CN105488835A - 一种基于纹理空间gpu加速的圆形切屏方法及其系统 - Google Patents

一种基于纹理空间gpu加速的圆形切屏方法及其系统 Download PDF

Info

Publication number
CN105488835A
CN105488835A CN201410467642.2A CN201410467642A CN105488835A CN 105488835 A CN105488835 A CN 105488835A CN 201410467642 A CN201410467642 A CN 201410467642A CN 105488835 A CN105488835 A CN 105488835A
Authority
CN
China
Prior art keywords
texture
pixel
controling parameters
angle
touch operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410467642.2A
Other languages
English (en)
Other versions
CN105488835B (zh
Inventor
赵智宝
卢伟超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL Corp
Original Assignee
TCL Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCL Corp filed Critical TCL Corp
Priority to CN201410467642.2A priority Critical patent/CN105488835B/zh
Publication of CN105488835A publication Critical patent/CN105488835A/zh
Application granted granted Critical
Publication of CN105488835B publication Critical patent/CN105488835B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • User Interface Of Digital Computer (AREA)
  • Processing Or Creating Images (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

本发明所提供的一种基于纹理空间GPU加速的圆形切屏方法及其系统,方法包括:初始化构建3D渲染模型,并加载上层纹理及下层纹理;对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,根据所述触摸操作的滑动轨迹获取用于控制切屏百分比的控制参数;根据所述控制参数,确定所述3D渲染模型中填充所述上层纹理中对应像素点的像素值的第一区域、及填充所述下层纹理中对应像素点的像素值的第二区域,并填充相应的纹理。本发明有效减少3D图形绘制的点数,将计算量从CPU端迁移到GPU端,较大程度的降低了CPU的占用率,平衡CPU和GPU的负载,提高了嵌入式系统的有效使用率。

Description

一种基于纹理空间GPU加速的圆形切屏方法及其系统
技术领域
本发明涉及移动设备图像处理技术领域,尤其涉及的是一种基于纹理空间GPU加速的圆形切屏方法及其系统。
背景技术
随着智能电视,智能手机的流行和普及,基于3D的视觉体验效果也越来越流行起来,为追求更好的用户体验,越来越多的3D应用在嵌入式设备上运行起来。目前,圆形切屏的一般通用的方法为,将切屏分成两层绘制,底层绘制要切换到的目标效果,上层为需要切换的源效果,按照从图层叠加的次序进行从底向上绘制。为达到切屏的效果,上层需要每帧监测切换的百分比,根据百分比,动态计算所要绘制节点的个数,动态改变节点上的纹理坐标,这样需要在每帧消耗大量的CPU。
因此,现有技术还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种基于纹理空间GPU加速的圆形切屏方法及其系统,可有效减少3D图形绘制的点数,将计算量从CPU端迁移到GPU端,较大程度的降低了CPU的占用率,平衡CPU和GPU的负载,提高了嵌入式系统的有效使用率。
本发明解决技术问题所采用的技术方案如下:
一种基于纹理空间GPU加速的圆形切屏方法,其中,所述方法包括步骤:
A、初始化构建3D渲染模型,并加载上层纹理及下层纹理;
B、对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,根据所述触摸操作的滑动轨迹获取用于控制切屏百分比的控制参数;
C、根据所述控制参数,确定所述3D渲染模型中填充所述上层纹理中对应像素点的像素值的第一区域、及填充所述下层纹理中对应像素点的像素值的第二区域,并填充相应的纹理。
所述基于纹理空间GPU加速的圆形切屏方法,其中,所述步骤A中所述3D渲染模型、所述上层纹理和所述下层纹理均为单位长度的正方形。
所述基于纹理空间GPU加速的圆形切屏方法,其中,所述步骤C中所述第一区域与所述第二区域的面积之和等于所述3D渲染模型的面积。
所述基于纹理空间GPU加速的圆形切屏方法,其中,所述步骤B包括:
B1、对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,获取所述触摸操作的运动轨迹;
B2、当所述运动轨迹为圆弧时,获取所述圆弧的当前圆心角,并根据当前圆心角与360°的比例获取用于控制切屏百分比的控制参数。
所述基于纹理空间GPU加速的圆形切屏方法,其中,所述步骤C包括:
C1、将与所述上层纹理对应的上层纹理的几何中心、与所述下层纹对应的下层纹理的几何中心、以及与所述3D渲染模型对应的几何中心均移动至纹理空间的(0.5,0.5)位置上;
C2、确定纹理空间的(0,0.5)为起始扫描线向量,并计算所述3D渲染模型中每个纹理像素的纹理坐标与中心点(0.5,0.5)间的向量,之后获取所述3D渲染模型中每个纹理像素的纹理坐标与中心点(0.5,0.5)间的向量与起始扫描线向量间的夹角;
C3、当纹理像素的横坐标大于或等于0.5时,且与该纹理像素点相对应的夹角小于或等于所述控制参数对应的圆心角,则该纹理像素填充所述下层纹理中对应像素点的像素值;当纹理像素的横坐标大于或等于0.5时,且与该纹理像素点相对应的夹角大于所述控制参数对应的圆心角,则该纹理像素填充所述上层纹理中对应像素点的像素值;
C4、当纹理像素的横坐标小于0.5时,且与该纹理像素点相对应夹角的补角小于或等于所述控制参数对应的圆心角,则所述当前纹理像素填充所述下层纹理中对应像素点的像素值;当纹理像素的横坐标小于0.5时,且与该纹理像素点相对应夹角的补角大于所述控制参数对应的圆心角,则该纹理像素填充所述上层纹理中对应像素点的像素值。
一种基于纹理空间GPU加速的圆形切屏系统,其中,包括:
初始加载模块,用于初始化构建3D渲染模型,并加载上层纹理及下层纹理;
控制参数获取模块,用于对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,根据所述触摸操作的滑动轨迹获取用于控制切屏百分比的控制参数;
填充模块,用于根据所述控制参数,确定所述3D渲染模型中填充所述上层纹理中对应像素点的像素值的第一区域、及填充所述下层纹理中对应像素点的像素值的第二区域,并填充相应的纹理。
所述基于纹理空间GPU加速的圆形切屏系统,其中,所述3D渲染模型、所述上层纹理和所述下层纹理均为单位长度的正方形。
所述基于纹理空间GPU加速的圆形切屏系统,其中,所述第一区域与所述第二区域的面积之和等于所述3D渲染模型的面积。
所述基于纹理空间GPU加速的圆形切屏系统,其中,所述控制参数获取模块包括:
轨迹监听及获取单元,用于对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,获取所述触摸操作的运动轨迹;
控制参数计算单元,用于当所述运动轨迹为圆弧时,获取所述圆弧的当前圆心角,并根据当前圆心角与360°的比例获取用于控制切屏百分比的控制参数。
所述基于纹理空间GPU加速的圆形切屏系统,其中,所述填充模块包括:
坐标中心移动单元,用于将与所述上层纹理对应的上层纹理的几何中心、与所述下层纹对应的下层纹理的几何中心、以及与所述3D渲染模型对应的几何中心均移动至纹理空间的(0.5,0.5)位置上;
夹角确定单元,用于确定纹理空间的(0,0.5)为起始扫描线向量,并计算所述3D渲染模型中每个纹理像素的纹理坐标与中心点(0.5,0.5)间的向量,之后获取所述3D渲染模型中每个纹理像素的纹理坐标与中心点(0.5,0.5)间的向量与起始扫描线向量间的夹角;
第一控制单元,用于当纹理像素的横坐标大于或等于0.5时,且与该纹理像素点相对应的夹角小于或等于所述控制参数对应的圆心角,则该纹理像素填充所述下层纹理中对应像素点的像素值;当纹理像素的横坐标大于或等于0.5时,且与该纹理像素点相对应的夹角大于所述控制参数对应的圆心角,则该纹理像素填充所述上层纹理中对应像素点的像素值;
第二控制单元,用于当纹理像素的横坐标小于0.5时,且与该纹理像素点相对应夹角的补角小于或等于所述控制参数对应的圆心角,则所述当前纹理像素填充所述下层纹理中对应像素点的像素值;当纹理像素的横坐标小于0.5时,且与该纹理像素点相对应夹角的补角大于所述控制参数对应的圆心角,则该纹理像素填充所述上层纹理中对应像素点的像素值。
本发明所提供的一种基于纹理空间GPU加速的圆形切屏方法及其系统,方法包括:初始化构建3D渲染模型,并加载上层纹理及下层纹理;对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,根据所述触摸操作的滑动轨迹获取用于控制切屏百分比的控制参数;根据所述控制参数,确定所述3D渲染模型中填充所述上层纹理中对应像素点的像素值的第一区域、及填充所述下层纹理中对应像素点的像素值的第二区域,并填充相应的纹理。本发明有效减少3D图形绘制的点数,将计算量从CPU端迁移到GPU端,较大程度的降低了CPU的占用率,平衡CPU和GPU的负载,提高了嵌入式系统的有效使用率。
附图说明
图1是本发明所述基于纹理空间GPU加速的圆形切屏方法较佳实施例的流程图。
图2是本发明所述基于纹理空间GPU加速的圆形切屏方法中获取控制参数的具体流程图。
图3是本发明所述基于纹理空间GPU加速的圆形切屏方法中填充纹理的具体流程图。
图4a-图4d分别是所述控制参数取值为第一值、第二值、第三值及第四值的圆形切屏效果图。
图5是本发明所述基于纹理空间GPU加速的圆形切屏系统的较佳实施例的结构框图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参见图1,图1是本发明所述基于纹理空间GPU加速的圆形切屏方法较佳实施例的流程图。如图1所示,所述基于纹理空间GPU加速的圆形切屏方法,包括以下步骤:
步骤S100、初始化构建3D渲染模型,并加载上层纹理及下层纹理。
本发明的实施例中,先初始化构建一3D渲染模型,然后加载上层纹理及下层纹理。为了便于理解步骤S100,构建所述3D渲染模型相当于在某一区域放置一空白画板,加载所述上层纹理相当于在空白画板的旁边放置第一调色板,加载所述下层纹理相当于在空白画板的旁边放置第二调色板。通过上述构建和加载操作,为圆形切屏的进一步操作做了准备工作。
具体实施时,初始化构建3D渲染模型时,设置其顶点坐标分别为:左上(-0.5,0.5,0.0),左下(-0.5,-0.5,0.0),右上(0.5,0.5,0.0),右下(0.5,-0.5,0.0),所述3D渲染模型的四个顶点坐标在纹理空间中的坐标分别为左上(0,1),左下(0,0),右上(1,1),右下(1,0)。加载的所述上层纹理及所述下层纹理的四个顶点坐标分别为左上(0,1),左下(0,0),右上(1,1),右下(1,0)。可见,所述3D渲染模型、所述上层纹理和所述下层纹理均为单位长度的正方形。当所述3D渲染模型、所述上层纹理和所述下层纹理均为单位长度的正方形时,三者形状完全相同,在纹理空间中的每一纹理像素都能一一对应,确保了所述上层纹理和所述下层纹理映射到所述3D渲染模型的准确性。
步骤S200、对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,根据所述触摸操作的滑动轨迹获取用于控制切屏百分比的控制参数。
在步骤S200中,智能设备需用户的触摸操作进行实时监测。一旦监测到用户的触摸操作时,则开始获取所述触摸操作的滑动轨迹,并根据所述触摸轨迹确定用于控制切屏百分比的控制参数。例如,当用户在智能设备的显示屏上画一段圆弧或画一闭合圆形时,则获取圆弧或圆形对应的圆心角,并通过圆心角与360°的比例得出本发明实施例中所述用于控制切屏百分比的控制参数。由于控制参数是通过用户的触摸轨迹所决定,故能实时改变并控制切屏百分比。
步骤S300、根据所述控制参数,确定所述3D渲染模型中填充所述上层纹理中对应像素点的像素值的第一区域、及填充所述下层纹理中对应像素点的像素值的第二区域,并填充相应的纹理。
本发明的实施例中,当在步骤S200中智能设备获取所述控制参数后,根据所述控制参数对所述3D渲染模型的切屏进度进行控制。例如,步骤S100具体实施时已设置3D渲染模型的四个顶点在纹理空间中的坐标分别为左上(0,1),左下(0,0),右上(1,1),右下(1,0),此时选取纹理空间中的(0.5,0.5)为几何中心点,以几何中心点为起点的向量(0,0.5)为起始扫描线,并将所述起始扫描线旋转指定角度,所述指定角度等于所述控制参数对应的圆心角,起始扫描线在旋转的过程中经过的所有纹理像素点组成的区域为第二区域,所述3D渲染模型中除第二区域以外的区域全部为第一区域,即述第一区域与所述第二区域的面积之和等于所述3D渲染模型的面积。当根据所述控制参数确定所述第一区域和所述第二区域后,则将所述第一区域中每一像素点填充所述上层纹理中对应像素点的像素值,并将所述第二区域中每一像素点填充所述下层纹理中对应像素点的像素值。
进一步地实施例,如图2所示,其为本发明所述基于纹理空间GPU加速的圆形切屏方法中获取控制参数的具体流程图。所述步骤S200中获取控制参数具体包括:
步骤S201、对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,获取所述触摸操作的运动轨迹;
步骤S202、当所述运动轨迹为圆弧时,获取所述圆弧的当前圆心角,并根据当前圆心角与360°的比例获取用于控制切屏百分比的控制参数。
进一步地实施例,如图3所示,其为本发明所述基于纹理空间GPU加速的圆形切屏方法中填充纹理的具体流程图。所述步骤S300中填充纹理具体包括:
步骤S301、将与所述上层纹理对应的上层纹理的几何中心、与所述下层纹对应的下层纹理的几何中心、以及与所述3D渲染模型对应的几何中心均移动至纹理空间的(0.5,0.5)位置上。
由于所述3D渲染模型、所述上层纹理和所述下层纹理均为单位长度的正方形,故以正方形的几何中心为圆心的扫描线,可完全对称的扫描整个正方形。
步骤S302、确定纹理空间的(0,0.5)为起始扫描线向量,并计算所述3D渲染模型中每个纹理像素的纹理坐标与中心点(0.5,0.5)间的向量,之后获取所述3D渲染模型中每个纹理像素的纹理坐标与中心点(0.5,0.5)间的向量与起始扫描线向量间的夹角。
在步骤S302中,确定从A(0.5,0.5)开始到B(0.5,1)结束的向量(0,0.5)为起始扫描线向量,计算所述3D渲染模型中每一纹理像素的纹理坐标与中心点A(0.5,0.5)间的向量与起始扫描线向量间的夹角;其中所述3D渲染模型中每一纹理像素的纹理坐标与中心点A(0.5,0.5)间的向量是从中心点A(0.5,0.5)开始,到各个纹理像素结束,也是指该向量的方向是从中心点A(0.5,0.5)指向各个纹理像素点。
步骤S303、当纹理像素的横坐标大于或等于0.5时,且与该纹理像素点相对应的夹角小于或等于所述控制参数对应的圆心角,则该纹理像素填充所述下层纹理中对应像素点的像素值;当纹理像素的横坐标大于或等于0.5时,且与该纹理像素点相对应的夹角大于所述控制参数对应的圆心角,则该纹理像素填充所述上层纹理中对应像素点的像素值;
步骤S304、当纹理像素的横坐标小于0.5时,且与该纹理像素点相对应夹角的补角小于或等于所述控制参数对应的圆心角,则所述当前纹理像素填充所述下层纹理中对应像素点的像素值;当纹理像素的横坐标小于0.5时,且与该纹理像素点相对应夹角的补角大于所述控制参数对应的圆心角,则该纹理像素填充所述上层纹理中对应像素点的像素值。
在步骤S303和步骤S304中,均是为了判断所述3D渲染模型中的某一点是处于应该填充下层纹理中对应像素点的像素值的第二区域,还是处于应该填充所述上层纹理中对应像素点的像素值的第一区域。例如,用户在智能设备的触摸屏上滑动的圆形轨迹对应的圆心角为3.6°,则所述起始扫描线向量顺时针旋转3.6°经过的位于所述3D渲染模型中的区域均为第二区域,所述3D渲染模型中除去所述第二区域的其他区域均为第一区域。此时,将所述第一区域中每一像素点填充所述上层纹理中对应像素点的像素值,并将所述第二区域中每一像素点填充所述下层纹理中对应像素点的像素值。如图4a-图4d分别是所述控制参数取值为第一值、第二值、第三值及第四值的圆形切屏效果图,可见通过本发明所述基于纹理空间GPU加速的圆形切屏进行圆形切屏,可减少物体顶点的渲染个数;而且建立的手机基于纹理空间坐标,是一种GPU多线程计算,释放了CPU的占用资源,提高系统性能。
基于上述实施例,本发明还提供一种基于纹理空间GPU加速的圆形切屏系统,如图4所示,基于纹理空间GPU加速的圆形切屏系统:
初始加载模块100,用于初始化构建3D渲染模型,并加载上层纹理及下层纹理;具体如上所述。
控制参数获取模块200,用于对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,根据所述触摸操作的滑动轨迹获取用于控制切屏百分比的控制参数;具体如上所述。
填充模块300,用于根据所述控制参数,确定所述3D渲染模型中填充所述上层纹理中对应像素点的像素值的第一区域、及填充所述下层纹理中对应像素点的像素值的第二区域,并填充相应的纹理;具体如上所述。
进一步地实施例,在所述基于纹理空间GPU加速的圆形切屏系统中,所述3D渲染模型、所述上层纹理和所述下层纹理均为单位长度的正方形;具体如上所述。
进一步地实施例,在所述基于纹理空间GPU加速的圆形切屏系统中,所述第一区域与所述第二区域的面积之和等于所述3D渲染模型的面积;具体如上所述。
进一步地实施例,在所述基于纹理空间GPU加速的圆形切屏系统中,所述控制参数获取模块200具体包括:
轨迹监听及获取单元,用于对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,获取所述触摸操作的运动轨迹;具体如上所述。
控制参数计算单元,用于当所述运动轨迹为圆弧时,获取所述圆弧的当前圆心角,并根据当前圆心角与360°的比例获取用于控制切屏百分比的控制参数;具体如上所述。
进一步地实施例,在所述基于纹理空间GPU加速的圆形切屏系统中,所述填充模块300具体包括:
坐标中心移动单元,用于将与所述上层纹理对应的上层纹理的几何中心、与所述下层纹对应的下层纹理的几何中心、以及与所述3D渲染模型对应的几何中心均移动至纹理空间的(0.5,0.5)位置上;具体如上所述。
夹角确定单元,用于确定纹理空间的(0,0.5)为起始扫描线向量,并计算所述3D渲染模型中每个纹理像素的纹理坐标与中心点(0.5,0.5)间的向量,之后获取所述3D渲染模型中每个纹理像素的纹理坐标与中心点(0.5,0.5)间的向量与起始扫描线向量间的夹角;具体如上所述。
第一控制单元,用于当纹理像素的横坐标大于或等于0.5时,且与该纹理像素点相对应的夹角小于或等于所述控制参数对应的圆心角,则该纹理像素填充所述下层纹理中对应像素点的像素值;当纹理像素的横坐标大于或等于0.5时,且与该纹理像素点相对应的夹角大于所述控制参数对应的圆心角,则该纹理像素填充所述上层纹理中对应像素点的像素值;具体如上所述。
第二控制单元,用于当纹理像素的横坐标小于0.5时,且与该纹理像素点相对应夹角的补角小于或等于所述控制参数对应的圆心角,则所述当前纹理像素填充所述下层纹理中对应像素点的像素值;当纹理像素的横坐标小于0.5时,且与该纹理像素点相对应夹角的补角大于所述控制参数对应的圆心角,则该纹理像素填充所述上层纹理中对应像素点的像素值;具体如上所述。
综上所述,本发明所提供的一种基于纹理空间GPU加速的圆形切屏方法及其系统,方法包括:初始化构建3D渲染模型,并加载上层纹理及下层纹理;对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,根据所述触摸操作的滑动轨迹获取用于控制切屏百分比的控制参数;根据所述控制参数,确定所述3D渲染模型中填充所述上层纹理中对应像素点的像素值的第一区域、及填充所述下层纹理中对应像素点的像素值的第二区域,并填充相应的纹理。本发明有效减少3D图形绘制的点数,将计算量从CPU端迁移到GPU端,较大程度的降低了CPU的占用率,平衡CPU和GPU的负载,提高了嵌入式系统的有效使用率。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种基于纹理空间GPU加速的圆形切屏方法,其特征在于,所述方法包括步骤:
A、初始化构建3D渲染模型,并加载上层纹理及下层纹理;
B、对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,根据所述触摸操作的滑动轨迹获取用于控制切屏百分比的控制参数;
C、根据所述控制参数,确定所述3D渲染模型中填充所述上层纹理中对应像素点的像素值的第一区域、及填充所述下层纹理中对应像素点的像素值的第二区域,并填充相应的纹理。
2.根据权利要求1所述基于纹理空间GPU加速的圆形切屏方法,其特征在于,所述步骤A中所述3D渲染模型、所述上层纹理和所述下层纹理均为单位长度的正方形。
3.根据权利要求1所述基于纹理空间GPU加速的圆形切屏方法,其特征在于,所述步骤C中所述第一区域与所述第二区域的面积之和等于所述3D渲染模型的面积。
4.根据权利要求2所述基于纹理空间GPU加速的圆形切屏方法,其特征在于,所述步骤B包括:
B1、对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,获取所述触摸操作的运动轨迹;
B2、当所述运动轨迹为圆弧时,获取所述圆弧的当前圆心角,并根据当前圆心角与360°的比例获取用于控制切屏百分比的控制参数。
5.根据权利要求4所述基于纹理空间GPU加速的圆形切屏方法,其特征在于,所述步骤C包括:
C1、将与所述上层纹理对应的上层纹理的几何中心、与所述下层纹对应的下层纹理的几何中心、以及与所述3D渲染模型对应的几何中心均移动至纹理空间的(0.5,0.5)位置上;
C2、确定纹理空间的(0,0.5)为起始扫描线向量,并计算所述3D渲染模型中每个纹理像素的纹理坐标与中心点(0.5,0.5)间的向量,之后获取所述3D渲染模型中每个纹理像素的纹理坐标与中心点(0.5,0.5)间的向量与起始扫描线向量间的夹角;
C3、当纹理像素的横坐标大于或等于0.5时,且与该纹理像素点相对应的夹角小于或等于所述控制参数对应的圆心角,则该纹理像素填充所述下层纹理中对应像素点的像素值;当纹理像素的横坐标大于或等于0.5时,且与该纹理像素点相对应的夹角大于所述控制参数对应的圆心角,则该纹理像素填充所述上层纹理中对应像素点的像素值;
C4、当纹理像素的横坐标小于0.5时,且与该纹理像素点相对应夹角的补角小于或等于所述控制参数对应的圆心角,则所述当前纹理像素填充所述下层纹理中对应像素点的像素值;当纹理像素的横坐标小于0.5时,且与该纹理像素点相对应夹角的补角大于所述控制参数对应的圆心角,则该纹理像素填充所述上层纹理中对应像素点的像素值。
6.一种基于纹理空间GPU加速的圆形切屏系统,其特征在于,包括:
初始加载模块,用于初始化构建3D渲染模型,并加载上层纹理及下层纹理;
控制参数获取模块,用于对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,根据所述触摸操作的滑动轨迹获取用于控制切屏百分比的控制参数;
填充模块,用于根据所述控制参数,确定所述3D渲染模型中填充所述上层纹理中对应像素点的像素值的第一区域、及填充所述下层纹理中对应像素点的像素值的第二区域,并填充相应的纹理。
7.根据权利要求6所述基于纹理空间GPU加速的圆形切屏系统,其特征在于,所述3D渲染模型、所述上层纹理和所述下层纹理均为单位长度的正方形。
8.根据权利要求6所述基于纹理空间GPU加速的圆形切屏系统,其特征在于,所述第一区域与所述第二区域的面积之和等于所述3D渲染模型的面积。
9.根据权利要求8所述基于纹理空间GPU加速的圆形切屏系统,其特征在于,所述控制参数获取模块包括:
轨迹监听及获取单元,用于对用户的触摸操作进行实时监测,当监测到用户的触摸操作时,获取所述触摸操作的运动轨迹;
控制参数计算单元,用于当所述运动轨迹为圆弧时,获取所述圆弧的当前圆心角,并根据当前圆心角与360°的比例获取用于控制切屏百分比的控制参数。
10.根据权利要求9所述基于纹理空间GPU加速的圆形切屏系统,其特征在于,所述填充模块包括:
坐标中心移动单元,用于将与所述上层纹理对应的上层纹理的几何中心、与所述下层纹对应的下层纹理的几何中心、以及与所述3D渲染模型对应的几何中心均移动至纹理空间的(0.5,0.5)位置上;
夹角确定单元,用于确定纹理空间的(0,0.5)为起始扫描线向量,并计算所述3D渲染模型中每个纹理像素的纹理坐标与中心点(0.5,0.5)间的向量,之后获取所述3D渲染模型中每个纹理像素的纹理坐标与中心点(0.5,0.5)间的向量与起始扫描线向量间的夹角;
第一控制单元,用于当纹理像素的横坐标大于或等于0.5时,且与该纹理像素点相对应的夹角小于或等于所述控制参数对应的圆心角,则该纹理像素填充所述下层纹理中对应像素点的像素值;当纹理像素的横坐标大于或等于0.5时,且与该纹理像素点相对应的夹角大于所述控制参数对应的圆心角,则该纹理像素填充所述上层纹理中对应像素点的像素值;
第二控制单元,用于当纹理像素的横坐标小于0.5时,且与该纹理像素点相对应夹角的补角小于或等于所述控制参数对应的圆心角,则所述当前纹理像素填充所述下层纹理中对应像素点的像素值;当纹理像素的横坐标小于0.5时,且与该纹理像素点相对应夹角的补角大于所述控制参数对应的圆心角,则该纹理像素填充所述上层纹理中对应像素点的像素值。
CN201410467642.2A 2014-09-15 2014-09-15 一种基于纹理空间gpu加速的圆形切屏方法及其系统 Active CN105488835B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410467642.2A CN105488835B (zh) 2014-09-15 2014-09-15 一种基于纹理空间gpu加速的圆形切屏方法及其系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410467642.2A CN105488835B (zh) 2014-09-15 2014-09-15 一种基于纹理空间gpu加速的圆形切屏方法及其系统

Publications (2)

Publication Number Publication Date
CN105488835A true CN105488835A (zh) 2016-04-13
CN105488835B CN105488835B (zh) 2018-04-06

Family

ID=55675799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410467642.2A Active CN105488835B (zh) 2014-09-15 2014-09-15 一种基于纹理空间gpu加速的圆形切屏方法及其系统

Country Status (1)

Country Link
CN (1) CN105488835B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110191314A (zh) * 2019-05-07 2019-08-30 百度在线网络技术(北京)有限公司 基于安卓系统的摄像头数据处理方法、装置和车载设备
CN117078868A (zh) * 2023-10-17 2023-11-17 北京太极信息系统技术有限公司 基于信创软硬件的虚拟现实引擎及其建模和渲染方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102541515A (zh) * 2010-12-08 2012-07-04 腾讯科技(深圳)有限公司 一种实现切屏特效的方法及装置
CN102841722A (zh) * 2011-06-20 2012-12-26 联想(北京)有限公司 电子设备及其屏幕显示旋转方法
CN103279295A (zh) * 2013-05-03 2013-09-04 广东欧珀移动通信有限公司 一种终端桌面图标切换方法及装置
CN103838488A (zh) * 2014-03-21 2014-06-04 广州市久邦数码科技有限公司 一种桌面功能键与多屏切换之间的交互方法及系统
US20140189584A1 (en) * 2012-12-27 2014-07-03 Compal Communications, Inc. Method for switching applications in user interface and electronic apparatus using the same
US20140351748A1 (en) * 2013-05-24 2014-11-27 Huawei Technologies Co., Ltd. Split-Screen Display Method and Apparatus, and Electronic Device Thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102541515A (zh) * 2010-12-08 2012-07-04 腾讯科技(深圳)有限公司 一种实现切屏特效的方法及装置
CN102841722A (zh) * 2011-06-20 2012-12-26 联想(北京)有限公司 电子设备及其屏幕显示旋转方法
US20140189584A1 (en) * 2012-12-27 2014-07-03 Compal Communications, Inc. Method for switching applications in user interface and electronic apparatus using the same
CN103279295A (zh) * 2013-05-03 2013-09-04 广东欧珀移动通信有限公司 一种终端桌面图标切换方法及装置
US20140351748A1 (en) * 2013-05-24 2014-11-27 Huawei Technologies Co., Ltd. Split-Screen Display Method and Apparatus, and Electronic Device Thereof
CN103838488A (zh) * 2014-03-21 2014-06-04 广州市久邦数码科技有限公司 一种桌面功能键与多屏切换之间的交互方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110191314A (zh) * 2019-05-07 2019-08-30 百度在线网络技术(北京)有限公司 基于安卓系统的摄像头数据处理方法、装置和车载设备
CN117078868A (zh) * 2023-10-17 2023-11-17 北京太极信息系统技术有限公司 基于信创软硬件的虚拟现实引擎及其建模和渲染方法
CN117078868B (zh) * 2023-10-17 2023-12-15 北京太极信息系统技术有限公司 基于信创软硬件的虚拟现实引擎及其建模和渲染方法

Also Published As

Publication number Publication date
CN105488835B (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN102221980B (zh) 电子书模拟翻页效果实现方法及系统
CN103164839B (zh) 一种绘图方法、装置及终端
CN105487848B (zh) 一种3d应用的显示刷新方法及系统
KR101591427B1 (ko) 3차원 지형 영상 가시화에서의 적응형 렌더링 방법
CN106296779A (zh) 一种三维模型渲染显示方法及系统
CN101930620A (zh) 使二维影像呈现出三维效果的影像处理方法及相关影像处理装置
EP2985735B1 (en) Method and apparatus for performing tile-based path rendering
US10217259B2 (en) Method of and apparatus for graphics processing
CN104574495A (zh) 一种图像渲染方法和装置
RU2013103786A (ru) Масштабирование отображаемого изображения
CN100421119C (zh) 一种游戏中的地图绘制方法
CN106157357B (zh) 一种基于gpu加速的动态光效实现方法及系统
CN105488835A (zh) 一种基于纹理空间gpu加速的圆形切屏方法及其系统
US20150062169A1 (en) Image processing device and non-transitory computer-readable storage medium storing image processing program
CN106454312A (zh) 一种图像处理方法和装置
CN103310409B (zh) 一种Tile-based渲染架构GPU的三角形快速分块方法
CN109815557B (zh) 一种机器人模型的展示方法、装置及智能终端
CN112516595B (zh) 岩浆渲染方法、装置、设备和存储介质
CN105138311A (zh) 一种提高图形绘制效率的方法及装置
CN104167009B (zh) 一种动画效果的实现方法
CN103995644B (zh) 实现三维地理信息系统和三维图形系统联动融合的方法
JPWO2016092588A1 (ja) 描画装置、および描画方法
US10109102B2 (en) Rendering an infinite plane
KR101227155B1 (ko) 저해상도 그래픽 영상을 고해상도 그래픽 영상으로 실시간 변환하는 그래픽 영상 처리 장치 및 방법
CN104134201B (zh) 纹理图像拼接的方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant