CN105463029A - 一种强化单室微生物电解池产氢的方法 - Google Patents

一种强化单室微生物电解池产氢的方法 Download PDF

Info

Publication number
CN105463029A
CN105463029A CN201511034312.5A CN201511034312A CN105463029A CN 105463029 A CN105463029 A CN 105463029A CN 201511034312 A CN201511034312 A CN 201511034312A CN 105463029 A CN105463029 A CN 105463029A
Authority
CN
China
Prior art keywords
electrolysis cell
hydrogen
chamber microbial
microorganism electrolysis
domestication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201511034312.5A
Other languages
English (en)
Inventor
刘广立
曾佳
骆海萍
卢耀斌
张仁铎
杨昆鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN201511034312.5A priority Critical patent/CN105463029A/zh
Publication of CN105463029A publication Critical patent/CN105463029A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明公布了一种强化单室微生物电解池产氢的方法,属于微生物电化学领域。本发明使用的方法与传统微生物电解池相比能够显著提高氢气产率,通过控制微生物电解池的启动步骤,调节不同的外加电压,阶梯提高pH值及严格调节不同pH值条件下的水力停留时间,促进产电微生物的富集和驯化,最终使得微生物电解池在pH≥10.5的条件下稳定运行,其氢气产率能达到70%以上,具有能耗低,氢气产率高,底物利用率高,成本低等优点。

Description

一种强化单室微生物电解池产氢的方法
技术领域
本发明涉及微生物电化学技术领域,尤其涉及使用微生物电解池产氢和抑制微生物电解池产甲烷领域。
背景技术
自18世纪工业革命以来,煤、石油、天然气等不可再生资源年消耗量持续增加,根据各国能源机构预测,按照如今的使用情况,这些化石能源将在一百年左右消耗殆尽,而现在世界能源的消耗量还在持续上升,这导致了满足能源供应的难度会进一步加大。与此同时,使用化石能源造成了严重的环境问题。地球亿万年固定的C元素在几百年时间内转变成CO2排放到大气中,导致了全球温室效应,海水酸化,从而影响了整个生态系统,成为人类发展进步的阻碍。如今能源问题已成为全世界共同关注的问题,开发清洁的新能源已成为世界范围的研究课题。氢气热值高,产物只有水,是一种优秀的清洁能源。目前,虽然我国城镇污水处理设施的建设速度较快,但目前大多数污水处理系统普遍采用的传统活性污泥法存在处理系统占地面积与能耗大、运行维护费用高等缺点。而污水中蕴含大量有机物,这些有机物本身是能量载体。在能源和环境的双重压力下,人们需要转变传统的废物处理的概念,从废物资源化的角度去充分开发和回收一切可利用的能源。因此,研究开发各类处理效率高、经济投入低,且可以从中回收清洁能源的新型污水处理技术是当代环保产业的共同目标和发展方向。
微生物电解池(MicrobialElectrolysisCell,MEC)是基于微生物燃料电池(MicrobialFuelCell)技术的一种新兴产氢技术。MEC可以利用生物质,甚至高浓度的有机废水进行产氢,将有机物中的化学能转为氢能,同时处理有机废水,实现生物质及有机废物的资源化利用,在清洁能源领域具有广阔的发展前景。MEC作为处理有机废水的新兴技术,近年来受到越来越多的关注和研究,并取得了一定进展。
由于单室微生物电解池处于厌氧环境,反应器整体的电势低,适合甲烷菌生长,所以运行一段时间后,反应器以产甲烷为主,因此微生物电解池研究领域最大的问题是如何抑制产甲烷作用实现高效持续产生高纯度的氢。目前,抑制微生物电解池中产甲烷的有以下方法:1)投加甲烷抑制剂;只有投加2溴乙烷磺酸盐(BES)可以观察到明显的抑制效果,且浓度需接近0.6mM才能完全抑制产甲烷,一旦停止投加产甲烷仍然会重新开始。2)降低pH值;引入空气,但是这样也会降低产电菌的活性;3)提高外加电压到0.7V以上,这个方法只在初期有效,反应器运行半个月以后,仍然以产甲烷为主;4)降低温度到4℃甲烷菌被完全抑制,这样也会降低反应速率,增加能耗。微生物电解池中的产甲烷过程主要发生在阴极,有实验表明更换阴极可以显著提高氢气产率,但是微生物燃料电池中的阴极需要用到铂,价格昂贵,就实际情况和经济效益方面考虑,频繁更换阴极的方法不可行。可以看出,在目前已经报道的抑制产甲烷的方法都存在缺陷,目前还没有一种很好的方法可以见到有效地抑制单室微生物电解池中的产甲烷作用。在之前已有的关于增强微生物电解池产氢的发明专利中,例如专利号为201510217696.8中所提及的方法,也仅仅适用与双室的微生物电解池,并且操作繁琐,内阻大,效果没有单室微生物电解池好。
发明内容
本发明的目的就是为了克服现有单室微生物电解池中抑制产甲烷作用的缺陷而提供一种可简单易行,稳定可靠的提高产氢效率的新方法。包含以下内容:
对该微生物电解池施加外电压0.3-1.2V,使阳极微生物产生的电子移动到阴极,在阴极铂催化剂的催化作用下与质子结合形成氢气,释放到气袋中。
在反应器运行过程中从初始pH值为7时开始,控制不同pH梯度下的运行水力停留时间24~120h内,培养温度为25℃~35℃,按梯度提高pH值至10.5以上。
实现pH≥10.5的条件下,微生物电解池可稳定运行,COD去除率为50%~90%,其产气体中氢气含量≥90%。
本发明一种单室微生物电解池中抑制产甲烷提高氢气产率的方法其优点在于:氢气含量较普通单室微生物电解池有极大的提高,能显著抑制产甲烷过程。
附图说明
附图1是该方法采用的单室微生物电解池结构示意图
附图2是该微生物电解池在不同pH值条件下长期运行时气体组分的变化示意图
附图3是该微生物电解池在不同pH值条件下氢气产率的变化示意图
具体实施方式
本发明所用的一种提高单室微生物电解池产氢效率的具体方法如下:
(1)单室微生物电解池的制作接种与启动
(1.1)用碳绳与钛丝制作成阳极碳刷,将铂粉与碳粉用异丙醇与Nafion溶液混合后涂在碳布上作为阴极,将制作好的阳极和阴极放入单室玻璃瓶中,连接气袋,在缝隙处都涂上环氧树脂进行密封,制作为单室微生物电解池。
(1.2)将基质与城市污水处理厂活性污泥按1∶1的比例混合,基质由1g/L乙酸钠,50mM/L中性磷酸盐缓冲溶液,微量元素溶液和维生素溶液组成,混合液倒入单室微生物电解池中进行接种。微生物电解池阴阳极两端用导线连接外加电压,接种过程维持20℃至35℃,外加0.3V至1.2V电压,当反应器电流超过5mA即为启动成功。
(2)单室微生物电解池维护与运行
(2.1)在pH=7的条件下运行2~6个周期,控制外加0.3V至1.2V电压,水力停留时间12~120个小时,分3~10个梯度逐渐提高pH值至最终pH≥10.5,以促进产电微生物的富集和驯化。

Claims (5)

1.一种强化单室微生物电解池产氢的方法,其特征在于包括以下步骤:
①微生物电解池加入接种液在一定外加电压条件下进行驯化培养;
②按照一定的pH值梯度逐次启动微生物电解池,控制每个pH梯度运行的水力停留时间;
③在pH值≥10.5时,微生物电解池产氢效果达到最优。
2.根据权利要求1所述的一种强化单室微生物电解池产氢的方法,其特征在于,控制pH值7~10.5中不同的驯化梯度,使反应器的稳定电流密度可达到35~80A/m3
3.根据权利要求1所述的一种强化单室微生物电解池产氢的方法,其特征在于,在驯化启动及运行过程中,控制外加电压0.3~1.2V,培养温度为25℃~35℃。
4.根据权利要求1所述的一种强化单室微生物电解池产氢的方法,其特征在于,控制微生物电解池的水力停留时间为24~120h内,反应器的COD去除率为50%~90%。
5.根据权利要求1所述的一种强化单室微生物电解池产氢的方法,其优点在于,在pH≥10.5的条件下长期运行,反应器产生的气体中含有≥90%氢气,氢气产率可以维持在≥70%。
CN201511034312.5A 2015-12-30 2015-12-30 一种强化单室微生物电解池产氢的方法 Pending CN105463029A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511034312.5A CN105463029A (zh) 2015-12-30 2015-12-30 一种强化单室微生物电解池产氢的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511034312.5A CN105463029A (zh) 2015-12-30 2015-12-30 一种强化单室微生物电解池产氢的方法

Publications (1)

Publication Number Publication Date
CN105463029A true CN105463029A (zh) 2016-04-06

Family

ID=55601185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511034312.5A Pending CN105463029A (zh) 2015-12-30 2015-12-30 一种强化单室微生物电解池产氢的方法

Country Status (1)

Country Link
CN (1) CN105463029A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803001A (zh) * 2016-05-06 2016-07-27 河海大学 一种利用微生物电解池实现剩余污泥产氢的方法
CN112250163A (zh) * 2020-10-09 2021-01-22 哈尔滨工业大学 一种异位电子补偿的氢自养反硝化脱氮装置
CN112250162A (zh) * 2020-10-09 2021-01-22 哈尔滨工业大学 微生物电解池耦合BAF-MBfR的低C/N污水深度脱氮装置和脱氮方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717790A (zh) * 2009-12-10 2010-06-02 同济大学 提高污水厂污泥厌氧发酵产氢气的方法
CN102400169A (zh) * 2011-11-01 2012-04-04 浙江大学 一种碱性微生物电解制氢方法
WO2014043690A1 (en) * 2012-09-17 2014-03-20 Musc Foundation For Research Development Microbial electrosynthetic cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717790A (zh) * 2009-12-10 2010-06-02 同济大学 提高污水厂污泥厌氧发酵产氢气的方法
CN102400169A (zh) * 2011-11-01 2012-04-04 浙江大学 一种碱性微生物电解制氢方法
WO2014043690A1 (en) * 2012-09-17 2014-03-20 Musc Foundation For Research Development Microbial electrosynthetic cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803001A (zh) * 2016-05-06 2016-07-27 河海大学 一种利用微生物电解池实现剩余污泥产氢的方法
CN105803001B (zh) * 2016-05-06 2019-05-28 河海大学 一种利用微生物电解池实现剩余污泥产氢的方法
CN112250163A (zh) * 2020-10-09 2021-01-22 哈尔滨工业大学 一种异位电子补偿的氢自养反硝化脱氮装置
CN112250162A (zh) * 2020-10-09 2021-01-22 哈尔滨工业大学 微生物电解池耦合BAF-MBfR的低C/N污水深度脱氮装置和脱氮方法
CN112250163B (zh) * 2020-10-09 2022-11-25 哈尔滨工业大学 一种异位电子补偿的氢自养反硝化脱氮装置

Similar Documents

Publication Publication Date Title
Fu et al. In situ biogas upgrading by CO2-to-CH4 bioconversion
Liu et al. Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge
Guo et al. Computational and experimental analysis of organic degradation positively regulated by bioelectrochemistry in an anaerobic bioreactor system
Wu et al. Opportunities and challenges in microbial medium chain fatty acids production from waste biomass
Liu et al. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production
Patil et al. Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2
Cazier et al. Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion
Zhou et al. Biogas upgrading and energy storage via electromethanogenesis using intact anaerobic granular sludge as biocathode
Wang et al. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell
Mohan et al. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate
Batlle-Vilanova et al. Biogas upgrading, CO2 valorisation and economic revaluation of bioelectrochemical systems through anodic chlorine production in the framework of wastewater treatment plants
Yossan et al. Hydrogen production in microbial electrolysis cells: choice of catholyte
Yu et al. Electricity and methane production from soybean edible oil refinery wastewater using microbial electrochemical systems
CN104478178A (zh) 微生物电解两段式污泥厌氧消化装置及利用该装置产甲烷的方法
Dai et al. Impacts of medium composition and applied current on recovery of volatile fatty acids during coupling of electrodialysis with an anaerobic digester
Satar et al. Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose
CN108569757B (zh) 一种利用电化学装置处理磺胺类废水并同步制氢的方法
Dong et al. Caproic acid production from anaerobic fermentation of organic waste-Pathways and microbial perspective
CN104762635A (zh) 电辅助将乙醇转化为乙酸的同时产甲烷的方法与装置
Villano et al. Perspectives of biofuels production from renewable resources with bioelectrochemical systems
CN101319230A (zh) 一种促进有机废水或有机废弃物厌氧发酵产沼气的方法
Zhao et al. Highly selective butyric acid production by coupled acidogenesis and ion substitution electrodialysis
CN105463029A (zh) 一种强化单室微生物电解池产氢的方法
Fazal et al. Simultaneous production of bioelectricity and biogas from chicken droppings and dairy industry wastewater employing bioelectrochemical system
Xie et al. Power to biogas upgrading: Effects of different H2/CO2 ratios on products and microbial communities in anaerobic fermentation system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160406

WD01 Invention patent application deemed withdrawn after publication