CN105474272A - 2.75d网格划分算法 - Google Patents

2.75d网格划分算法 Download PDF

Info

Publication number
CN105474272A
CN105474272A CN201380077841.6A CN201380077841A CN105474272A CN 105474272 A CN105474272 A CN 105474272A CN 201380077841 A CN201380077841 A CN 201380077841A CN 105474272 A CN105474272 A CN 105474272A
Authority
CN
China
Prior art keywords
line segment
crack
straight
closed circuit
slice surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380077841.6A
Other languages
English (en)
Inventor
S·B·沃德
M·L·布鲁尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Landmark Graphics Corp
Original Assignee
Landmark Graphics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landmark Graphics Corp filed Critical Landmark Graphics Corp
Publication of CN105474272A publication Critical patent/CN105474272A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V20/00Geomodelling in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • G01V2210/644Connectivity, e.g. for fluid movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • G01V2210/645Fluid contacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • G01V2210/646Fractures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/66Subsurface modeling

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Graphics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

公开的实施方案包括出于储层模拟的目的而在复杂且离散的裂缝周围产生混合计算网格的方法、设备和计算机程序产品。举例来说,一个公开的实施方案是用于模型化三维(3D)地质裂缝的计算机实现的方法。所述方法包括接收3D裂缝表面的集合,3D裂缝表面具有在二维(2D)流形中已通过一系列多边形而离散化的几何结构。所述方法限定用于将3D裂缝表面的所述集合切片的一系列非交叉的2D切片表面。所述方法接着使用所述2D切片表面与限定所述裂缝表面的所述2D流形的交叉点来在每一切片表面上产生2D裂缝的集合。在一系列步骤之后,所述方法将对应于每一裂缝的2D裂缝单元从每一切片表面逻辑地连接至其上方/下方相邻切片表面以使用二维元素来模拟三维地质。

Description

2.75D网格划分算法
发明背景
1.发明领域
本发明一般来说涉及用于产生可用以建构地下储层的模拟模型的网格的系统和方法,且更具体来说,涉及被配置用于模型化地质裂缝的系统和方法。
2.现有技术的论述
在石油和天然气行业中,储层模型化涉及建构石油储层的计算机模型以用于改进对储量的估计和做出关于该领域的发展的决定的目的。举例来说,可创建地质模型以在生产之前提供对储层的静态描述。相比之下,可创建储层模拟模型来模拟储层生产寿命内的储层内的流体的流动。
关于储层模拟模型的一项挑战是模型化储层内的裂缝,这需要对基质流动特性、裂缝网络连接性和裂缝-基质交互的透彻理解。可将裂缝描述为地层内的张开的裂纹或空隙,且裂缝可自然地发生或从井筒人为地产生。裂缝的正确的模型化是重要的,这是因为裂缝的性质(诸如空间分布、孔径、长度、高度、传导率和连接性)显著影响储层流体到井筒的流动。
因此,公开的实施方案提供出于储层模拟的目的而在复杂且离散的裂缝周围产生混合计算网格的系统、方法和计算机程序产品。
附图说明
下文参考附图详细描述了本发明的说明性实施方案,附图通过引用的方式并入本文中,且其中:
图1说明根据公开的实施方案模型化的三维裂缝的图像;
图2是说明用于根据公开的实施方案模型化三维裂缝的方法的流程图;
图3说明根据公开的实施方案的非交叉2D切片表面的集合与离散化二维裂缝/流形的集合交叉的实例;
图3A说明根据公开的实施方案的非交叉2D切片表面的集合与单个垂直的2D裂缝/流形交叉的实例;
图3B说明根据公开的实施方案的非交叉2D切片表面的集合与单个成角度的2D裂缝/流形交叉的实例;
图4说明用于根据公开的实施方案在裂缝线段周围产生计算网格的实例;以及
图5说明用于根据公开的实施方案在交叉的裂缝线段周围产生计算网格的实例;
图6说明根据公开的实施方案的裂缝线段的复杂阵列周围的计算网格的实例;
图7是说明用于实现公开的实施方案的系统的一个实施方案的框图;以及
图8说明根据公开的实施方案的在包括多个交叉的裂缝线段的复杂的几何结构周围产生的非结构化网格的另一实例。
具体实施方式
公开的实施方案包括用于模型化三维(3D)对象(诸如,但不限于地质裂缝)的系统和方法。通过参看附图的图1至图8来最好地理解公开的实施方案和其优点,相似数字用于各图的相似和对应部件。在研究以下图式和详细描述后,公开的实施方案的其它特征和优点对于本领域技术人员来说将是或将变成显而易见的。希望所有此类额外特征和优点将包括在公开的实施方案的范围内。另外,说明的图式仅仅是示例性的,且无意宣称或暗示关于可实现不同实施方案的环境、架构、设计或过程的任何限制。
图1说明根据公开的实施方案模型化的三维裂缝的图像。如图像100中可见,地层包括地层内的裂缝。如上所述,可将这些裂缝描述为地层内的张开的裂纹或空隙,且裂缝可自然地发生或从井筒人为地产生。理解并模型化这些裂缝的恰当特性是重要的,这是因为裂缝实现并影响储层流体到井筒的流动。可使用成像测井获得或产生图像(诸如图像100)。成像测井使用旋转换能器来测量整个井眼壁上的声阻抗,以识别岩石裂缝的存在和方向,以及理解地层的倾斜方向。
图2是说明用于根据公开的实施方案模型化三维裂缝的方法/过程200的流程图。在所描绘的实施方案中,方法通过接收3D裂缝表面的集合开始,3D裂缝表面具有在2D流形中已通过一系列多边形而离散化的几何结构(步骤201)。在替代实施方案中,过程200可通过执行3D裂缝的集合的离散化以产生一系列2D流形/裂缝表面而开始。
方法限定或包括非交叉2D切片表面的限定的集合/系列,其用以将2D裂缝表面的集合切片(步骤202)。在某些实施方案中,用于将2D流形的集合切片的系列中的切片表面的数目可以是用户可修改的。另外,在一些实施方案中,切片表面的尺寸可以是用户可修改的。
方法使用2D切片表面与限定裂缝表面的2D流形的交叉点来在每一切片表面上产生2D裂缝集合(步骤203)。作为说明性实例,图3描绘说明用以将2D裂缝/流形310的集合切片的非交叉2D切片表面320的集合的实例的图,图3A提供说明根据公开的实施方案的非交叉2D切片表面的集合与单个垂直的2D流形交叉的实例的更详细的视图,且图3B说明根据公开的实施方案的非交叉2D切片表面的集合与成角度的2D流形交叉的实例。
如上所述,在每一切片表面上在切片表面与2D流形集合的交叉点处产生2D裂缝集合。每一2D裂缝由一个或多个裂缝线段组成。根据公开的实施方案,针对切片表面中的每一裂缝(步骤204),方法在与裂缝相关联的每一裂缝线段周围的指定半径处产生视距集合(步骤206)。所述方法接着针对每一裂缝在与裂缝相关联的所有线段周围产生闭合环路(步骤208)。在某些实施方案中,在与裂缝相关联的线段周围产生闭合环路的过程可包括针对裂缝的每一线段针对每一指定半径计算所有视距边的交叉点(步骤208A),以及丢弃与裂缝相关联的每一线段的完全为与裂缝相关联的其它线段的视距所含有的含有段(步骤208B)。
在步骤208之后,方法在与裂缝相关联的闭合环路内产生形状元素(步骤210)。举例来说,在一个实施方案中,过程沿着每一直线段的长度和半径产生参数段(步骤210A)。所述过程接着在结构化区域内可能的话形成四边形元素(步骤210B)且在闭合环路的剩余区域内形成多边形(步骤210C)。
一旦产生形状元素,过程就在裂缝集合的闭合环路周围产生约束网格以填充二维表面的剩余部分(步骤212)。在一个实施方案中,Delaunay三角剖分算法用以在裂缝线段集合的闭合环路周围产生约束网格。因此,二维表面中的每一者现在完全由裂缝集合或约束网格中含有的二维单元元素组成。
从此处,过程可将储层性质(诸如但不限于多孔性和渗透性)指派给二维单元中的每一者以用于模型化储层的流体流动(步骤214)。这些性质值可由用户手动键入或可从钻井日志或从含有相关地质信息的数据库自动提取。
另外,根据公开的实施方案,裂缝内的二维单元被指派厚度属性值(即,拓扑二维裂缝可被指派体积),其允许裂缝内的三维连通进行连通。因此,公开的实施方案不需要切片表面上的二维单元挤压至第三维以用于创建三维单元,而是替代地将那个属性指派给二维单元以实现与三维单元类似的计算/模拟。
在步骤216处,过程将对应于同一裂缝的裂缝单元从每一切片表面逻辑地连接至其上方/下方相邻切片表面。在一个实施方案中,裂缝内的流的物理性质和其与彼此之间的交互在三维中通过使用被指派给裂缝内的每一二维单元的体积/厚度属性和计算其交互而被完全捕获,然而在与层面垂直的渗透性极其低的假设下,基质内的流的物理性质受限制。这有效地使那个方向的速度与和层面是切向的速度相比是可忽略的,即kz=0、Vz=0、kh>0、Vh<>0。换句话说,在这些条件下,模型可模拟裂缝外的无垂直流的情况。
最后,过程可将三维蜂窝式模型输入至模拟程序(诸如但不限于储层模拟软件)中以用于执行数值模拟和用于评估流体流动(步骤218),之后过程200终止。
图4提供根据公开的实施方案在单个裂缝线段周围产生计算网格的说明图。以图表402开始,在线段400周围产生视距集合。如图表402可见,视距集合中的每一视距由通过两个圆弧连接的两条直线边组成以完全围封直线段。从每一边到直线段的距离是恒定半径。在某些实施方案中,半径距离可以是用户可修改的可变值。
在图表404中,根据过程200的步骤210A沿着每一直线段的长度和半径产生参数段。四边形元素接着在结构化区域内可能的地方形成,如过程200的步骤210B中所提到。图表408说明在线段400的闭合环路周围产生的约束网格。
图5提供根据公开的实施方案在交叉的裂缝线段周围产生计算网格的另一说明图。举例来说,图表502说明在三个交叉的裂缝线段周围产生的视距集合。图表502的结果要求过程针对交叉的裂缝线段中的每一者针对每一指定半径计算所有视距边的交叉点,如步骤208A中所提到,且丢弃每一裂缝线段的完全为其它裂缝线段的视距所含有的含有段,如步骤208B中所提到。
图表504说明如步骤210中所提到在裂缝线段的闭合环路内产生形状元素的结果。如可见,根据步骤210A沿着每一裂缝线段的长度和半径产生参数段。在图表506中,四边形元素形成在结构化区域内可能的地方,如步骤210B中所提到。另外,多边形形成在裂缝线段的闭合环路的剩余区域内,如步骤210C所述。图表508说明在交叉的裂缝线段的闭合环路周围产生的约束网格,如过程200的步骤212中所提到。
作为另一实例,图6说明根据公开的实施方案在裂缝线段的复杂阵列周围产生非结构化网格。图表602指示裂缝集合,其具有在二维表面中已通过一系列线段离散化的几何结构。图表604说明在裂缝线段中的每一者周围产生的视距集合的结果。图表606说明因为执行图2中描述的剩余过程而导致的裂缝线段的分解图。
如从图6可见,公开的算法可在复杂的几何结构周围使用结构化元素而迅速产生非结构化网格。如先前所述,裂缝的二维单元可被指派体积属性值以用于用逻辑方式使邻近的二维表面上的裂缝的二维单元能够连通。
图7是说明用于实现公开的实施方案的特征和功能的系统700的一个实施方案的框图。系统700除了其它组件之外包括处理器700、主存储器702、第二存储单元704、输入/输出接口模块706,和通信接口模块708。处理器700可以是能够执行用于执行公开的实施方案的特征和功能的指令的任何类型或任何数目的单核或多核处理器。
输入/输出接口模块706使系统700能够(例如,从键盘和鼠标)接收用户输入且将信息输出至一个或多个装置,诸如但不限于打印机、外部数据存储装置和音频扬声器。系统700可任选地包括单独的显示模块710以使得信息能够显示在集成的或外部显示装置上。举例来说,显示模块710可包括用于提供与一个或多个显示装置相关联的增强的图形、触摸屏和/或多点触摸功能性的指令或硬件(例如,图形卡或芯片)。
主存储器702是易失性存储器,其存储当前执行的指令/数据,或被预取以用于执行的指令/数据。第二存储单元704是用于存储持久数据的非易失性存储器。第二存储单元704可以是或可包括任何类型的数据存储组件,诸如硬盘驱动器、闪存驱动器,或存储卡。在一个实施方案中,第二存储单元704存储计算机可执行代码/指令和其它相关数据以用于使用户能够执行公开的实施方案的特征和功能。
举例来说,根据公开的实施方案,第二存储单元704可永久地存储上述视距网格划分算法720的可执行代码/指令以用于模型化三维(3D)对象,诸如但不限于地质裂缝。接着在通过如图7中说明的处理器700进行的执行期间将与视距网格划分算法720相关联的指令从第二存储单元704加载至主存储器702。
通信接口模块708使系统700能够与通信网络730进行通信。举例来说,网络接口模块708可包括网络接口卡和/或无线收发器以用于使系统700能够通过通信网络730发送和接收数据和/或直接与其它装置通信。
通信网络730可以是任何类型的网络,包括以下网络中的一个或多个的组合:广域网、局域网、一个或多个专用网络、因特网、电话网络(诸如公共交换电话网络(PSTN)、一个或多个蜂窝式网络,和无线数据网络。通信网络730可包括多个网络节点(未描绘),诸如路由器、网络接入点/网关、交换机、DNS服务器、代理服务器,和用于辅助装置之间的数据的路由/通信的其它网络节点。
举例来说,在一个实施方案中,系统700可与一个或多个服务器734或数据库732交互以用于执行本发明的特征。举例来说,系统700可向数据库732询问地质信息以用于将储层性质指派给用于执行模拟的单元。系统700可向数据库732询问钻井日志信息以用于确定裂缝定向或密度以使得能够根据公开的实施方案模型化裂缝。另外,在某些实施方案中,系统700可充当一个或多个客户端装置的服务器系统或对等系统以用于进行对等通信或借助一个或多个装置进行并行处理。
因此,如上所述,公开的实施方案的优点包括(但不限于)提供在复杂几何结构周围借助结构化元素快速地产生非结构化网格。另外,在用户方面只需要低专业知识便能够利用公开的实施方案来产生适合用于许多数值模拟器的高质量的网格单元。举例来说,公开的实施方案实现使非专家针对复杂的几何结构使用高级数值模型化技术的工作流程,复杂的几何结构先前本将需要用户进行总近似和/或需要来自数值模型化专家的按照使用的辅助。作为另一实例,图8说明根据公开的实施方案的涉及多个交叉的裂缝线段的复杂几何结构的另一实例,其中公开的实施方案可迅速地产生二维网格单元,二维网格单元可挤压至三维元素中以用于执行数值模拟。
尽管已描述关于以上实施方案的特定细节,但以上硬件和软件描述仅希望作为实例实施方案,且无意限制公开的实施方案的结构或实现方式。举例来说,尽管系统700的许多其它内部组件未示出,但本领域技术人员将了解,此类组件和其互连是众所周知的。
另外,如上所述的公开的实施方案的某些方面可在使用一个或多个处理单元/组件执行的软件中体现。技术的程序方面可以被认为是“产品”或“制造物品”,其通常呈携载在或体现在机器可读介质类型中的可执行代码和/或相关联的数据的形式。有形的非暂时性“存储”型介质包括计算机、处理器或类似物的存储器或其它存储装置,或其相关联的模块中的任一者或全部,诸如各种半导体存储器、磁带驱动器、磁盘驱动器、光盘或磁盘,和类似物,其可在任何时间提供软件编程的存储。
本领域技术人员将认识到,本教导可具有多种修改和/或增强。尽管上述内容已描述被视为最佳模式的内容和/或其它实例,但应理解,可在其中进行各种修改,且本文中公开的标的可用各种形式和实例实现,且教导可适用于许多应用,本文中仅描述了其中一些。此类修改希望涵盖在本教导的真实范围内。
另外,图式中的流程图和框图说明根据本发明的各种实施方案的系统、方法和计算机程序产品的架构、功能性和可能的实现方式的操作。还应注意,在一些替代实现方式中,方框中指出的功能可不按照图式中指出的顺序发生。举例来说,连续示出的两个方框实际上可基本上同时执行,或方框有时可按相反顺序执行,这取决于所涉及的功能性。还应注意,框图和/或流程图说明的每一方框以及框图和/或流程图说明中的方框的组合可由执行指定功能或动作的基于专用硬件的系统,或专用硬件和计算机指令的组合实现。
公开的实施方案包括出于储层模拟的目的而在复杂且离散的裂缝周围产生混合计算网格的方法、设备和计算机程序产品。举例来说,一个公开的实施方案是用于模型化三维(3D)地质裂缝的计算机实现的方法。所述方法包括接收3D裂缝表面的集合的步骤,3D裂缝表面具有在二维(2D)流形中已通过一系列多边形而离散化的几何结构。所述方法限定用于将3D裂缝表面的集合切片的一系列非交叉的2D切片表面。所述方法接着使用2D切片表面与限定裂缝表面的2D流形的交叉点来在每一切片表面上产生2D裂缝集合。所述方法使用视距集合在每一切片表面上在与每一裂缝相关联的所有线段周围产生闭合环路,且在闭合环路内进一步产生形状元素。在裂缝的集合的闭合环路周围产生约束网格以填入每一切片表面上的剩余空间中。所述方法接着将对应于每一裂缝的裂缝单元从每一切片表面逻辑地连接至其相邻切片表面。接着可将储层性质或属性指派给3D单元中的每一者以用于执行储层模拟。
计算机实现的方法可进一步包括在邻近的2D离散化切片表面上的裂缝的2D单元之间建立连通包括将体积属性值指派给裂缝的每一2D单元以模拟三维地质。在裂缝线段的所有直线段周围产生闭合环路可进一步包括:针对每一裂缝线段中的每一直线段,针对每一指定半径计算所有视距边的交叉点,识别每一裂缝线段中的每一直线段的完全为裂缝线段中的其它线段的视距所含有的含有段,且丢弃裂缝线段中的每一线段的含有段,从而导致裂缝线段中的线段周围的闭合环路。在直线段的闭合环路内产生各种形状单元可进一步包括:在直线段的闭合环路内沿着直线段的长度和半径产生参数段,在直线段的闭合环路内可能的地方产生四边形元素,以及在直线段的闭合环路内的剩余区域中产生多边形。可使用Delaunay三角剖分算法来实现在裂缝线段集合的闭合环路周围产生约束单元网格以填入2D切片表面的剩余空间中。在一些实施方案中,视距集合中的每一视距由通过两个圆弧连接的两条直线边组成以完全围封直线段,且从每一边到直线段的距离是恒定半径。在其它实施方案中,计算机实现的方法可包括将离散化切片表面输入至数值模拟程序中,或基于体积属性值计算裂缝的2D单元的交叉点以用于在邻近的2D离散化切片表面上的裂缝的2D单元之间建立连通。
在又一实施方案中,一种非暂时性计算机可读介质包括用于模型化三维(3D)结构的计算机可执行指令。计算机可执行指令在被执行时使一个或多个机器执行操作,所述操作包括接收3D域,3D域包括表示3D地质裂缝的离散化二维(2D)裂缝表面。使3D域与非交叉的2D切片表面的集合交叉以在每一2D切片表面上在相应2D切片表面与2D裂缝表面的交叉点处产生2D裂缝线段的集合。针对每一2D切片表面,且针对裂缝线段的集合的每一裂缝线段中的每一直线段,在离直线段的指定半径处产生视距集合,在裂缝线段的所有直线段周围产生闭合环路,且在直线段的闭合环路内产生各种形状单元。针对每一2D切片表面,在裂缝线段的集合的闭合环路周围产生约束单元网格以填入2D切片表面的剩余空间中以产生离散化切片表面,将储层性质和体积属性指派给离散化切片表面内的每一单元,且在邻近的2D离散化切片表面上的裂缝的单元之间建立连通。在另一实施方案中,计算机可读介质进一步包括在被执行时使一个或多个机器使用一个或多个直线段取代裂缝线段的一个或多个段来近似裂缝线段的曲率的计算机可执行指令。用于在裂缝线段的所有直线段周围产生闭合环路的计算机可执行指令可包括:针对每一裂缝线段中的每一直线段,针对每一指定半径计算所有视距边的交叉点,识别每一裂缝线段中的每一直线段的完全为裂缝线段中的其它线段的视距所含有的含有段,且丢弃裂缝线段中的每一线段的含有段,从而导致裂缝线段中的线段周围的闭合环路。在另一实施方案中,用于在直线段的闭合环路内产生各种形状单元的计算机可执行指令可包括:在直线段的闭合环路内沿着直线段的长度和半径产生参数段,在直线段的闭合环路内可能的地方产生四边形元素,以及在直线段的闭合环路内的剩余区域中产生多边形。在又一实施方案中,在裂缝线段集合的闭合环路周围产生约束单元网格以填入2D切片表面的剩余空间中可使用Delaunay三角剖分算法实现。视距集合中的每一视距可包括通过两个圆弧连接的两条直线边以完全围封直线段,且从每一边到直线段的距离是恒定半径。在另一实施方案中,计算机可读介质可进一步包括在被执行时使一个或多个机器将离散化切片表面输入至数值模拟程序中的计算机可执行指令。
在另一实施方案中,一种系统包括至少一个处理器和至少一个存储器,存储器耦合至至少一个处理器且存储计算机可执行指令。计算机可执行指令在由至少一个处理器执行时执行操作,所述操作包括接收3D域,3D域包括表示3D地质裂缝的离散化二维(2D)裂缝表面。使3D域与非交叉的2D切片表面的集合交叉以在每一2D切片表面上在相应2D切片表面与2D裂缝表面的交叉点处产生2D裂缝线段的集合。针对每一2D切片表面,且针对裂缝线段的集合的每一裂缝线段中的每一直线段,在离直线段的指定半径处产生视距集合,在裂缝线段的所有直线段周围产生闭合环路,且在直线段的闭合环路内产生各种形状单元。针对每一2D切片表面,在裂缝线段的集合的闭合环路周围产生约束单元网格以填入2D切片表面的剩余空间中以产生离散化切片表面,且将储层性质和体积属性指派给离散化切片表面内的每一单元。在邻近的2D离散化切片表面上的裂缝的单元之间建立连通。
在其它实施方案中,提供用于使用一个或多个直线段取代裂缝线段的一个或多个段来近似裂缝线段的曲率的计算机可执行指令。用于在裂缝线段的所有直线段周围产生闭合环路的计算机可执行指令可包括:针对每一裂缝线段中的每一直线段,针对每一指定半径计算所有视距边的交叉点,识别每一裂缝线段中的每一直线段的完全为裂缝线段中的其它线段的视距所含有的含有段,且丢弃裂缝线段中的每一线段的含有段,从而导致裂缝线段中的线段周围的闭合环路。在另一实施方案中,用于在直线段的闭合环路内产生各种形状单元的计算机可执行指令可包括:在直线段的闭合环路内沿着直线段的长度和半径产生参数段,在直线段的闭合环路内可能的地方产生四边形元素,以及在直线段的闭合环路内的剩余区域中产生多边形。在又一实施方案中,可提供计算机可执行指令以用于将离散化切片表面输入至数值模拟程序中。
公开的实施方案的一个优点是实施方案使得能够在复杂几何结构周围借助结构化元素快速地产生非结构化网格。
本文中使用的术语仅为了描述特定实施方案,且无意限制本发明。如本文中所使用,除非上下文另外清楚地指示,否则单数形式“一”和“所述”希望同样包括复数形式。应进一步理解,术语“包括”在本说明书和/或权利要求书中使用时规定存在所述特征、整数、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整数、步骤、操作、元件、组件和/或其群组。所附权利要求书中的所有构件或步骤加功能元件的对应结构、材料、动作和等效物希望包括用于结合如具体地要求的其它要求的元件来执行功能的任何结构、材料或动作。本发明的描述已被呈现用于说明和描述的目的,但无意为详尽的或按公开的形式限于本发明。在不脱离本发明的范围和精神的情况下,许多修改和变化对于本领域技术人员来说将为显而易见的。选择和描述实施方案以解释本发明的原理和实际应用,且使得本领域其它技术人员能够理解本发明以用于具有各种修改的各种实施方案,所述修改适合于预期的特定用途。权利要求书的范围希望广泛地涵盖公开的实施方案和任何此类修改。

Claims (20)

1.一种用于模型化三维(3D)地质裂缝的计算机实现的方法,所述方法包括:
接收3D域,其包括表示所述3D地质裂缝的离散化二维(2D)裂缝表面;
使所述3D域与非交叉的2D切片表面的集合交叉以在每一2D切片表面上在相应2D切片表面与所述2D裂缝表面的交叉点处产生2D裂缝线段的集合;
针对每一2D切片表面:
针对裂缝线段的所述集合的每一裂缝线段中的每一直线段:在离直线段的指定半径处产生视距集合,在所述裂缝线段的所有所述直线段周围产生闭合环路,且在所述直线段的所述闭合环路内产生各种形状单元;
在裂缝线段的所述集合的所述闭合环路周围产生约束单元网格以填入所述2D切片表面的剩余空间中以产生离散化切片表面;以及
将储层性质和体积属性指派给所述离散化切片表面内的每一2D单元;以及
在邻近的2D离散化切片表面上的裂缝的2D单元之间建立连通。
2.如权利要求1所述的计算机实现的方法,其进一步包括在邻近的2D离散化切片表面上的裂缝的2D单元之间建立连通包括将体积属性值指派给所述裂缝的每一2D单元以模拟三维地质。
3.如权利要求1所述的计算机实现的方法,其中在所述裂缝线段的所有所述直线段周围产生所述闭合环路包括针对每一裂缝线段中的每一直线段:
针对每一指定半径计算所有视距边的交叉点;
识别每一裂缝线段中的每一直线段的完全为所述裂缝线段中的其它线段的视距所含有的含有段;以及
丢弃所述裂缝线段中的每一线段的所述含有段,从而导致在所述裂缝线段中的线段周围的闭合环路。
4.如权利要求1所述的计算机实现的方法,其中在所述直线段的所述闭合环路内产生所述各种形状单元包括:
在所述直线段的所述闭合环路内沿着所述直线段的长度和半径产生参数段;
在所述直线段的所述闭合环路内可能的地方产生四边形元素;以及
在所述直线段的所述闭合环路内的剩余区域中产生多边形。
5.如权利要求1所述的计算机实现的方法,其中使用Delaunay三角剖分算法来实现在裂缝线段的所述集合的所述闭合环路周围产生所述约束单元网格以填入所述2D切片表面的所述剩余空间中。
6.如权利要求1所述的计算机实现的方法,其中所述视距集合中的每一视距由通过两个圆弧连接的两条直线边组成以完全围封所述直线段,且其中从每一边到所述直线段的距离是恒定半径。
7.如权利要求1所述的计算机实现的方法,其进一步包括将所述离散化切片表面输入至数值模拟程序中。
8.如权利要求2所述的计算机实现的方法,其进一步包括基于用于在邻近的2D离散化切片表面上的所述裂缝的2D单元之间建立连通的所述体积属性值计算所述裂缝的所述2D单元的交叉点。
9.一种非暂时性计算机可读介质,其包括用于模型化三维(3D)结构的计算机可执行指令,所述计算机可执行指令在被执行时使一个或多个机器执行操作,所述操作包括:
接收3D域,其包括表示所述3D地质裂缝的离散化二维(2D)裂缝表面;
使所述3D域与非交叉的2D切片表面的集合交叉以在每一2D切片表面上在相应2D切片表面与所述2D裂缝表面的交叉点处产生2D裂缝线段的集合;
针对每一2D切片表面:
针对裂缝线段的所述集合的每一裂缝线段中的每一直线段:在离直线段的指定半径处产生视距集合,在所述裂缝线段的所有所述直线段周围产生闭合环路,且在所述直线段的所述闭合环路内产生各种形状单元;
在裂缝线段的所述集合的所述闭合环路周围产生约束单元网格以填入所述2D切片表面的剩余空间中以产生离散化切片表面;以及
将储层性质和体积属性指派给所述离散化切片表面内的每一单元;以及
在邻近的2D离散化切片表面上的裂缝的单元之间建立连通。
10.如权利要求9所述的计算机可读介质,其进一步包括在被执行时使所述一个或多个机器使用一个或多个直线段取代裂缝线段的一个或多个段来近似所述裂缝线段的曲率的计算机可执行指令。
11.如权利要求9所述的计算机可读介质,其中用于在所述裂缝线段的所有所述直线段周围产生所述闭合环路的所述计算机可执行指令包括:
针对每一裂缝线段中的每一直线段:
针对每一指定半径计算所有视距边的交叉点;
识别每一裂缝线段中的每一直线段的完全为所述裂缝线段中的其它线段的视距所含有的含有段;以及
丢弃所述裂缝线段中的每一线段的所述含有段,从而导致在所述裂缝线段中的线段周围的闭合环路。
12.如权利要求9所述的计算机可读介质,其中用于在所述直线段的所述闭合环路内产生所述各种形状单元的所述计算机可执行指令包括:
在所述直线段的所述闭合环路内沿着所述直线段的长度和半径产生参数段
在所述直线段的所述闭合环路内可能的地方产生四边形元素;以及
在所述直线段的所述闭合环路内的剩余区域中产生多边形。
13.如权利要求9所述的计算机可读介质,其中用于在裂缝线段的所述集合的所述闭合环路周围产生所述约束单元网格以填入所述2D切片表面的所述剩余空间中的计算机可执行指令是使用Delaunay三角剖分算法实现的。
14.如权利要求9所述的计算机可读介质,其中用于所述视距集合中的每一视距的计算机可执行指令由通过两个圆弧连接的两条直线边组成以完全围封所述直线段,且其中从每一边到所述直线段的距离是恒定半径。
15.如权利要求9所述的计算机可读介质,其进一步包括在被执行时使所述一个或多个机器将所述离散化切片表面输入至数值模拟程序中的计算机可执行指令。
16.一种系统,其包括:
至少一个处理器;以及
至少一个存储器,其耦合至所述至少一个处理器且存储计算机可执行指令,所述计算机可执行指令在由所述至少一个处理器执行时执行操作,所述操作包括:
接收3D域,其包括表示所述3D地质裂缝的离散化二维(2D)裂缝表面;
使所述3D域与非交叉的2D切片表面的集合交叉以在每一2D切片表面上在相应2D切片表面与所述2D裂缝表面的交叉点处产生2D裂缝线段的集合;
针对每一2D切片表面:
针对裂缝线段的所述集合的每一裂缝线段中的每一直线段:在离直线段的指定半径处产生视距集合,在所述裂缝线段的所有所述直线段周围产生闭合环路,且在所述直线段的所述闭合环路内产生各种形状单元;
在裂缝线段的所述集合的所述闭合环路周围产生约束单元网格以填入所述2D切片表面的剩余空间中以产生离散化切片表面;以及
将储层性质和体积属性指派给所述离散化切片表面内的每一单元;以及
在邻近的2D离散化切片表面上的裂缝的单元之间建立连通。
17.如权利要求16所述的系统,其进一步包括用于使用一个或多个直线段取代裂缝线段的一个或多个段来近似所述裂缝线段的曲率的计算机可执行指令。
18.如权利要求16所述的系统,其中用于在所述裂缝线段的所有所述直线段周围产生所述闭合环路的所述计算机可执行指令包括:
针对每一裂缝线段中的每一直线段:
针对每一指定半径计算所有视距边的交叉点;识别每一裂缝线段中的每一直线段的完全为所述裂缝线段中的其它线段的视距所含有的含有段;以及
丢弃所述裂缝线段中的每一线段的所述含有段,从而导致在所述裂缝线段中的线段周围的闭合环路。
19.如权利要求16所述的系统,其中用于在所述直线段的所述闭合环路内产生所述各种形状单元的所述计算机可执行指令包括:
在所述直线段的所述闭合环路内沿着所述直线段的长度和半径产生参数段
在所述直线段的所述闭合环路内可能的地方产生四边形元素;以及
在所述直线段的所述闭合环路内的剩余区域中产生多边形。
20.如权利要求16所述的系统,其进一步包括用于将所述离散化切片表面输入至数值模拟程序中的计算机可执行指令。
CN201380077841.6A 2013-07-02 2013-07-02 2.75d网格划分算法 Pending CN105474272A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/049150 WO2015002644A1 (en) 2013-07-02 2013-07-02 2.75d meshing algorithm

Publications (1)

Publication Number Publication Date
CN105474272A true CN105474272A (zh) 2016-04-06

Family

ID=52144089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380077841.6A Pending CN105474272A (zh) 2013-07-02 2013-07-02 2.75d网格划分算法

Country Status (12)

Country Link
US (1) US20160170085A1 (zh)
CN (1) CN105474272A (zh)
AR (1) AR096794A1 (zh)
AU (1) AU2013393305B2 (zh)
BR (1) BR112015032431A2 (zh)
CA (1) CA2913247A1 (zh)
DE (1) DE112013007206T5 (zh)
GB (1) GB2529957B (zh)
MX (1) MX2015016294A (zh)
RU (1) RU2015151485A (zh)
SG (1) SG11201510779VA (zh)
WO (1) WO2015002644A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2963928C (en) * 2014-11-12 2019-06-25 Halliburton Energy Services, Inc. Reservoir mesh creation using extended anisotropic, geometry-adaptive refinement of polyhedra
WO2017052543A1 (en) 2015-09-24 2017-03-30 Halliburton Energy Services Inc. Simulating fractured reservoirs using multiple meshes
CN106780744B (zh) * 2016-12-27 2020-04-10 中国石油天然气集团公司 利用不同分辨率ct图像构建多尺度三维数字岩心的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018497A (en) * 1997-02-27 2000-01-25 Geoquest Method and apparatus for generating more accurate earth formation grid cell property information for use by a simulator to display more accurate simulation results of the formation near a wellbore
US20080091396A1 (en) * 2006-10-13 2008-04-17 Kennon Stephen R Method and system for modeling and predicting hydraulic fracture performance in hydrocarbon reservoirs
US20110015909A1 (en) * 2009-07-16 2011-01-20 Gang Zhao Reservoir modeling method
CN102203638A (zh) * 2008-09-19 2011-09-28 雪佛龙美国公司 用于模拟地质力学储层系统的计算机实现的系统和方法
US20120267104A1 (en) * 2011-04-19 2012-10-25 Halliburton Energy Services, Inc. System and Method for Improved Propped Fracture Geometry for High Permeability Reservoirs
US20130124169A1 (en) * 2010-06-18 2013-05-16 Industry-University Cooperation Foundation Hanyang University Method for oil prediction in fractured reservoirs and recorded medium therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266062B1 (en) * 1997-10-08 2001-07-24 Maria-Cecilia Rivara Longest-edge refinement and derefinement system and method for automatic mesh generation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018497A (en) * 1997-02-27 2000-01-25 Geoquest Method and apparatus for generating more accurate earth formation grid cell property information for use by a simulator to display more accurate simulation results of the formation near a wellbore
US20080091396A1 (en) * 2006-10-13 2008-04-17 Kennon Stephen R Method and system for modeling and predicting hydraulic fracture performance in hydrocarbon reservoirs
CN102203638A (zh) * 2008-09-19 2011-09-28 雪佛龙美国公司 用于模拟地质力学储层系统的计算机实现的系统和方法
US20110015909A1 (en) * 2009-07-16 2011-01-20 Gang Zhao Reservoir modeling method
US20130124169A1 (en) * 2010-06-18 2013-05-16 Industry-University Cooperation Foundation Hanyang University Method for oil prediction in fractured reservoirs and recorded medium therefor
US20120267104A1 (en) * 2011-04-19 2012-10-25 Halliburton Energy Services, Inc. System and Method for Improved Propped Fracture Geometry for High Permeability Reservoirs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SYLVIA MOENICKES 等: "A 2.75DFinite Element Model of 3D Fracture Network Systems", 《IMR》 *

Also Published As

Publication number Publication date
GB2529957A (en) 2016-03-09
MX2015016294A (es) 2016-08-03
WO2015002644A1 (en) 2015-01-08
DE112013007206T5 (de) 2016-03-31
GB201520859D0 (en) 2016-01-13
AR096794A1 (es) 2016-02-03
SG11201510779VA (en) 2016-01-28
GB2529957B (en) 2019-11-13
US20160170085A1 (en) 2016-06-16
AU2013393305B2 (en) 2017-06-29
CA2913247A1 (en) 2015-01-08
AU2013393305A1 (en) 2015-12-03
RU2015151485A (ru) 2017-07-04
BR112015032431A2 (pt) 2017-07-25

Similar Documents

Publication Publication Date Title
US11048018B2 (en) Systems, methods, and computer-readable media for modeling complex wellbores in field-scale reservoir simulation
US10529131B2 (en) Simulating fractured reservoirs using multiple meshes
EP3018502A2 (en) Modeling fluid-conducting fractures in reservoir simulation grids
NO20180871A1 (en) Hybrid 3d geocellular representation of selected natural fracture network subsets
CN105474272A (zh) 2.75d网格划分算法
Kumar et al. Comparative analysis of dual continuum and discrete fracture simulation approaches to model fluid flow in naturally fractured, low-permeability reservoirs
US10422925B2 (en) 2.5D stadia meshing
CN107832482A (zh) 致密储层多尺度裂缝网络建模及模拟方法
CN105378799A (zh) 用于离散网络网格划分的放样算法
US9715762B2 (en) 3D stadia algorithm for discrete network meshing
EP3167387B1 (en) Anisotropic geometry-adaptive refinement for reservoir mesh creation
US20170228925A1 (en) Simulating a geological region with multiple realizations

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160406

WD01 Invention patent application deemed withdrawn after publication