CN105482803A - 一种荧光-sers双模式超分辨成像探针及其制备方法和使用方法 - Google Patents
一种荧光-sers双模式超分辨成像探针及其制备方法和使用方法 Download PDFInfo
- Publication number
- CN105482803A CN105482803A CN201510836925.4A CN201510836925A CN105482803A CN 105482803 A CN105482803 A CN 105482803A CN 201510836925 A CN201510836925 A CN 201510836925A CN 105482803 A CN105482803 A CN 105482803A
- Authority
- CN
- China
- Prior art keywords
- sers
- probe
- fluorescence
- shell
- resolution imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 title claims abstract description 41
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 title claims abstract description 41
- 238000003384 imaging method Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 27
- 239000002105 nanoparticle Substances 0.000 claims abstract description 23
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 20
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 11
- 239000003446 ligand Substances 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 4
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 14
- 239000001509 sodium citrate Substances 0.000 claims description 5
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 230000004048 modification Effects 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 3
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 2
- 125000000524 functional group Chemical group 0.000 claims description 2
- 239000002082 metal nanoparticle Substances 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims 5
- 229960001866 silicon dioxide Drugs 0.000 claims 5
- 239000002245 particle Substances 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 229910044991 metal oxide Inorganic materials 0.000 claims 1
- 150000004706 metal oxides Chemical class 0.000 claims 1
- 230000011664 signaling Effects 0.000 claims 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 claims 1
- ZAEOWXUVMZSOCH-UHFFFAOYSA-M silver sodium 3-carboxy-3,5-dihydroxy-5-oxopentanoate nitrate Chemical compound [N+](=O)([O-])[O-].[Ag+].C(CC(O)(C(=O)O)CC(=O)O)(=O)[O-].[Na+] ZAEOWXUVMZSOCH-UHFFFAOYSA-M 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 238000012634 optical imaging Methods 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 230000008685 targeting Effects 0.000 abstract description 2
- 239000002131 composite material Substances 0.000 abstract 1
- 230000009977 dual effect Effects 0.000 abstract 1
- 210000003463 organelle Anatomy 0.000 abstract 1
- 238000003756 stirring Methods 0.000 description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 6
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 125000003172 aldehyde group Chemical group 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000000386 microscopy Methods 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 3
- 238000000399 optical microscopy Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000000479 surface-enhanced Raman spectrum Methods 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 238000010870 STED microscopy Methods 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000004397 blinking Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 230000000423 heterosexual effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000002331 protein detection Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6495—Miscellaneous methods
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种荧光-SERS双模式超分辨成像探针及其制备方法和使用方法,包括如下特点:第一、探针为二氧化硅包裹金属的蛋黄-蛋壳结构的复合纳米粒子;第二、在探针空腔中加入带荧光信号的拉曼分子实现荧光-SERS信号的开关;第三、在二氧化硅壳表面标记上特异性靶向配体用于特定细胞器的超分辨光学成像。本发明可以实现荧光-SERS双模式的超分辨光学成像。
Description
技术领域
本发明涉及一种荧光-SERS双模式超分辨成像探针及其制备方法和使用方法,属于超分辨成像技术。
背景技术
长期以来,远场光学显微镜凭借其非接触、无损伤、可探测样品内部等优点,一直是生命科学中最常用的观测工具。但是由于衍射极限的存在,传统光学显微镜的分辨率分别仅为230nm和550nm。
为了揭示细胞内分子尺度的动态和结构特征,提高光学显微镜分辨率成为了生命科学发展的迫切需求,在远场光学显微镜的基础上,科学家们已经发明了许多提高成像分辨率甚至超越分辨率极限的成像技术,例如,受激辐射损耗显微技术(STED),结构光照明显微技术(SIM和SSIM),荧光辐射差分显微技术(FED),以及基于单分子荧光定位的显微技术(PALM和STORM)。
PALM显微技术是EricBetzig于2006年提出的,使用的是光激活荧光蛋白,每次只使样品中随机的少量荧光分子发光,通过拟合,找出每个荧光分子中心点的位置。重复拍摄多张图片之后,就可以把所有荧光分子的中心位置叠加起来形成完整的图像,其分辨率约为20nm。
表面增强拉曼散射光谱(surfaceenhancedRamanscattering,SERS)技术作为一种新兴的生物标记手段,是当前国际上备受瞩目的研究热点。SERS一方面继承了拉曼光谱的诸多优点,如光信号不易漂白、对生物组织损伤小、光谱信息丰富等;另一方面,它弥补了传统拉曼散射信号强度弱、不利于检测的缺点。SERS光谱的“指纹”特性使人们能在复杂的生物环境中跟踪、检测目标分子。此外,SERS效应巨大的增强作用使基于SERS的光谱检测具有超高的灵敏度,甚至可实现单分子水平的分析研究。SERS效应产生在纳米尺度粗糙的金属表面,纳米技术的飞速发展为构筑多功能化的SERS纳米探针提供了丰富的技术途径。这些基于SERS光谱技术的纳米探针在生物成像、核酸或蛋白检测、肿瘤识别、药物输运等诸多生物医学领域展现出了优异的应用前景。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种荧光-SERS双模式超分辨成像探针及其制备方法和使用方法,实现荧光-SERS双模式超分辨光学成像,可以用于基于单分子定位法的超分辨光学成像(如PALM、STORM成像)。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种荧光-SERS双模式超分辨成像探针,该探针为蛋黄-蛋壳结构,包括内核和外壳层,内核和外壳层之间形成空腔,同时具有荧光信号和SERS信号的拉曼分子在空腔内自由运动;所述内核为金属纳米粒子,所述外壳层为二氧化硅壳,在二氧化硅壳的外表面修饰醛基,该探针通过醛基偶联异性靶向配体。本发明在探针中加入拉曼分子,能够同时实现荧光和SERS双模式超分辨光学成像。
优选的,所述拉曼分子不带电性并且不带能够连接到金属和二氧化硅上的官能团,确保拉曼分子能够在空腔内自由运动。
优选的,所述内核为金核银壳纳米粒子。
本发明的荧光-SERS双模式超分辨成像探针的制备方法,包括如下步骤:
(1)采用柠檬酸钠还原方法制备金纳米粒子;
(2)采用柠檬酸钠还原硝酸银方法在金纳米粒子表面制备银壳,形成金核银壳纳米粒子;
(3)采用改进的方法(参见Langmuir2003,19,6693-6700,AGeneralMethodToCoatColloidalParticleswithSilica)在金核银壳纳米粒子表面制备二氧化硅;
(4)采用由内而外选择性刻蚀二氧化硅的方法制备二氧化硅壳,即只刻蚀靠近金核银壳纳米粒子的二氧化硅、保留一定厚度的最外层二氧化硅形成二氧化硅壳;
(5)拉曼分子通过自由扩散的方法进入空腔。
本发明的荧光-SERS双模式超分辨成像探针的使用方法,该探针对特异性识别配体标记过程包括如下步骤:
步骤一:在二氧化硅壳的外表面修饰氨基;可以通过利用带氨基的硅烷偶联剂共价修饰或利用带氨基的聚合物通过静电吸附修饰的方式在二氧化硅壳的外表面修饰氨基;
步骤二:戊二醛的两端各有一个醛基,戊二醛一端的醛基与二氧化硅壳上的氨基反应,将探针连接在戊二醛上;
步骤三:戊二醛另一端的醛基与特异性识别配体上的氨基反应,将特异性识别配体连接在戊二醛上,从而以戊二醛作为偶联分子将特异性识别配体偶联至探针上。
本发明的探针可以产生荧光信号和SERS信号的闪烁开关,这两种光学信号的闪烁开关通过拉曼分子在空腔内部的自由运动实现:当拉曼分子运动至靠近内核时,SERS信号打开、荧光信号淬灭;当拉曼分子运动至靠近外壳层时,SERS信号淬灭、荧光信号打开。
有益效果:本发明提供的一种荧光-SERS双模式超分辨成像探针及其制备方法和使用方法,能够实现荧光-SERS双模式的超分辨光学成像,可以用于基于单分子定位法的超分辨光学成像(如PALM、STORM成像)。
附图说明
图1是本发明提出的荧光-SERS双模式超分辨成像探针的结构示意图,包括:1、内核,2、外壳层、3、空腔,4、拉曼分子,5、抗体;
图2是本发明提出的荧光-SERS双模式超分辨成像探针的制备过程图;
图3是实施例中探针的消光光谱;
图4是实施例中探针的荧光光谱;
图5是实施例中探针的SERS光谱。
具体实施方式
下面结合附图对本发明作更进一步的说明。
本实施例中涉及的PBS缓冲液(PhosphateBufferSaline,磷酸缓冲盐溶液)浓度为10mM(单位是毫摩尔每升,也可写为mmol/L),pH=7.4。
以尼罗红(9-(diethylamino)benzo[a]phenoxazin-5(5H)-one)为拉曼分子,荧光-SERS双模式超分辨成像探针的制备过程如图2所示,包括如下步骤:
步骤一、制备球形金纳米粒子
在200mL去离子水中加入200μL质量分数为10%的氯金酸溶液,剧烈搅拌并加热至沸腾。随后加入8mL质量分数为1%的柠檬酸钠水溶液,继续加热搅拌15min。停止加热,搅拌至溶液冷却至室温,即得到酒红色的球形金纳米粒子溶液。
步骤二、制备金核银壳纳米粒子
取100ml金纳米粒子,加入300μL0.01M的柠檬酸钠水溶液,剧烈搅拌并加热至沸腾。随后加入1ml0.01M硝酸银溶液,继续加热搅拌45min。停止加热,搅拌至溶液冷却至室温。
步骤三、制备金核银壳包裹二氧化硅纳米粒子
取10ml金核银壳纳米粒子,加入10ml5mg/ml的聚乙烯吡咯烷酮(PVP,分子量8000),搅拌8h。将得到的溶液离心分散至5ml酒精中,加入0.5ml氨水,4μl正硅酸乙酯(TEOS)反应14h,离心分散至5ml酒精中。
步骤四、制备蛋黄-蛋壳纳米粒子
取4ml步骤三中得到的纳米粒子,离心分散至2ml水中,80℃搅拌40min,停止加热,离心分散至4ml酒精中。
步骤五、加入拉曼分子
取2ml步骤四中得到的纳米粒子,加入10-5M尼罗红,室温搅拌2h,离心分散至2ml酒精中。
步骤六、标记特异性抗体
取1ml步骤六中得到的纳米粒子,加入10μl10%的聚乙烯亚胺(PEI)反应30min,离心清洗,重新分散至1ml水中,加入10μl50%戊二醛(GA),室温反应1h,离心清洗两次,然后重新分散至1ml水中,加入10μl1mg/ml抗体反应3h,离心清洗,并用磷酸缓冲盐溶液(PBS)清洗一次,并重新分散至500μlPBS中,再加入50μl牛血清白蛋白(BSA)反应1h,最后离心分散至1mlPBS中。
本实施例步骤六制备出的探针的消光光谱如图3所示,其在515nm左右有着明显的消光峰,这是制备出探针的表面等离子体共振峰。该实施例步骤五中制备出的纳米粒子的荧光光谱如图4所示,其荧光信号强,有益于荧光检测。图5是步骤五中制备纳米粒子的SERS光谱,其SERS信号强,有益于SERS定量分析。本实施例中,探针表面配体为抗体,使该探针可用于免疫荧光超分辨成像。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (7)
1.一种荧光-SERS双模式超分辨成像探针,其特征在于:该探针为蛋黄-蛋壳结构,包括内核和外壳层,内核和外壳层之间形成空腔,同时具有荧光信号和SERS信号的拉曼分子在空腔内自由运动;所述内核为金属纳米粒子,所述外壳层为二氧化硅壳,在二氧化硅壳的外表面修饰醛基,该探针通过醛基偶联异性靶向配体。
2.根据权利要求1所述的荧光-SERS双模式超分辨成像探针,其特征在于:所述拉曼分子不带电性并且不带能够连接到金属和二氧化硅上的官能团,确保拉曼分子能够在空腔内自由运动。
3.根据权利要求1所述的荧光-SERS双模式超分辨成像探针,其特征在于:所述内核为金核银壳纳米粒子。
4.一种权利要求1所述的荧光-SERS双模式超分辨成像探针的制备方法,其特征在于:包括如下步骤:
(1)采用柠檬酸钠还原方法制备金纳米粒子;
(2)采用柠檬酸钠还原硝酸银方法在金纳米粒子表面制备银壳,形成金核银壳纳米粒子;
(3)采用改进的方法在金核银壳纳米粒子表面制备二氧化硅;
(4)采用由内而外选择性刻蚀二氧化硅的方法制备二氧化硅壳,即只刻蚀靠近金核银壳纳米粒子的二氧化硅、保留一定厚度的最外层二氧化硅形成二氧化硅壳;
(5)拉曼分子通过自由扩散的方法进入空腔。
5.一种权利要求1所述的荧光-SERS双模式超分辨成像探针的使用方法,其特征在于:该探针对特异性识别配体标记过程包括如下步骤:
步骤一:在二氧化硅壳的外表面修饰氨基;
步骤二:戊二醛的两端各有一个醛基,戊二醛一端的醛基与二氧化硅壳上的氨基反应,将探针连接在戊二醛上;
步骤三:戊二醛另一端的醛基与特异性识别配体上的氨基反应,将特异性识别配体连接在戊二醛上,从而以戊二醛作为偶联分子将特异性识别配体偶联至探针上。
6.根据权利要求5所述的荧光-SERS双模式超分辨成像探针的使用方法,其特征在于:所述步骤(1)中,通过利用带氨基的硅烷偶联剂共价修饰或利用带氨基的聚合物通过静电吸附修饰的方式在二氧化硅壳的外表面修饰氨基。
7.根据权利要求5所述的荧光-SERS双模式超分辨成像探针的使用方法,其特征在于:该探针可以产生荧光信号和SERS信号的闪烁开关,这两种光学信号的闪烁开关通过拉曼分子在空腔内部的自由运动实现:当拉曼分子运动至靠近内核时,SERS信号打开、荧光信号淬灭;当拉曼分子运动至靠近外壳层时,SERS信号淬灭、荧光信号打开。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510836925.4A CN105482803B (zh) | 2015-11-26 | 2015-11-26 | 一种荧光‑sers双模式超分辨成像探针及其制备方法和使用方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510836925.4A CN105482803B (zh) | 2015-11-26 | 2015-11-26 | 一种荧光‑sers双模式超分辨成像探针及其制备方法和使用方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105482803A true CN105482803A (zh) | 2016-04-13 |
CN105482803B CN105482803B (zh) | 2017-10-03 |
Family
ID=55670088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510836925.4A Active CN105482803B (zh) | 2015-11-26 | 2015-11-26 | 一种荧光‑sers双模式超分辨成像探针及其制备方法和使用方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105482803B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107486270A (zh) * | 2017-08-08 | 2017-12-19 | 上海格荣生物科技有限公司 | 基于球‑刷双层纳米结构基底微阵列芯片及其制备方法 |
CN109097029A (zh) * | 2018-09-16 | 2018-12-28 | 吉林化工学院 | 一种硅纳米粒子/金纳米簇比率荧光探针的合成及其对利福平比率荧光检测的应用 |
CN110501319A (zh) * | 2019-08-29 | 2019-11-26 | 中国科学院长春应用化学研究所 | 多通路结构光照明的拉曼超分辨显微成像方法 |
CN111044496A (zh) * | 2019-12-21 | 2020-04-21 | 东南大学 | 一种基于二氧化硅的超分辨成像探针的制备方法及应用 |
CN111289493A (zh) * | 2020-03-27 | 2020-06-16 | 电子科技大学 | 一种表面增强拉曼基底及其制备方法 |
CN111363538A (zh) * | 2020-04-30 | 2020-07-03 | 东南大学 | 一种双模式光学超分辨成像探针及其制备方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112683871B (zh) * | 2021-01-05 | 2021-09-21 | 江苏雨松环境修复研究中心有限公司 | 土壤铬离子含量检测方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090263485A1 (en) * | 2008-03-01 | 2009-10-22 | Chun Li | Targeted hollow gold nanostructures and methods of use |
WO2010135351A1 (en) * | 2009-05-18 | 2010-11-25 | Oxonica Materials Inc. | Thermally stable sers taggants |
CN202499839U (zh) * | 2012-01-12 | 2012-10-24 | 东南大学 | 一种双模式光学编码探针 |
CN103765208A (zh) * | 2011-09-22 | 2014-04-30 | 华东理工大学 | 金属纳米颗粒及其制备方法与用途 |
CN104195551A (zh) * | 2014-09-05 | 2014-12-10 | 中国科学院合肥物质科学研究院 | 银纳米颗粒修饰的碳纳米管-鸡蛋膜复合sers基底及其制备方法和用途 |
CN104360064A (zh) * | 2014-10-24 | 2015-02-18 | 东南大学 | 一种单分散性空心金纳米球及其制备方法和应用 |
-
2015
- 2015-11-26 CN CN201510836925.4A patent/CN105482803B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090263485A1 (en) * | 2008-03-01 | 2009-10-22 | Chun Li | Targeted hollow gold nanostructures and methods of use |
WO2010135351A1 (en) * | 2009-05-18 | 2010-11-25 | Oxonica Materials Inc. | Thermally stable sers taggants |
CN103765208A (zh) * | 2011-09-22 | 2014-04-30 | 华东理工大学 | 金属纳米颗粒及其制备方法与用途 |
CN202499839U (zh) * | 2012-01-12 | 2012-10-24 | 东南大学 | 一种双模式光学编码探针 |
CN104195551A (zh) * | 2014-09-05 | 2014-12-10 | 中国科学院合肥物质科学研究院 | 银纳米颗粒修饰的碳纳米管-鸡蛋膜复合sers基底及其制备方法和用途 |
CN104360064A (zh) * | 2014-10-24 | 2015-02-18 | 东南大学 | 一种单分散性空心金纳米球及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
SHENFEI ZONG等: "A SERS and fluoresc ence dual mode cancer cell targeting probe based on silica coated Au@Ag core–shell nanorods", 《TALANTA》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107486270A (zh) * | 2017-08-08 | 2017-12-19 | 上海格荣生物科技有限公司 | 基于球‑刷双层纳米结构基底微阵列芯片及其制备方法 |
CN109097029A (zh) * | 2018-09-16 | 2018-12-28 | 吉林化工学院 | 一种硅纳米粒子/金纳米簇比率荧光探针的合成及其对利福平比率荧光检测的应用 |
CN109097029B (zh) * | 2018-09-16 | 2021-04-13 | 吉林化工学院 | 一种硅纳米粒子/金纳米簇比率荧光探针的合成及其对利福平比率荧光检测的应用 |
CN110501319A (zh) * | 2019-08-29 | 2019-11-26 | 中国科学院长春应用化学研究所 | 多通路结构光照明的拉曼超分辨显微成像方法 |
CN111044496A (zh) * | 2019-12-21 | 2020-04-21 | 东南大学 | 一种基于二氧化硅的超分辨成像探针的制备方法及应用 |
CN111289493A (zh) * | 2020-03-27 | 2020-06-16 | 电子科技大学 | 一种表面增强拉曼基底及其制备方法 |
CN111289493B (zh) * | 2020-03-27 | 2021-08-06 | 电子科技大学 | 一种表面增强拉曼基底及其制备方法 |
CN111363538A (zh) * | 2020-04-30 | 2020-07-03 | 东南大学 | 一种双模式光学超分辨成像探针及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105482803B (zh) | 2017-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105482803B (zh) | 一种荧光‑sers双模式超分辨成像探针及其制备方法和使用方法 | |
Mirica et al. | Latest trends in lateral flow immunoassay (LFIA) detection labels and conjugation process | |
Wang et al. | Recent progress in background-free latent fingerprint imaging | |
CN100520366C (zh) | 一种表面增强拉曼光谱生物探针及其制备方法 | |
Kumar et al. | Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties | |
Tallury et al. | Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications | |
US7588827B2 (en) | Surface enhanced Raman spectroscopy (SERS)-active composite nanoparticles, methods of fabrication thereof, and methods of use thereof | |
Shi et al. | Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection | |
Yu et al. | Molybdenum disulfide-loaded multilayer AuNPs with colorimetric-SERS dual-signal enhancement activities for flexible immunochromatographic diagnosis of monkeypox virus | |
Hou et al. | The application of nanoparticles in point-of-care testing (POCT) immunoassays | |
CN102636649B (zh) | 基于抗体功能化磁性纳米材料和上转换荧光纳米材料检测癌胚抗原的试剂盒 | |
CN102559190A (zh) | 一种双模式光学编码探针及其制备方法 | |
Lee et al. | Detection of glyphosate by quantitative analysis of fluorescence and single DNA using DNA-labeled fluorescent magnetic core–shell nanoparticles | |
KR102257511B1 (ko) | 자성-광학 복합 나노구조체 | |
CN101851677A (zh) | 用于检测Hg2+的核酸纳米金生物传感器 | |
CN105833296A (zh) | 一种肿瘤双靶向的双模式光学成像探针及其制备与应用 | |
Chen et al. | High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite | |
Pengcheng et al. | Recent advances of lateral flow immunoassay for bacterial detection: Capture-antibody-independent strategies and high-sensitivity detection technologies | |
CN107118763A (zh) | 一种双发射比率型荧光探针及其制备与应用 | |
Silva Ferreira et al. | Current strategies for diagnosis of paracoccidioidomycosis and prospects of methods based on gold nanoparticles | |
Luo et al. | Synthesis of p-aminothiophenol-embedded gold/silver core-shell nanostructures as novel SERS tags for biosensing applications | |
CN102796737B (zh) | 荧光分子修饰的纳米银探针及其试剂盒与在检测链霉亲和素中的应用 | |
Zhu et al. | One-pot synthesized Au@ Pt nanostars-based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 nucleocapsid antibody | |
Mahmoudi et al. | (Nano) tag–antibody conjugates in rapid tests | |
Ananda et al. | Sensitive detection of E. coli using bioconjugated fluorescent silica nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |