CN105463205B - 一种碳质金矿抑制剂的使用方法 - Google Patents
一种碳质金矿抑制剂的使用方法 Download PDFInfo
- Publication number
- CN105463205B CN105463205B CN201510950984.4A CN201510950984A CN105463205B CN 105463205 B CN105463205 B CN 105463205B CN 201510950984 A CN201510950984 A CN 201510950984A CN 105463205 B CN105463205 B CN 105463205B
- Authority
- CN
- China
- Prior art keywords
- gold
- inhibitor
- carbonaceous
- ore
- gold ore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/08—Obtaining noble metals by cyaniding
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明公开了一种碳质金矿抑制剂的使用方法,该发明是针对碳质金矿中劫金炭(主要为有机碳)吸附金氰络合离子的问题,该抑制剂由下述质量百分比的三种物质组成,十二烷基苯磺酸钠:10%‑30%,十二烷基硫酸钠:10%‑30%,聚氧乙烯山梨醇酐月桂酸酯:50%‑70%;该抑制剂均为表面活性剂,通过其与劫金炭/铁硫砷氧化细菌残体的吸附作用,降低金氰络合离子的吸附损耗,显著提高了金的氰化浸出率;该抑制剂具有适应性强、水溶性好、分散效果好、对环境影响小和操作简单等优点。该抑制剂使用方法的应用推广可显著碳质金矿中金的氰化回收率,提高资源综合利用率,增加企业经济收入。
Description
技术领域
本发明涉及碳质金矿中碳质物的抑制技术,特别是一种碳质金矿抑制剂的使用方法。
背景技术
碳质金矿是重要的金矿类型之一,一般认为,当矿石中有机碳在0.2%以上时,金的氰化提取过程将受到严重干扰;因而不能用常规氰化法处理。为解决碳质金矿氰化浸出难的问题,摸索总结的多种预处理方法可分为两类:一是脱除或分解矿石中的碳质物,二是使碳质物失去对金氰络合物的吸附活性。目前,碳质金矿的预处理方法有浮选、高温焙烧、化学氧化、竞争吸附和覆盖抑制等。
实践证明常规浮选工艺难于彻底将碳质物分离而又保证较高的金回收率,因此不能单独作为碳质物的有效预处理方法。高温焙烧能有效地提高碳质矿的浸出回收率,然而该工艺能耗高,并且由于碳质物灰化条件颇为苛刻,如果控制不当将有可能使碳质物部分残留活化,反而会导致金的浸出率进一步降低。20世纪70年代以来,国内外开始采用炭浸工艺处理碳质金矿;炭浸法对提高碳质矿石的浸出率是相当有效的(含有机羧基酸较高的碳质金矿除外),然而炭浸法主要用于金品位较高金矿的搅拌浸出,在低品位金矿堆浸过程中难以实施。
为解决低品位碳质金矿堆浸氰化浸出率低这个难题,采用覆盖抑制法处理是极为有效的。目前,已见文献报道的碳抑制剂为煤油、燃料油和煤焦油,该类碳抑制剂为不溶于水的物质且用量较大,在氰化堆浸过程中添加该类物质容易造成氧扩散抑制、分散不好和环境污染等问题,这也是该类碳抑制剂没有在氰化堆浸实际生产中广泛应用的原因。
发明内容
本发明为解决低品位碳质金矿堆浸氰化浸出率低的问题,提供一种碳质金矿抑制剂的使用方法,本发明针对碳质金矿中的碳质物,在堆浸氰化提金前加入选择性吸附并覆盖于碳质物表面的化学试剂,以消除碳质物对氰化浸金过程对金氰络合物的吸附影响,显著提高金的氰化浸出率。
本发明的技术方案如下:
一种碳质金矿抑制剂的使用方法如下:
步骤一:将十二烷基苯磺酸钠、十二烷基硫酸钠和聚氧乙烯山梨醇酐月桂酸酯三种试剂的固体,按相应质量百分比逐步加入至温水中,并搅拌直至全部溶解,配置成一定质量浓度(例如 5%)的复合抑制剂溶液;
所述复合抑制剂溶液中含有十二烷基苯磺酸钠(分子式 C18H29NaO3S)、十二烷基硫酸钠(分子式 C12H25SO4Na)和聚氧乙烯山梨醇酐月桂酸酯(分子式 C18H34O6),三种物质的质量百分比为:
十二烷基苯磺酸钠:10%-30%
十二烷基硫酸钠:10%-30%
聚氧乙烯山梨醇酐月桂酸酯:50%-70%;
步骤二:将步骤一中配置好的复合抑制剂溶液按指定用量,加入至已用氧化钙或氢氧化钠调整好pH值的待处理的碳质金矿(矿堆、矿浆)浸出体系中,复合抑制剂用量为:每千克矿石10-50克复合抑制剂;
步骤三:对碳质金矿的矿浆浸出体系,需搅拌后方可加入氰化物。
步骤一中,温水的温度为20-40℃。
步骤三中,搅拌时间为至少30分钟。
步骤三中,对碳质金矿的矿堆浸出体系,需待浸出液完成3-5次循环方可加入氰化物。
本发明与现有技术相比,其显著优点及其所产生有益效果是:
(1)所使用的药剂均为廉价易得的工业表面活性剂,且均为水溶性,分散效果好,对环境影响小。
(2)在提高金的氰化回收率10%的相同效果下,该复合抑制剂的用量为煤油的二分之一或三分之一。
(3)对不同类型碳质金矿和不同处理工艺具有较强的适应性,且无需乳化,不改变原有浸出工艺,操作简单。
(4)该方法的应用推广可显著碳质金矿中金的氰化回收率,提高资源综合利用率,增加企业经济收入。
附图说明
图1为本发明在堆浸氰化提金工艺中的使用示意图;
图2为本发明在搅拌氰化提金工艺中的使用示意图;
其中,加入的复合抑制剂即为所述已配置好的复合抑制剂溶液。
具体实施方式
下面结合实例对本发明做进一步描述。
1、复合抑制剂配置
经试验研究获得,选择该三种物质的混合质量比为2:2:5,即每9克该复合抑制剂中含十二烷基苯磺酸钠 2克、十二烷基硫酸钠 2克和聚氧乙烯山梨醇酐月桂酸酯 5克。
准确称取2克十二烷基苯磺酸钠、2克十二烷基硫酸钠和5克聚氧乙烯山梨醇酐月桂酸酯,逐次加入称量好的试剂至180ml的蒸馏水中(温度20-40℃),搅拌直至药剂全部溶解,获得质量浓度5%的复合抑制剂溶液。
2、复合抑制剂使用及其效果
1#样品为四川阿坝州某低品位碳质氧化矿金矿,含碳2.9%,样品金品位1.89g/t,采用全泥氰化工艺处理。2#样品为四川凉山州某高砷硫化矿金矿,含碳2.78%,样品金品位6.40g/t,采用生物氧化预处理后再氰化浸出工艺。在实验室进行的全泥氰化过程按照中华人民共和国黄金行业标准:含金矿石全泥氰化浸金试验技术规范(YS/T 3022-2013)进行,试验结果见表1。
表1 复合抑制剂对氰化浸金的促进作用
1#样品——在碳质氧化矿金矿的全泥氰化浸出过程中,由于劫金炭物质的存在,浸出液中大量金氰络合物被矿石中的劫金炭吸附,致使氰化浸出率较低58.23%;在氰化浸出前加入复合抑制剂后,复合抑制剂先与矿物中的劫金炭吸附,占据大量活性位置,且不被金氰络合物离子取代,金氰化浸出率得以显著提高77.87%。
2#样品——高砷硫化矿金矿由于存在硫砷化物包裹金,需先进行生物氧化预处理打开包裹,由于劫金炭和铁硫砷氧化细菌残体均有吸附金氰络合物离子的能力,致使后续氰化浸出率极低8.70%;在氰化浸出前加入复合抑制剂后,复合抑制剂先与矿物中的劫金炭和铁硫砷氧化细菌残体吸附,且不被金氰络合物离子取代,金氰化浸出率得以显著提高88.05%。
Claims (4)
1.一种碳质金矿抑制剂的使用方法,其特征在于步骤如下:
步骤一:将十二烷基苯磺酸钠、十二烷基硫酸钠和聚氧乙烯山梨醇酐月桂酸酯三种试剂的固体,按相应质量百分比逐步加入至温水中,并搅拌直至全部溶解,配置成质量浓度为5%的复合抑制剂溶液;
所述十二烷基苯磺酸钠、十二烷基硫酸钠和聚氧乙烯山梨醇酐月桂酸酯三种试剂的相应质量百分比为:
十二烷基苯磺酸钠:10%-30%
十二烷基硫酸钠:10%-30%
聚氧乙烯山梨醇酐月桂酸酯:50%-70%;
步骤二:将步骤一中配置好的复合抑制剂溶液按每千克矿石10-50克复合抑制剂加入至已用氧化钙或氢氧化钠调整好pH值的待处理的碳质金矿浸出体系中;
步骤三:对碳质金矿的矿浆浸出体系,需搅拌后加入氰化物。
2.根据权利要求1所述的碳质金矿抑制剂的使用方法,其特征在于:步骤一中,温水的温度为20-40℃。
3.根据权利要求1所述的碳质金矿抑制剂的使用方法,其特征在于:步骤三中,搅拌时间为至少30分钟。
4.根据权利要求1所述的碳质金矿抑制剂的使用方法,其特征在于:步骤三中,对碳质金矿的矿堆浸出体系,需待浸出液完成3-5次循环加入氰化物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510950984.4A CN105463205B (zh) | 2015-12-19 | 2015-12-19 | 一种碳质金矿抑制剂的使用方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510950984.4A CN105463205B (zh) | 2015-12-19 | 2015-12-19 | 一种碳质金矿抑制剂的使用方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105463205A CN105463205A (zh) | 2016-04-06 |
CN105463205B true CN105463205B (zh) | 2017-12-22 |
Family
ID=55601357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510950984.4A Active CN105463205B (zh) | 2015-12-19 | 2015-12-19 | 一种碳质金矿抑制剂的使用方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105463205B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106975573B (zh) * | 2017-03-13 | 2018-08-21 | 中南大学 | 一种硫化铜矿浮选过程中碳抑制剂及其应用 |
CN111004924B (zh) * | 2019-12-30 | 2021-11-16 | 辽宁科技大学 | 一种金矿氰化浸出用助浸剂及浸出方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6649579B2 (en) * | 2001-12-29 | 2003-11-18 | Soy Technologies, Llc | Soy based hand cleaner and method of use |
US8460848B2 (en) * | 2010-12-14 | 2013-06-11 | Xerox Corporation | Solvent-free bio-based emulsion |
CN103521497B (zh) * | 2013-10-14 | 2015-08-26 | 日照凯格环保科技有限公司 | 一种用于覆盖垃圾填埋场的无土材料 |
-
2015
- 2015-12-19 CN CN201510950984.4A patent/CN105463205B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN105463205A (zh) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jafari et al. | Acidophilic bioleaching: a review on the process and effect of organic–inorganic reagents and materials on its efficiency | |
Zhang et al. | Extraction of Al and rare earths (Ce, Gd, Sc, Y) from red mud by aerobic and anaerobic bi-stage bioleaching | |
Vestola et al. | Acid bioleaching of solid waste materials from copper, steel and recycling industries | |
Gu et al. | Enhanced bioleaching efficiency of copper from waste printed circuit board driven by nitrogen-doped carbon nanotubes modified electrode | |
Mohanty et al. | A review of biotechnology processes applied for manganese recovery from wastes | |
Pradhan et al. | Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles | |
Mäkinen et al. | The effect of flotation and parameters for bioleaching of printed circuit boards | |
Wang et al. | A review of biocyanidation as a sustainable route for gold recovery from primary and secondary low-grade resources | |
Liao et al. | Simultaneous recovery of valuable metal ions and tailings toxicity reduction using a mixed culture bioleaching process | |
Pedersen et al. | Influence of electrode placement for mobilising and removing metals during electrodialytic remediation of metals from shooting range soil | |
Kremser et al. | Leachability of metals from waste incineration residues by iron-and sulfur-oxidizing bacteria | |
Sarkodie et al. | A review on the bioleaching of toxic metal (loid) s from contaminated soil: Insight into the mechanism of action and the role of influencing factors | |
Zhang et al. | Catalytic effect of Ag+ on arsenic bioleaching from orpiment (As2S3) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus | |
Chen et al. | Heavy metals recovery from printed circuit board industry wastewater sludge by thermophilic bioleaching process | |
Papassiopi et al. | Assessment of chromium biostabilization in contaminated soils using standard leaching and sequential extraction techniques | |
Lee et al. | Microbial removal of uranium in uranium-bearing black shale | |
CN105463205B (zh) | 一种碳质金矿抑制剂的使用方法 | |
Jorjani et al. | Gold leaching from ores using biogenic lixiviants–A review | |
Ciftci et al. | Biohydrometallurgy in Turkish gold mining: First shake flask and bioreactor studies | |
Darvanjooghi et al. | Bio-oxidation of gold from refractory sulfide ores: a journey ahead | |
Langhans et al. | Biooxidation of an arsenic-bearing refractory gold ore | |
US12116650B2 (en) | Method for dissolving metallogenically primary copper metals obtained from ores and/or chalcopyrite concentrates that contain same | |
Lalropuia et al. | Metal recovery from spent lithium-ion batteries via two-step bioleaching using adapted chemolithotrophs from an acidic mine pit lake | |
Qin et al. | Oxidation of arsenite (As (III)) by ferric iron in the presence of pyrite and a mixed moderately thermophilic culture | |
Cruz-Rodríguez et al. | Microbially-produced organic acids as leaching agents for metal recovery processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |