDM1、DWDM2为密集波分复用器,PD1、PD2为光电探测器。设两个光电探测器PD1和PD2检测到同一扰动事件的时间分别为t1和t2,d=t1-t2,L为传感光缆的长度,x为扰动点距离耦合器C2的位置,其定位公式为
x=(L-vd)/2
式中,v为光波在单模光纤中的传播速度,单位m/s,其中v=c/n,c是光在真空中的速度(3×108m/s),n是光纤的折射率。
2、本发明同时提供的基于上述系统的高精度定位方法:
在传统的双Mach-Zehnder分布式光纤扰动定位系统中,时延d是通过对两路干涉信号进行互相关运算来进行估计的。本发明提供的基于非对称型双Mach-Zehnder原理的系统中,由于光源1和光源2的波长不同,由探测器PD1和PD2检测到的两路干涉信号具有不一致性,无法通过直接互相关进行时延估计。这两路干涉信号可以表示为:
I 1 ( t ) = c o s &lsqb; 2 &pi; &CenterDot; f ( t ) &lambda; 2 + &phi; 1 &rsqb; + n 1 ( t ) I 2 ( t ) = c o s &lsqb; 2 &pi; &CenterDot; f ( t - d ) &lambda; 1 + &phi; 2 &rsqb; + n 2 ( t )
式中,I1(t)、I2(t)为两路干涉信号光强,λ1、λ2分别为光源1和光源2的波长,f(t)为扰动引起的光程差变化,为初始相位差,n1(t)、n2(t)为各自的电路噪声。在滤除电路噪声的条件下,I1(t)、I2(t)的频率分别与f(t)和f(t-d)成正比。因此,为了求时延d,可以先获得两路信号的时频分布,再对两路信号的时频分布进行归一化和互相关。
本发明中我们先用双门限过零检测的方法滤除电路噪声并找出扰动信号的过零点位置,再利用相邻过零点之间的信号点数的倒数来估计该段信号的平均频率,并对平均频率点进行三次样条差值拟合,得到信号的时频分布;最后对时频分布曲线进行互相关求得时延d,具体算法流程如下所示:
1)设一对阈值门限δ1、δ2和一个幅值阈值ε,其中δ1<0,δ2>0且|δ1|=|δ2|=ε(为了滤除电路噪声,2ε需要大于噪声的幅值)。针对任意一个阈值门限,求得过阈值点位置的公式如下:
其中x(m)为信号段中第m点的幅值,Ci(m)为所求的过阈值点位置,把δ=δ1、δ=δ2分别代入公式中并依次对一帧点数为N的信号进行处理即可求得各自的过门限点位置C1(m)和C2(n),m,n∈[1,N-1]。
2)取C1(m)和C2(n)中大于0的项按从小到大共同排序。我们选取其中满足C1(m)<C2(n)的相邻两项来确定信号的过零点位置Z(k),其中Z(k)=[C1(m)+C2(n)]/2,k=1,2,3...。位于相邻两过零位置间信号的短时平均频率可以表示为:f(k)=1/[Z(k+1)-Z(k)]。
3)对求得的短时平均频率点进行三次样条差值拟合,用拟合曲线来代表信号的时频分布。将频率最大点附近的点作为有效信号段,对两路有效信号的时频分布曲线进行归一化和时域上的互相关估计,即可确定时延d,进而算出扰动位置x。
本发明扰动信号的时频分布曲线为现有技术任一时频分析方法获得扰动信号的时频分布曲线。
实施例1:用于定位的分布式光纤扰动传感系统
该系统结构如图2所示,包括9个部分:
光源1a、1b:采用波长为1550nm附近窄带宽分布式反馈激光器(DFB),两光源波长差大于3)中密集波分复用器(DWDM)的波长间隔;
光环行器2a、2b:用来将光源发出的光传输到待检测物体并收集反射信号光,当光源功率较大时,可采用光纤耦合器替代;
波分复用器DWDM3a、3b:工作波长1500nm附近商用单通道DWDM,其中3a的光谱透射范围包含光源1b的中心波长,3b的光谱透射范围包含光源1a的中心波长,;
光电探测器4a、4b:铟镓砷光电探测器(PD),接收光信号,进行光电转换并放大。
光纤耦合器5a、5b:3dB光纤耦合器,用于1:2分光;
偏振控制器6a、6b:调整两路干涉信号偏振态,保证信号可见度。
传感光缆7:G.652D通信光缆,用于感知外界扰动及传导光信号;
数据采集卡8:采样率为10MS/s双通道数据采集卡(DAQ),对两个光电探测器4a和4b的电压信号进行采集,并送入计算机处理。
处理单元9:包括通用计算机和嵌入式计算系统,对采集卡接收的干涉信号进行处理,最终获取扰动信息。
实施例2:基于过零率分析的分布式光纤传感定位算法
如图2所示,数据采集卡采集两路信号并将信号送入计算机。计算机基于短时平均频率的时频分析方法得到扰动帧信号的时频分布,并将频率最大点附近的点作为有效信号段进行互相关时延估计。
以下对图2所示的系统,用某次定位实例来说明计算过程:
该系统的参数设定如下:传感光纤总长度为61km,其中1km为铠装光缆,其余60km为裸纤,光源1a和光源1b的波长分别为1550.74nm和1549.95nm,功率均为10mW,两个DWDM的中心波长分别为1550.12nm和1550.92nm,带宽均为±0.22nm,采集卡的采样频率为10M/s,采样时间为0.3s,有效信号点数对应的采样时间设为0.02s。
在光缆的800m处敲击光缆,系统采集到的原始信号如图3所示,可以看出图中虚线和实线两信号具有较高的信噪比,且两信号之间有一个明显的时延差。图4是信号的时频分布图,可以发现虚线实线两条时频分布曲线趋势基本一致,因此可以利用互相关求得时延。
为了说明该算法的有效性,在800m处以敲击方式进行200组定位实验,定位误差分布如下表所示。
在61km的传感距离下,定位误差在50m以内的概率达到80%,均方差为42.25m。具有较高的定位精度和可靠性。

Claims (5)

1.一种基于非对称双Mach-Zehnder干涉的分布式光纤扰动定位系统,其特征在于该系统包括:
光源:采用两个波长为1550nm附近窄带宽分布式反馈激光器DFB,两光源波长差大于本系统所用密集波分复用器DWDM的波长间隔;
光环行器:用来将光源发出的光传输到待检测物体并收集反射信号光。
DWDM:工作波长1500nm附近两个商用单通道DWDM,光谱透射范围分别只包含系统所用的一只光源的波长;
光电探测器:铟镓砷光电探测器PD,接收光信号,进行光电转换并放大;
光纤耦合器:3dB光纤耦合器,用于1:2分光;
偏振控制器:调整两路干涉信号偏振态,保证信号可见度;
传感光缆:G.652D通信光缆,用于感知外界扰动及传导光信号;
数据采集卡:采样率为10MS/s双通道数据采集卡DAQ,对两个光电探测器的电压信号进行采集,并送入计算机处理;
处理单元:包括通用计算机和嵌入式计算系统,采集卡接收的干涉信号进行处理,最终获取扰动信息。
2.根据权利要求1所述的基于非对称双Mach-Zehnder干涉的分布式光纤扰动定位系统,其特征在于,光源和相应的DWDM所构成的背向散射光滤除装置为任意波长光源和光滤波器组合。
3.根据权利要求1所述的基于非对称双Mach-Zehnder干涉的分布式光纤扰动定位系统,其特征在于,当光源功率较大时,采用光纤耦合器替代光环行器。
4.一种用于权利要求1所述系统的定位方法,其特征在于:
利用基于短时平均频率的时频分析方法得到扰动帧信号的时频分布,并将频率最大点附近的点作为有效信号段进行互相关时延估计,求得时延d,进而获得扰动位置x,具体算法流程如下:
1)设一对阈值门限δ1、δ2和一个幅值阈值ε,其中δ1<0,δ2>0且|δ1|=|δ2|=ε,针对任意一个阈值门限,求得过阈值点位置的公式如下:
其中x(m)为信号段中第m点的幅值,Ci(m)为所求的过阈值点位置,把δ=δ1、δ=δ2分别代入公式中并依次对一帧点数为N的信号进行处理即可求得各自的过门限点位置C1(m)和C2(n),m,n∈[1,N-1];
2)取C1(m)和C2(n)中大于0的项按从小到大共同排序,选取其中满足C1(m)<C2(n)的相邻两项来确定信号的过零点位置Z(k),其中Z(k)=[C1(m)+C2(n)]/2,k=1,2,3...,位于相邻两过零位置间信号的短时平均频率可以表示为:f(k)=1/[Z(k+1)-Z(k)];
3)对求得的短时平均频率点进行三次样条差值拟合,用拟合曲线来代表信号的时频分布,将频率最大点附近的点作为有效信号段,对两路有效信号的时频分布曲线进行归一化和时域上的互相关估计,即可确定时延d,进而算出扰动位置x。
5.根据权利要求4所述的定位方法,其特征在于,所述扰动信号的时频分布曲线为现有技术任一时频分析方法获得扰动信号的时频分布曲线,再进行互相关求得时延d,进而获得扰动位置x。
CN201510993836.0A 2015-12-25 2015-12-25 一种基于非对称双Mach‑Zehnder干涉的分布式光纤扰动定位系统及其定位方法 Active CN105488935B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510993836.0A CN105488935B (zh) 2015-12-25 2015-12-25 一种基于非对称双Mach‑Zehnder干涉的分布式光纤扰动定位系统及其定位方法
PCT/CN2016/103521 WO2017107657A1 (zh) 2015-12-25 2016-10-27 一种基于非对称双Mach-Zehnder干涉的分布式光纤扰动定位系统及其定位方法
US15/567,076 US10365126B2 (en) 2015-12-25 2016-10-27 Distributed optical fiber disturbance positioning system based on the asymmetric dual Mach-Zehnder interference, and positioning method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510993836.0A CN105488935B (zh) 2015-12-25 2015-12-25 一种基于非对称双Mach‑Zehnder干涉的分布式光纤扰动定位系统及其定位方法

Publications (2)

Publication Number Publication Date
CN105488935A true CN105488935A (zh) 2016-04-13
CN105488935B CN105488935B (zh) 2018-01-16

Family

ID=55675895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510993836.0A Active CN105488935B (zh) 2015-12-25 2015-12-25 一种基于非对称双Mach‑Zehnder干涉的分布式光纤扰动定位系统及其定位方法

Country Status (3)

Country Link
US (1) US10365126B2 (zh)
CN (1) CN105488935B (zh)
WO (1) WO2017107657A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106023499A (zh) * 2016-04-28 2016-10-12 北京北邮国安技术股份有限公司 一种光纤安防信号双重识别方法及系统
CN106384463A (zh) * 2016-11-24 2017-02-08 天津大学 基于混合特征提取的光纤周界安防入侵事件识别方法
CN106679789A (zh) * 2016-11-04 2017-05-17 安徽师范大学 一种分布式光纤振动传感系统及其传感方法
CN106679790A (zh) * 2016-12-05 2017-05-17 华南理工大学 一种提高分布式光纤振动传感灵敏度的互相关解调方法
CN106768278A (zh) * 2017-01-06 2017-05-31 天津大学 一种分布式光纤振动和温度双物理量传感定位系统
WO2017107657A1 (zh) * 2015-12-25 2017-06-29 天津大学 一种基于非对称双Mach-Zehnder干涉的分布式光纤扰动定位系统及其定位方法
CN107180521A (zh) * 2017-04-19 2017-09-19 天津大学 基于综合特征的光纤周界安防入侵事件识别方法及装置
CN107328430A (zh) * 2017-08-09 2017-11-07 电子科技大学 基于脉冲光源和稳定干涉仪相结合的传感解调系统
WO2019019735A1 (zh) * 2017-07-27 2019-01-31 天津求实飞博科技有限公司 基于光频域反射长距离光纤分布式扰动传感信号处理方法
CN110146116A (zh) * 2019-06-19 2019-08-20 南昌航空大学 一种多点扰动下Sagnac光纤传感的定位方法
CN111077408A (zh) * 2019-12-26 2020-04-28 芯华创(武汉)光电科技有限公司 一种光纤偏振传感雷电定位系统及方法
CN111811549A (zh) * 2020-06-10 2020-10-23 天津大学 非对称双马赫曾德传感系统的解调方法及定位装置
CN112885011A (zh) * 2021-01-22 2021-06-01 中化学交通建设集团有限公司 光纤周界安防系统的入侵检测方法及相关设备
CN113324569A (zh) * 2021-05-21 2021-08-31 复旦大学 双波长单向环型分布式光纤传感定位系统
CN113324568A (zh) * 2021-05-21 2021-08-31 复旦大学 基于非对称式融合干涉仪的分布式光纤传感定位系统

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111398899A (zh) * 2020-04-17 2020-07-10 广东复安科技发展有限公司 一种叠加复合信号的处理方法
CN111555807A (zh) * 2020-05-08 2020-08-18 中国核动力研究设计院 一种基于光纤的多路开关量并行传输系统及方法
CN111780857B (zh) * 2020-06-05 2022-02-15 南京曦光信息科技有限公司 一种基于谐波累加的p-otdr系统的多点扰动定位检测方法
CN112161778B (zh) * 2020-08-17 2022-08-02 南昌航空大学 基于回归概率分布的分布式光纤扰动定位方法
US11501617B2 (en) 2020-09-11 2022-11-15 Network Integrity Systems, Inc. Test device for verifying operation of an optical fiber monitoring system
US11515940B2 (en) * 2020-09-11 2022-11-29 Network Integrity Systems, Inc. Test device for verifying operation of an optical fiber monitoring system
US11502751B2 (en) 2020-09-11 2022-11-15 Network Integrity Systems, Inc. Test device for verifying operation of an optical fiber monitoring system organized in a common housing
US11502748B2 (en) 2020-09-11 2022-11-15 Network Integrity Systems, Inc. Test device for verifying operation of an optical fiber monitoring system utilizing complex test signal
US11631308B2 (en) 2020-09-11 2023-04-18 Network Integrity Systems, Inc. Test device for verifying operation of an optical fiber monitoring system by injection of longitudinal strain
US11502749B2 (en) 2020-09-11 2022-11-15 Network Integrity Systems, Inc. Test device for verifying operation of an optical fiber monitoring system utilizing outgoing communication
US11502750B2 (en) 2020-09-11 2022-11-15 Network Integrity Systems, Inc. Test device for verifying operation of an optical fiber monitoring system protecting multiple fiber runs
CN115208463B (zh) * 2021-04-09 2024-01-26 西安电子科技大学 一种基于相位谱分析的光采样多目标测频方法
CN114018391B (zh) * 2021-11-04 2023-09-26 全球能源互联网研究院有限公司 一种抑制干涉光强衰落的方法及装置
CN114459593B (zh) * 2022-01-25 2024-01-30 北京信维科技股份有限公司 一种提高光纤振动系统探测距离的方法
CN114923559B (zh) * 2022-04-19 2023-05-05 北京理工大学 基于相位解调光频域反射仪的分布式光纤声波测量方法
CN115218938B (zh) * 2022-07-18 2024-08-02 上海海纳信达数据技术有限公司 一种基于光程计算的扩大马赫-泽德型传感器测量范围的方法及系统
CN115164955A (zh) * 2022-07-26 2022-10-11 国网智能电网研究院有限公司 一种双马赫-曾德尔干涉仪的反馈环路控制方法及装置
CN115776331B (zh) * 2022-11-14 2024-06-25 中铁第四勘察设计院集团有限公司 一种单纤双向铁路光缆安全监测系统与方法
CN115830827A (zh) * 2022-11-23 2023-03-21 国家石油天然气管网集团有限公司 一种针对光纤管道的预警方法、系统、介质及设备
CN116592922B (zh) * 2023-04-23 2024-10-01 复旦大学 基于单芯反馈式干涉仪的支路分布式定位系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080050124A1 (en) * 2006-08-25 2008-02-28 Hidemi Tsuchida Optical signal processing circuit
CN102064884A (zh) * 2010-11-25 2011-05-18 复旦大学 基于波分复用的长距离分布式光纤定位干涉结构
CN102117525A (zh) * 2010-09-20 2011-07-06 北京邮电大学 一种光纤入侵检测系统
CN102291181A (zh) * 2011-08-09 2011-12-21 天津大学 一种分布式光纤扰动定位系统偏振控制方法及控制系统
CN102997945A (zh) * 2011-09-16 2013-03-27 北京航空航天大学 光纤分布式扰动传感器的多点扰动定位方法
CN104482858A (zh) * 2014-12-24 2015-04-01 北京奥普科达科技有限公司 一种高灵敏度和高精度的光纤识别标定方法及系统
CN105092018A (zh) * 2015-09-28 2015-11-25 上海珑登信息科技有限公司 一种长距离光纤分布式振动监测系统及监测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144320A (ja) * 1990-10-05 1992-05-18 Hitachi Ltd ホモダイン光受信装置
US6597842B2 (en) * 2001-05-21 2003-07-22 Copley Networks, Inc. Optical interleaver with image transfer element
CN101465052B (zh) * 2007-12-21 2011-05-11 上海光亮光电科技有限公司 周界安全监测装置及方法
WO2010031163A1 (en) * 2008-09-17 2010-03-25 Institut National De La Recherche Scientifique Cross-chirped interferometry system and method for light detection and ranging
CN101625258B (zh) * 2009-08-05 2012-03-21 上海华魏光纤传感技术有限公司 基于马赫-泽德干涉仪的光纤振动传感系统及传感方法
CN101701844B (zh) * 2009-10-30 2011-05-04 中国电子科技集团公司第三十四研究所 基于双马赫-泽德干涉仪的光纤振动传感系统及使用方法
CN105488935B (zh) * 2015-12-25 2018-01-16 天津大学 一种基于非对称双Mach‑Zehnder干涉的分布式光纤扰动定位系统及其定位方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080050124A1 (en) * 2006-08-25 2008-02-28 Hidemi Tsuchida Optical signal processing circuit
CN102117525A (zh) * 2010-09-20 2011-07-06 北京邮电大学 一种光纤入侵检测系统
CN102064884A (zh) * 2010-11-25 2011-05-18 复旦大学 基于波分复用的长距离分布式光纤定位干涉结构
CN102291181A (zh) * 2011-08-09 2011-12-21 天津大学 一种分布式光纤扰动定位系统偏振控制方法及控制系统
CN102997945A (zh) * 2011-09-16 2013-03-27 北京航空航天大学 光纤分布式扰动传感器的多点扰动定位方法
CN104482858A (zh) * 2014-12-24 2015-04-01 北京奥普科达科技有限公司 一种高灵敏度和高精度的光纤识别标定方法及系统
CN105092018A (zh) * 2015-09-28 2015-11-25 上海珑登信息科技有限公司 一种长距离光纤分布式振动监测系统及监测方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017107657A1 (zh) * 2015-12-25 2017-06-29 天津大学 一种基于非对称双Mach-Zehnder干涉的分布式光纤扰动定位系统及其定位方法
CN106023499A (zh) * 2016-04-28 2016-10-12 北京北邮国安技术股份有限公司 一种光纤安防信号双重识别方法及系统
CN106679789A (zh) * 2016-11-04 2017-05-17 安徽师范大学 一种分布式光纤振动传感系统及其传感方法
CN106384463A (zh) * 2016-11-24 2017-02-08 天津大学 基于混合特征提取的光纤周界安防入侵事件识别方法
CN106679790A (zh) * 2016-12-05 2017-05-17 华南理工大学 一种提高分布式光纤振动传感灵敏度的互相关解调方法
CN106768278A (zh) * 2017-01-06 2017-05-31 天津大学 一种分布式光纤振动和温度双物理量传感定位系统
CN106768278B (zh) * 2017-01-06 2020-07-31 天津大学 一种分布式光纤振动和温度双物理量传感定位系统
CN107180521A (zh) * 2017-04-19 2017-09-19 天津大学 基于综合特征的光纤周界安防入侵事件识别方法及装置
WO2019019735A1 (zh) * 2017-07-27 2019-01-31 天津求实飞博科技有限公司 基于光频域反射长距离光纤分布式扰动传感信号处理方法
CN107328430A (zh) * 2017-08-09 2017-11-07 电子科技大学 基于脉冲光源和稳定干涉仪相结合的传感解调系统
CN110146116A (zh) * 2019-06-19 2019-08-20 南昌航空大学 一种多点扰动下Sagnac光纤传感的定位方法
CN111077408A (zh) * 2019-12-26 2020-04-28 芯华创(武汉)光电科技有限公司 一种光纤偏振传感雷电定位系统及方法
CN111077408B (zh) * 2019-12-26 2021-11-12 芯华创(武汉)光电科技有限公司 一种光纤偏振传感雷电定位系统及方法
CN111811549A (zh) * 2020-06-10 2020-10-23 天津大学 非对称双马赫曾德传感系统的解调方法及定位装置
CN112885011A (zh) * 2021-01-22 2021-06-01 中化学交通建设集团有限公司 光纤周界安防系统的入侵检测方法及相关设备
CN113324569A (zh) * 2021-05-21 2021-08-31 复旦大学 双波长单向环型分布式光纤传感定位系统
CN113324568A (zh) * 2021-05-21 2021-08-31 复旦大学 基于非对称式融合干涉仪的分布式光纤传感定位系统
CN113324569B (zh) * 2021-05-21 2022-03-18 复旦大学 双波长单向环型分布式光纤传感定位系统
CN113324568B (zh) * 2021-05-21 2022-04-12 复旦大学 基于非对称式融合干涉仪的分布式光纤传感定位系统

Also Published As

Publication number Publication date
US20180292240A1 (en) 2018-10-11
US10365126B2 (en) 2019-07-30
WO2017107657A1 (zh) 2017-06-29
CN105488935B (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
CN105488935A (zh) 一种基于非对称双Mach-Zehnder干涉的分布式光纤扰动定位系统及其定位方法
CN107957276B (zh) 基于频率漂移补偿的相位敏感光时域反射计及其测量方法
CN102636196B (zh) 一种基于瑞利散射光谱相关系数的分布式扰动传感装置的解调方法
CN102879081B (zh) 一种分布式光纤振动系统中的数据处理方法
CN102291181B (zh) 一种分布式光纤扰动定位系统偏振控制方法及控制系统
CN103900623B (zh) 基于双声光调制器的光时域反射仪及其共模抑制方法
CN106679790A (zh) 一种提高分布式光纤振动传感灵敏度的互相关解调方法
CN103278271B (zh) 一种分布式光纤监测系统及其监测方法
CN102168808A (zh) 分布式光纤振动传感器
CN102589748B (zh) 基于光纤瑞利与布里渊原理的环境温度测量方法
CN103994784A (zh) 一种基于过零点分析的分布式光纤传感定位方法
CN104236697A (zh) 一种基于波分复用的分布式光纤振动检测方法及系统
CN105157874A (zh) 一种分布式边界安防监测系统及方法
CN103471812A (zh) 弱光栅检测装置及其检测方法
CN101216149A (zh) 长距离管线安全监测的光纤分布式监测方法及装置
CN103630229B (zh) 一种微分相干时域散射型分布式光纤振动传感方法及系统
CN104296783A (zh) 增强型相干光时域反射的传感检测方法及装置
CN102510307A (zh) 基于退火算法的光纤扰动系统偏振控制方法及控制系统
CN104776871A (zh) 光纤布里渊分布式测量光路、装置和方法
CN112179475B (zh) 一种多源混叠的分布式光纤振动传感信号的分离方法
CN103792847A (zh) 一种基于粒子群算法的光纤扰动偏振控制装置
CN101625257A (zh) 可用时间延迟估计的白光干涉定位监测装置和方法
CN103175555A (zh) 一种基于多机理融合的多参量分布式光纤传感器
CN103148872B (zh) 一种光纤分布式扰动传感器定位方法
Huang et al. Security threshold setting algorithm of distributed optical fiber monitoring and sensing system based on big data in smart city

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant