CN105466899B - 一种原位同步监测活性磷和溶解氧的复合膜及其制备方法 - Google Patents

一种原位同步监测活性磷和溶解氧的复合膜及其制备方法 Download PDF

Info

Publication number
CN105466899B
CN105466899B CN201510940485.7A CN201510940485A CN105466899B CN 105466899 B CN105466899 B CN 105466899B CN 201510940485 A CN201510940485 A CN 201510940485A CN 105466899 B CN105466899 B CN 105466899B
Authority
CN
China
Prior art keywords
dgt
composite membranes
preparation
sense layer
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510940485.7A
Other languages
English (en)
Other versions
CN105466899A (zh
Inventor
韩超
丁士明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Geography and Limnology of CAS
Original Assignee
Nanjing Institute of Geography and Limnology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Geography and Limnology of CAS filed Critical Nanjing Institute of Geography and Limnology of CAS
Priority to CN201510940485.7A priority Critical patent/CN105466899B/zh
Publication of CN105466899A publication Critical patent/CN105466899A/zh
Application granted granted Critical
Publication of CN105466899B publication Critical patent/CN105466899B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种原位同步监测活性磷和溶解氧的DGT‑PO复合膜,其特征在于,所述的复合膜包括透明支撑体,荧光传感层和DGT固定层;所述的荧光传感层是将荧光染料八乙基卟啉铂和荧光黄10‑GN均匀混合,通过化学包埋将两种荧光染料固定在透明支撑体表面形成;所述的DGT固定层采用亚微米ZrO颗粒为固定剂,聚氨酯水凝胶为基质,通过涂膜法在荧光传感层上制得DGT固定层。本发明所述的复合传感膜基于平板光电极和薄膜扩散梯度原理,采用双通道分别获取DO和SRP的信息,可实现水体、沉积物或土壤等基质中活性磷(SRP)固定以及溶解氧(DO)的感应。

Description

一种原位同步监测活性磷和溶解氧的复合膜及其制备方法
技术领域
本发明属于环境监测技术领域,涉及一种监测水体、沉积物或土壤等基质中活性物质的感应膜,具体涉及一种基于薄膜扩散梯度技术和平板光电极技术原位同步监测活性磷和溶解氧的复合膜及其制备方法。
背景技术
沉积物和土壤具有非常显著的空间异质性,在其内部及其微界面环境存在各种微生物、植物根际、动物等生物活动,水流、风浪、降雨径流,空气交换等物理扰动,以及各种氧化还原反应、有机质降解,早期成岩等化学反应。这些生物、物理及化学过程会导致沉积物、土壤界面在微尺度呈现强烈的梯度变化。因此,鉴于沉积物和土壤显著的空间异质性以及物质梯度变化特征,原位、高分辨率、二维监测技术手段对准确认识这些过程具有决定性作用。
磷和溶解氧是环境中十分重要的参数,二者在一系列生物地球化学循环过程中,如內源释放、水体富营养化、有机质降解、生物呼吸作用等具有重要作用。已有大量的研究证实沉积物磷的释放受环境中氧化还原电位控制,而溶解氧作为沉积物中最主要的电子供体,决定了沉积物的氧化还原状况,因此同步研究二者的分布信息,对深入阐释磷释放机理具有重要意义。
薄膜梯度扩散平衡技术(DGT)以及平板光电极技术(PO)是近几年非常受关注的两种原位监测技术,利用该技术可以高分辨率获取沉积物中溶质或气体二维分布信息,因此被广泛应用于各类环境监测领域中。其中,DGT技术是基于Fick扩散定律,通过目标离子在定义扩散层的梯度扩散以及关联过程研究,获得离子在介质中的活性信息。目前利用DGT技术,已成功实现磷、硫、铁、砷等重要非金属、金属高分辨检测。PO技术是基于荧光分析原理,将对环境分析物质敏感的荧光指示剂附着在平面基材上,然后在特定激发光激发下这些光敏物质会释放不同荧光信息,然后通过图像获取技术进行分析,获得分析物的二维分布信息。目前,利用PO技术已成功用于环境DO,pH,CO2,NH4 +等指标监测。
同步监测两种或多种参数分布信息是未来环境监测发展的趋势之一。基于单一DGT技术的复合传感器已经被报道,比如申请人基于DGT技术的同步富集磷和硫的固定膜(CN201210208540X)、同步富集磷和铁的固定膜(CN 201310076971X),申请人也已成功实现基于PO技术的pH荧光传感膜及碱性沉积物pH二维动态分布的检测(CN 2014106433904)。然而,将DGT和PO两种技术联用同步测定多参数的技术尚未见诸公开报导。
发明内容
本发明的目的旨在提供一种复合传感膜,即一种原位同步监测活性磷和溶解氧的DGT-PO复合膜及其制备方法。鉴于上述溶解氧和活性磷同步获取的重要性,本发明披露了一种新型超薄DGT-PO复合膜,可实现水体、沉积物或土壤等基质中活性磷(SRP)固定以及溶解氧(DO)的感应。所述的复合膜基于DGT和PO技术联用,可以通过双通道、同步实现对基质中活性磷、溶解氧进行监测。
概括地说,本发明所述的复合传感膜的设计理念是基于平板光电极和薄膜扩散梯度平衡原理,采用双通道分别获取DO和SRP的信息,基本结构包括三个部分:透明支撑体,平板光电极的感应层,薄膜扩散梯度平衡的吸附固定层。
为实现上述目的,本发明所采用的技术方案如下:
一种原位同步监测活性磷和溶解氧的DGT-PO复合膜,其特征在于,所述的复合膜包括透明支撑体,荧光传感层和DGT固定层;所述的荧光传感层是将荧光染料八乙基卟啉铂(PtOEP)和荧光黄10-GN均匀混合,通过化学包埋将两种荧光染料固定在透明支撑体表面形成;所述的DGT固定层采用亚微米ZrO颗粒为固定剂,聚氨酯水凝胶为基质,通过涂膜法在荧光传感层上制得DGT固定层。
本发明还涉及所述的DGT-PO复合膜的制备方法,首先是将对氧气敏感性不同的两种荧光指示剂,分别选用对DO浓度响应灵敏的八乙基卟啉铂(PtOEP),以及响应不灵敏的荧光黄10-GN染料按照比例充分混合均匀后,通过化学包埋法将混合液均匀的固定在透明支撑体上,常温干燥后形成复合膜的荧光传感层(PO层);然后通过DGT固定膜制备工艺,采用透质子性和透气性的聚氨酯水凝胶和亚微米ZrO颗粒制成浆液,在PO层上直接涂膜形成DGT固定层;最终制备成为类似于“三明治”结构的超薄复合膜。
所述的DGT-PO复合膜的厚度150~200μm。
所述复合膜制备过程中,荧光传感层中PtOEP和荧光黄10-GN的重量比为0.05~1.5:1,优选1:1。本发明中将PtOEP荧光染料与具有参比效应和增亮效应的另一种荧光染料—荧光黄10-GN混合作为荧光指示剂,通过优化添加比例,得到最优的信号强度来表征DO值。对于DGT固定层制备,膜基材采用聚氨酯水凝胶(HY),将其与酒精配制成混合液(优选10:1,V:V),将固定剂亚微米ZrO和HY-酒精混合液混合后超声分散,重量体积比为0.1g~1.0g ZrO/1mL HY-酒精,优选0.5g ZrO/1mL HY-酒精,然后搅拌过夜,充分混匀后制备成固定层浆液,在PO层表面直接涂膜制备复合膜的DGT固定层。
更具体和优化地,所述的DGT-PO复合膜采用以下方法制备:
(1)按重量比1:1:5分别取PtOEP染料、荧光黄10-GN染料和聚乙烯颗粒,溶解在甲苯中制得混合液,PtOEP浓度为1g/L;超声溶解后,采用100μm刮膜的方法将所述混合液均匀涂覆在透明支撑体基材上,室温干燥30min后形成复合膜的PO层,放在暗处避光密封保存待用。
(2)取亚微米ZrO颗粒浆液,按0.5g ZrO/1mL HY-酒精溶液与HY-酒精溶液混合,采用超声破碎仪处理20min后,充分搅拌过夜,制备成固定层浆液,持续搅拌备用。
(3)在步骤(1)中制备的PO层上,粘贴500μm厚度的U型垫片,取5mL上述步骤(2)中制得的固定层浆液,在该U型槽内涂膜,室温静置1天后,形成DGT固定层;制得的DGT-PO复合膜放在暗处避光密封保存。
所述的亚微米ZrO超细颗粒浆液的制备可参见文献Kreuzeder,A.;Santner,J.;Prohaska,T.;Wenzel,W.W.,Gel for simultaneous chemical imaging of anionic andcationic solutes using diffusive gradients in thin films.Analytical chemistry2013,85,(24),12028-36。
所述的透明支撑体优选PET(聚对苯二甲酸乙二醇酯)薄膜。
所述的DGT-PO复合膜可以作为复合传感膜,基于平板光电极和薄膜扩散梯度技术,采用双通道分别获取DO和SRP的信息,实现同步、二维、高分辨率获取SRP和DO分布数据。基于两种最新的图像成像技术,即荧光图像获取技术和电脑成像密度计量技术,第一步基于荧光分析原理,采用图像技术实时获取DGT-PO复合膜在沉积物或土壤接触界面荧光强度图像,然后进一步将该复合膜处理后,进行膜显色并通过电脑成像密度计量技术获取SRP显色的图像,再根据所得到的图象对SRP和DO进行计量和检测。
本发明的有益效果:本发明基于薄膜扩散梯度平衡技术和平板光电极技术,成功制备出一种可以同步感应水、沉积物或土壤等环境基质中SRP和DO的DGT-PO复合膜。所述DGT-PO复合膜的主要特点包括:超薄(≤200μm),高透气和离子性、高灵敏性,及较高的磷吸附容量,粒径微小(<0.5μm,图2),比传统的ZrO固定膜粒径(5μm)显著降低等;此外,该复合膜具有极佳的机械、化学稳定性,与传统的ZrO膜相比,该膜负载在具有良好机械强度的高分子材料上,利用该膜可以双通、同步且高分辨率获取同一空间的SRP和DO参数二维分布信息,为深入理解相关生物地球化学过程提供了关键技术。所述复合膜的设计和制备扩宽了多功能探针的类型,属国内外首次报道。
附图说明
图1.本发明的DGT-PO复合膜的结构示意图。
图2.本发明的DGT-PO复合膜DGT固定层表面超细ZrO颗粒的SEM图像,其中(A)10μm尺度;(B)5μm尺度。
图3.本发明的DGT-PO复合膜DGT固定层性能测试-吸附动力学曲线。
图4.本发明的DGT-PO复合膜DGT固定层吸附容量曲线。
图5.本发明的DGT-PO复合膜DGT固定层显色灰度-吸附量关系曲线。
图6本发明的DGT-PO复合膜PO层对DO浓度响应曲线。
具体实施方式
实施例1
一种原位同步监测活性磷和溶解氧的DGT-PO复合膜及其制备,采用以下方法:
(1)分别取10mg,10mg,500mg的PtOEP染料,荧光黄10-GN染料和聚乙烯颗粒,溶解在10mL的甲苯中,超声溶解后,取200μL混合液,采用100μm刮膜的方法将该混合液均匀涂覆在透明的PET薄膜基材上,室温干燥30min后,形成复合膜的荧光传感层(PO);放在暗处避光密封保存待用。
(2)按Kreuzeder,A等描述的方法制备亚微米ZrO超细颗粒浆液;称取包含8.0gZrO的超细颗粒浆液,然后与16mL的聚氨酯水凝胶HYD4(polyurethane hydrogel,type D4,购自美国AdvanSource Biomaterials公司)-酒精溶液(10:1,V:V)混合,采用超声破碎仪处理20min后,在磁力搅拌器上充分搅拌过夜,制备成固定层浆液;置于磁力搅拌器上持续搅拌备用。
(3)在步骤(1)中制备的荧光传感层(PO)上,粘贴500μm厚度的U型垫片,取5mL上述步骤(2)中制得的固定层浆液,在该U型槽内采用玻璃棒进行涂膜制备DGT固定层。室温静置1天后,“三明治”结构的DGT-PO复合膜(图1)制备完成,放在暗处避光密封保存。
所制得的复合膜DGT固定层表面的SEM图像如图2,其表面超细ZrO颗粒均匀,粒径<0.5μm,比传统的ZrO固定膜粒径(5μm)显著降低。
实施例2
测试本发明的DGT-PO复合膜对磷的固定性能,按照以下步骤进行:
(1)按照实施例1制备DGT-PO复合膜,然后将复合膜放到去氮、超纯水中水化至少4个小时,备用。
(2)步骤(1)处理后的复合膜,采用不锈钢圆形切刀进行切膜,得到直径2.5cm的复合膜圆片,将所得复合膜圆片,0.45μm滤膜依次叠加后组装成DGT装置。
(3)将步骤(2)中组装好的DGT装置放入去离子水中并进行12h充氮去除氧气(排除DO对PO层的影响)。
(4)将步骤(3)中的DGT装置放入1mg/L的含磷酸盐母液中(pH=7.0±0.2;0.03MNaCl)),分别放置2,4,6,8,12,16,22,24h后吸附母液DGT进行吸附动力学测试,所得结果见图3。结果表明该固定膜对目标物吸附能力很强,吸附量呈直线递增。
实施例3
测试本发明的DGT-PO复合膜对磷的固定容量,具体步骤如下:
(1)实施例2中步骤(2)获得的复合膜圆片,放到去离子水中,纯氮充气12小时,排除膜内的氧气,备用。
(2)将所得复合膜圆片,0.45μm滤膜依次叠加后组装成DGT装置。
(3)将步骤(2)中组装好的DGT装置放入0.5~10mg/L的8种不同含磷酸盐浓度母液中(0.001mg P/L~20mg P/L,pH=7.0±0.2;0.03M NaCl),进行6h吸附,每组3个平行样。
(4)待吸附完成后,取出DGT装置,回收复合膜,然后用超纯水冲洗后放入5mL 1.0MNaOH溶液中进行24h充分提取,然后采用微量比色法测定提取液中的磷浓度。
(5)根据(4)中所测得的浓度计算复合膜圆片实际单位面积固定磷含量,然后根据DGT原理求算出理论固定磷平均含量,绘制理论值与实际值曲线,得到结果如图4所示。结果表明该膜固定磷的容量为12.34μg P/cm2,远高于现用的铁膜固磷含量(1.8~9.0倍)。
实施例4
本发明的DGT-PO复合膜吸附磷与显色灰度值之间的曲线方程建立,步骤如下:
利用实施例2中步骤(2)获得圆片组装入DGT装置中,然后配置0.05,0.1,0.2,0.25,0.3,0.5,1.0,2.0,3.0,4.0,6.0,10.0mg/L的不同浓度的含磷母液(各2mL),每个母液中分别放置6个DGT装置,吸附一定时间后(4~12小时),取出装置中的复合膜片,其中取3个膜圆片用1M的NaOH进行提取,测定吸附磷含量,另外三个备用。将备用复合膜,冲洗干净,按照优化的加热办法,放在加热板(80℃)上进行加热预处理24小时。加热毕后,按照优化显色时间,将该膜片放入钼锑抗显色液中进行显色60min,然后用冷水冲洗干净后,轻轻用滤纸吸干表面水分,用扫描仪扫描该膜正面,通过图像处理软件,转化成灰度值分布图像,将同一含磷母液中复合膜的灰度值与吸附磷含量拟合成校正曲线或回归方程,得到的校正曲线如图5所示。
因此,基于该复合膜中DGT固定层的分析测试,可采用钼蓝法显色和电脑成像密度计量技术相结合的方法,简单、快速获取复合膜DGT层吸附态磷的含量。
实施例5
测试DGT-PO复合膜中DO膜对不同溶解氧浓度响应性能,具体步骤如下:
(1)实施例2中步骤(2)获得圆片,放到去离子水中,纯氮充气12小时,排除膜内的氧气。
(2)将步骤(1)处理后的膜片贴在石英玻璃盒内侧一面上,支撑体一面与石英面直接接触,然后在膜片上覆盖一层聚碳酸酯超薄滤膜,并采用防水胶带将滤膜固定,盒内加入模拟湖水溶液(pH=7.0±0.2;0.03M NaCl)。
(3)通入不同比例的超纯氮气和空气,调节水溶液为饱和溶解氧浓度(0%~100%饱和溶解氧),采用389nm的UV光源激发,并获取不同饱和溶解氧浓度条件下该复合膜中感应膜的荧光图像。
(4)对步骤(3)中获得荧光图片,采用图像处理软件ImageJ 1.46,进行R-G-B三通道拆分,得到两种染料PtOEP和荧光黄10-GN分别对应的红色和蓝色通道,计算两个通道荧光强度比值R,并将其与对应溶解氧浓度(DO值)进行曲线拟合,得到所述的复合膜中PO层荧光传感膜对DO值响应曲线(如图6所示),复合膜中的PO层荧光传感膜荧光释放特征可根据Stern-Volmer修订方程(式1)描述:
式中式中R0,R为绝对厌氧条件(DO值=0)、不同DO值对应荧光图像中红色通道和绿色通道荧光强度比值,α为该膜中未发生猝灭反应的染料所占比例,Ksv为该感应膜对DO的荧光猝灭常数,[C]为基质中DO的浓度。由图6拟合后的方程为(式2):

Claims (8)

1.一种原位同步监测活性磷和溶解氧的DGT-PO复合膜,其特征在于,所述的复合膜包括透明支撑体,荧光传感层和DGT固定层;所述的荧光传感层是将荧光染料八乙基卟啉铂和荧光黄10-GN均匀混合,通过化学包埋将两种荧光染料固定在透明支撑体表面形成;所述的DGT固定层采用亚微米ZrO颗粒为固定剂,聚氨酯水凝胶为基质,通过涂膜法在荧光传感层上制得DGT固定层。
2.根据权利要求1所述的原位同步监测活性磷和溶解氧的DGT-PO复合膜,其特征在于,所述的DGT-PO复合膜的厚度150~200μm。
3.根据权利要求1所述的原位同步监测活性磷和溶解氧的DGT-PO复合膜,其特征在于,所述的透明支撑体为聚对苯二甲酸乙二醇酯薄膜。
4.权利要求1所述的DGT-PO复合膜的制备方法,其特征在于,首先选用八乙基卟啉铂和荧光黄染料10-GN按照比例充分混合均匀后,通过化学包埋法将混合液均匀的固定在透明支撑体上,常温干燥后形成复合膜的荧光传感层;然后通过DGT固定膜制备工艺,采用聚氨酯水凝胶和亚微米ZrO颗粒制成浆液,在荧光传感层上直接涂膜形成DGT固定层,制得所述的DGT-PO复合膜。
5.根据权利要求4所述的DGT-PO复合膜的制备方法,其特征在于,所述的透明支撑体为聚对苯二甲酸乙二醇酯薄膜。
6.根据权利要求4所述的DGT-PO复合膜的制备方法,其特征在于,荧光传感层中PtOEP和荧光黄10-GN的重量比为0.05~1.5:1。
7.根据权利要求4所述的DGT-PO复合膜的制备方法,其特征在于,所述的浆液按重量体积比为亚微米ZrO:聚氨酯水凝胶酒精混合液0.1g~1.0g/1mL混合而得。
8.根据权利要求4所述的DGT-PO复合膜的制备方法,其特征在于,所制备的DGT-PO复合膜的厚度为150~200μm。
CN201510940485.7A 2015-02-04 2015-12-15 一种原位同步监测活性磷和溶解氧的复合膜及其制备方法 Expired - Fee Related CN105466899B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510940485.7A CN105466899B (zh) 2015-02-04 2015-12-15 一种原位同步监测活性磷和溶解氧的复合膜及其制备方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510058222 2015-02-04
CN2015100582223 2015-02-04
CN201510940485.7A CN105466899B (zh) 2015-02-04 2015-12-15 一种原位同步监测活性磷和溶解氧的复合膜及其制备方法

Publications (2)

Publication Number Publication Date
CN105466899A CN105466899A (zh) 2016-04-06
CN105466899B true CN105466899B (zh) 2018-09-14

Family

ID=55604830

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510940485.7A Expired - Fee Related CN105466899B (zh) 2015-02-04 2015-12-15 一种原位同步监测活性磷和溶解氧的复合膜及其制备方法
CN201510940840.0A Expired - Fee Related CN105548106B (zh) 2015-02-04 2015-12-15 一种原位同步获取水体、土壤或沉积物中活性磷和溶解氧二维分布的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510940840.0A Expired - Fee Related CN105548106B (zh) 2015-02-04 2015-12-15 一种原位同步获取水体、土壤或沉积物中活性磷和溶解氧二维分布的方法

Country Status (1)

Country Link
CN (2) CN105466899B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973886B (zh) * 2016-05-30 2019-03-29 田发益 一种基于可见光光谱确定浓度值的方法及装置
CN106092992B (zh) * 2016-07-13 2019-04-19 王亮 一种土壤氧气二维分布测量装置
CN108344724B (zh) * 2018-02-24 2021-05-04 南京智感环境科技有限公司 一种便携式湿地土壤监测装置
CN108344723B (zh) * 2018-02-24 2021-05-04 南京智感环境科技有限公司 一种湿地土壤的原位同步监测方法
CN109507177A (zh) * 2018-11-28 2019-03-22 南京维申环保科技有限公司 一种基于dgt技术进行原位显色监测有效磷的方法
CN110987726B (zh) * 2019-09-20 2022-07-15 农业农村部环境保护科研监测所 一种原位监测土壤微量元素二维平面运移的方法
CN113030031A (zh) * 2019-12-24 2021-06-25 杭州柔谷科技有限公司 氧浓度测试方法、氧浓度测试装置和荧光氧传感器
CN111060511B (zh) * 2020-01-10 2022-07-19 南京国兴环保产业研究院有限公司 一种沉积物营养物的po-dgt联用检测装置及采集检测方法
CN111781198A (zh) * 2020-07-15 2020-10-16 南通大学 一种针对水体、土壤或沉积物中氨氮含量的二维测定方法
CN112730359A (zh) * 2020-12-17 2021-04-30 中国科学院南京地理与湖泊研究所 一种同步监测沉积物溶解氧和pH的复合光学传感膜
CN112730357A (zh) * 2020-12-17 2021-04-30 中国科学院南京地理与湖泊研究所 一种检测沉积物二氧化碳二维分布的光学传感膜
CN112730358A (zh) * 2020-12-17 2021-04-30 中国科学院南京地理与湖泊研究所 一种监测沉积物中pH二维动态分布的光学传感膜
CN112747950B (zh) * 2021-01-14 2022-08-05 自然资源部第一海洋研究所 一种具备原位数据采集功能的柱状沉积物取样系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048924A (zh) * 2013-03-12 2014-09-17 中国科学院南京地理与湖泊研究所 一种二维、高分辨测定湿地土壤和沉积物中活性磷分布的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462880A (en) * 1993-09-13 1995-10-31 Optical Sensors Incorporated Ratiometric fluorescence method to measure oxygen
US8574921B2 (en) * 2009-04-29 2013-11-05 Industry Foundation Of Chonnam National University Optical sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048924A (zh) * 2013-03-12 2014-09-17 中国科学院南京地理与湖泊研究所 一种二维、高分辨测定湿地土壤和沉积物中活性磷分布的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Bioavailability assessment of phosphorous and metals in soils and sediments:A review of diffusive gradients in thin films(DGT);Chaosheng Zhang et al.;《Environ Moint Assess》;20140712(第196期);第7367-7379页、表1 *
生物扰动下海底沉积物-水界面溶解氧二维观测方法;李栋 等;《海洋科学》;20141231;第38卷(第5期);摘要、第89-94页 *

Also Published As

Publication number Publication date
CN105548106A (zh) 2016-05-04
CN105466899A (zh) 2016-04-06
CN105548106B (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
CN105466899B (zh) 一种原位同步监测活性磷和溶解氧的复合膜及其制备方法
Ren et al. A new DGT technique comprised in a hybrid sensor for the simultaneous measurement of ammonium, nitrate, phosphorus and dissolved oxygen
Xu et al. Construction of nanoreactors on TiO2 nanotube arrays as a POCT device for sensitive colorimetric detection
CN104792852B (zh) 一种藻毒素分子印迹化学受体传感器及其制备方法和应用
Fan et al. Use of polymer-bound Schiff base as a new liquid binding agent of diffusive gradients in thin-films for the measurement of labile Cu2+, Cd2+ and Pb2+
Rasheed et al. Benthic photosynthesis and oxygen consumption in permeable carbonate sediments at Heron Island, Great Barrier Reef, Australia
Shi et al. An intrinsic dual-emitting fluorescence sensing toward tetracycline with self-calibration model based on luminescent lanthanide-functionalized metal-organic frameworks
Han et al. A novel hybrid sensor for combined imaging of dissolved oxygen and labile phosphorus flux in sediment and water
CN109164100B (zh) 一种快速检测农药的试纸条
CN111751182B (zh) 用于不同污染情景微域土壤采样的装置及其方法
CN109507177A (zh) 一种基于dgt技术进行原位显色监测有效磷的方法
US20040171094A1 (en) Oxygen sensors disposed on a microtiter plate
CN113884475A (zh) 基于铕掺杂碳量子点比率荧光探针的四环素检测方法
Yin et al. An irreversible planar optical sensor for multi-dimensional measurements of sedimentary H2S
Chen et al. A homogeneous capillary fluorescence imprinted nanozyme intelligent sensing platform for high sensitivity and visual detection of triclocarban
Hoshi et al. The spectrophotometric determination of trace molybdenum (VI) after collection and elution as molybdate ion on protonated chitin
CN105277535B (zh) 一种可消除试剂空白影响的水中氨氮现场快速检测方法
Xue et al. Zr-MOF functionalized nanochannels: Application to regenerative and sensitive electrochemical aptasensing platform
CN104937106A (zh) 用于监测生物流体的系统和方法
Yang et al. Portable intelligent paper-based sensors for rapid colorimetric and smartphone-assisted analysis of hydrogen peroxide for food, environmental and medical detection applications
Qiu et al. A molecularly imprinted gel photonic crystal sensor for recognition of chiral amino acids
CN110243814A (zh) 铅离子检测指示剂及其应用
Hu et al. A novel smartphone-integrated binary-emission molecularly imprinted fluorescence sensor embedded with MIL-101 (Cr) for sensitive and real-time detection of protein
CN112945954B (zh) 一种利用酶催化诱导适配体释放筛选酶抑制剂的高通量液晶检测平台制备方法
Wei et al. Novel electrochemical sensing platform basing on di-functional stimuli-responsive imprinted polymers for simultaneous extraction and determination of metronidazole

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180914

CF01 Termination of patent right due to non-payment of annual fee