CN105452988B - 功率信号接口 - Google Patents

功率信号接口 Download PDF

Info

Publication number
CN105452988B
CN105452988B CN201480045134.3A CN201480045134A CN105452988B CN 105452988 B CN105452988 B CN 105452988B CN 201480045134 A CN201480045134 A CN 201480045134A CN 105452988 B CN105452988 B CN 105452988B
Authority
CN
China
Prior art keywords
equipment
power consumption
circuit system
signal
energy management
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480045134.3A
Other languages
English (en)
Other versions
CN105452988A (zh
Inventor
大卫·沃尔特·弗林
詹姆斯·爱德华·迈尔斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anne Science And Technology (china) Co Ltd
ARM Ltd
Original Assignee
Anne Science And Technology (china) Co Ltd
Advanced Risc Machines Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anne Science And Technology (china) Co Ltd, Advanced Risc Machines Ltd filed Critical Anne Science And Technology (china) Co Ltd
Publication of CN105452988A publication Critical patent/CN105452988A/zh
Application granted granted Critical
Publication of CN105452988B publication Critical patent/CN105452988B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3024Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a central processing unit [CPU]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3089Monitoring arrangements determined by the means or processing involved in sensing the monitored data, e.g. interfaces, connectors, sensors, probes, agents
    • G06F11/3096Monitoring arrangements determined by the means or processing involved in sensing the monitored data, e.g. interfaces, connectors, sensors, probes, agents wherein the means or processing minimize the use of computing system or of computing system component resources, e.g. non-intrusive monitoring which minimizes the probe effect: sniffing, intercepting, indirectly deriving the monitored data from other directly available data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3058Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Power Sources (AREA)

Abstract

本文提供使用用于处理数据的设备发送能量管理信号的机构,该机构诸如片上系统集成电路(2)。处理电路系统(6、8、10)耦接至与能量管理电路系统(4)通信的消费者能量接口电路系统(14、16、18)。所通信的能量管理信号包括:静态功率消耗信号,该静态功率消耗信号指示独立于正在执行的处理操作的功率消耗水平;及动态功率消耗信号,该动态功率消耗信号指示取决于正在执行的处理操作的动态功率消耗水平。

Description

功率信号接口
技术领域
本发明涉及数据处理系统的领域。更具体而言,本发明涉及用于处理数据的设备内的组件之间的功率参数的信号传递。
背景技术
提供含有多个功能块的片上系统集成电路为人们熟知。例如,这些功能块可包括通用处理器、无线通信块、存储器、信号处理单元等。亦已知,通常要求在严格的功率限制下操作这些集成电路。例如,可能限制可消耗的峰值功率,以便操作电压不会下降的过低。亦可能限制一个时期内可能消耗的平均功率,以便相对于从能量收集发起的能量获得“平衡”,或以便确保可接受的电池寿命。能量管理的要求更加复杂,如众所周知,实行使不同的功能块进入不同操作状态,以便节省电力。例如,在未使用一些功能块时,这些功能块可进入静态省电模式,而其他功能块仍大量使用且消耗相对大量的功率。很难提前(预先)对可能出现的许多不同的操作环境模型化,且片上系统集成电路在管理该集成电路的电力消耗时应能够响应该集成电路的当前状态。
发明内容
从一方面可见,本发明提供一种用于处理数据的设备,该设备包含:
处理电路系统,该处理电路系统被配置以执行处理操作;以及
消费者能量接口电路系统,该消费者能量接口电路系统耦接所述处理电路系统,且被配置以与能量管理电路系统进行能量管理信号通信;
其中所述能量管理信号包括:
(i)静态功率消耗信号,该静态功率消耗信号指示所述设备的独立于由所述处理电路系统执行的处理操作的静态功率消耗水平;以及
(ii)动态功率消耗信号,该动态功率消耗信号指示所述设备的取决于由该设备执行的处理操作的动态功率消耗水平。
本发明认识到,当消耗能量的处理电路系统被提供有与能量管理电路系统进行能量管理信号通信的消费者能量接口时(其中能量管理信号包括静态功率消耗信号及动态功率消耗信号),可改良功率控制的精度和效率。静态功率消耗信号可为能量管理电路系统提供有关处理电路系统的静态功率消耗水平的指示,此静态功率消耗水平与处理电路系统正执行的处理操作无关(例如,静态功率信号可指示由于处理电路系统内的泄漏电流消耗的功率)。静态功率消耗信号可被改变以反应当前的静态模式,例如时钟停止对功率闸控。动态功率消耗信号指示取决于由处理电路系统执行的处理操作的动态功率消耗的水平。此动态功率消耗可取决于当前正在执行的处理操作的性质变化,且此信息可用于改变动态功率消耗信号(例如,活动可以缓存命中/缺失率、加载/储存对算术指令速率、使能的时钟门控的百分比等为特征)。能量管理电路系统可使用这两种不同的功率消耗信号,以更精确及有效地整体管理设备内的能量分布及消耗。
在一些实施例中,静态功率消耗信号可根据在所述设备未执行处理操作时可采用的多个模式中的所选一者变化。这些模式可包括至少一个以下模式:待机模式,在该模式下,设备的信号保持在原位,以使得设备能够在不必恢复状态信号的情况下(例如,时钟在静态处理器内部停止)恢复处理;状态保持模式,在该模式下,设备的状态信号被保存至设备内的状态保持电路系统(例如气球闩),以使得设备能够藉由从状态保持电路恢复状态信号来恢复处理;及断电模式,在该模式下,设备的状态信号不再储存于设备内,且对设备的电源断开。静态行为的这些不同模式将具有与这些模式有关的不同水平的功率消耗,且此举可反映在返回至能量管理电路系统的静态功率消耗信号中。视设备的其余组件的状态而定,当针对与重新开始处理有关的延时(退出静态模式时)平衡所消耗的能量时,这些静态模式中的不同一者可能较佳。
应了解,静态功率消耗(诸如漏泄)通常对温度具有很强的依赖性。然而,在独立于操作温度发出静态功率消耗信号时,可有利地简化系统。能量管理电路系统可整体获得设备的操作温度,且在不要求生成静态消耗功率信号的情况下执行任何必须的校正,以在该静态消耗功率信号生成且发送至能量管理电路系统之前考虑该因素。能量限制集成电路内的温度在集成电路上通常是均匀的,且因此,温度的集中量测更有效率,而不是要求功率消耗信号数据的每一发送器分别量测该发送器的自身的温度。
动态功率消耗信号指示由处理电路系统内的处理操作消耗的功率的预测。实际上,消耗的功率的实际量可取决于温度、操作电压、时钟频率及制造制程(process)变化而变化。然而,如上所述,集中地就芯片宽度效应进行校正更有效率,而不是要求动态功率消耗信号的每一发送器分别量测并就这些参数进行校正。
与如上所述的就芯片宽度参数进行校正相反,在一些实施例中,动态功率消耗信号可取决于在设备内部检测到的处理活动的水平而变化。执行处理操作的处理电路系统所消耗的功率可基于这些处理操作的性质而有相当大的变化。处理电路系统可经仪表化以获取当前正执行的活动类型的指示,且该处理电路系统使用此信息以修改发送的动态功率消耗信号,以便该动态功率消耗信号更精确地表示与这些处理操作有关的动态功率消耗。举例而言,若处理操作仅为NOP循环,则与执行密集复杂算术处理操作及高速率加载/储存操作的处理操作相比,该处理操作可能消耗相对较少的功率。
动态功率消耗信号亦可取决于由设备执行的操作模式而变化。该模式可相对粗略地被决定,且该模式还提供改良的动态功率信号的精确度水平。例如,就执行无线通信的电路系统而言,与传输信号时相比,在接收信号时所消耗的功率可能有相当大的差异,且因此接收/传输模式指示可用于增加动态功率消耗信号的精确度。
静态功率消耗信号及动态功率消耗信号从消费者发送至能量管理电路系统。所通信的能量管理信号亦可包括分配信号,该分配信号从能量管理电路系统发送至包括处理电路系统的设备,及该分配信号指示分配给该设备的功率水平。整个系统可在限制功率预算内操作,且能量管理电路系统可控制整个系统之不同组件之间的功率预算的分配。因此,分配信号可被提供至包括处理电路系统的设备,且可被用于控制该设备的操作模式,例如,执行处理操作的处理电路系统的时钟频率可视接收的分配信号而节流,以便保持在已分配给此处理操作的功率预算之内。
希望能量管理信号应能够可靠地指示在可能较宽范围上延伸的功率水平。因此,在一些实施例中,能量管理信号使用对数编码功率水平,且此外能量管理信号使用功率水平的温度计编码(例如与对数编码结合)。在一些实施例中,不同的编码类型可用于动态及静态功率消耗信号。对数方法具有与需要形成线性子项,随后在对数转换之前将这些线性子项相加,并且在由能量管理器使用之前,对数项可能随后需要转换回线性形式有关的额外开销。
为简化设计使用,且在可能由不同组织提供的不同处理电路系统之间,在较佳实施例中,静态功率消耗信号及动态功率消耗信号都试图表示设备的功率消耗的绝对水平(此绝对水平可能要求就诸如上文论述的温度、操作电压、制程变化等的效应进行校正,但是至少大体水平试图表示绝对功率消耗,而不是消耗的功率的更抽象部分或其他指示)。
因为系统的不同部分可在不同操作模式下,且可在不同时期处于不同功率状态下,所以若在该消费者能量接口与能量管理电路系统之间使用异步请求确认握手,则能量管理信号的通信可被简化且更稳定。
从另一方面可见,本发明提供一种用于处理数据的设备,该设备包含:
处理装置,该处理装置用于执行处理操作;以及
消费者能量接口装置,该消费者能量接口装置用于与能量管理电路系统进行能量管理信号通信以用于管理能量;
其中能量管理信号包括:
(i)静态功率消耗信号,该静态功率消耗信号指示所述设备的独立于由所述处理装置执行的处理操作的静态功率消耗水平;以及
(ii)动态功率消耗信号,该动态功率消耗信号指示所述设备的取决于由所述处理装置执行的处理操作的动态功率消耗水平。
从一补充方面可见,本发明提供一种用于管理至少一个用于处理数据的设备的功率消耗的能量管理电路系统,该能量管理电路系统包含:
管理器能量接口电路系统,该管理器能量接口电路系统被配置以与所述至少一个用于处理数据的设备进行能量管理信号的通信;
其中能量管理信号包括:
(i)静态功率消耗信号,该静态功率消耗信号指示所述设备的独立于由所述设备内的处理电路系统执行的处理操作的静态功率消耗水平;以及
(ii)动态功率消耗信号,该动态功率消耗信号指示所述设备的取决于由所述处理电路系统执行的处理操作的动态功率消耗水平。
用于管理消耗的功率的能量管理电路系统通常(但不是本质上)在与用于处理数据的设备相同的集成电路上形成。此能量管理电路系统包括如先前所论述的传递能量管理信号的管理器能量接口电路系统。
能量管理电路系统可有利地包括能量控制器电路系统,该能量控制器电路系统被配置以就如前所述的多种芯片宽度效应进行补偿/校正。因此,静态功率消耗及动态功率消耗两者可针对变量而校正,这些变量包括操作温度、操作电压及制造制程变化(例如,如由片上处理特征块检测到的变化)。此外,动态功率消耗亦可被校正,以考虑与涉及的动态功率信号有关的处理电路系统的当前操作频率。
为促进上述校正,能量控制器电路系统可储存指示静态及/或动态功率消耗随温度及/或操作电压变化的速率中的一者或多者的数据。静态及动态操作的速率可能是不同的,这些速率因芯片不同而可能存在差异,且因此这些速率可被测量并储存于能量控制器电路可访问的可编程储存装置内。
能量控制器电路系统可被配置以使用能量管理信号来改变包括处理电路系统的设备(该设备已被提供有能量管理信号)的一或更多个操作参数。例如,该能量控制器电路系统可控制操作时钟信号的频率、在处理操作期间使用的操作电压及/或当处理电路系统未执行处理操作时供应的操作电压(例如待机电压)。
为了能量管理电路系统自身应不会消耗过多功率,在一些实施例中,以能量管理状态机的形式提供该能量管理电路系统。
能量管理电路系统可包括供能电路系统,该供能电路系统被配置以向至少用于处理数据的设备供应能量,及向能量管理电路系统提供指示供能电路系统能够提供多少功率的信号。例如,供能电路系统可与能量收集有关且提供当前收集多少功率的指示,及/或供能电路系统可与电荷储存装置(诸如电池或超级电容器)有关且提供指示电池的充电状态的信号。另一选项将为:供能电路系统与主电源来源有关,且因此向能量管理电路系统指示,设备当前被主电源供电且能量节约可能没有效能重要。
从另一方面可见,本发明提供一种用于管理至少一个用于处理数据的设备的功率消耗的能量管理电路系统,该能量管理电路系统包括:
管理器能量接口装置,该管理器能量接口装置用于与所述至少一个用于处理数据的设备进行能量管理信号的通信;
其中能量管理信号包括:
(i)静态功率消耗信号,该静态功率消耗信号指示所述设备的独立于由所述设备内的处理电路系统执行的处理操作的静态功率消耗水平;以及
(ii)动态功率消耗信号,该动态功率消耗信号指示所述设备的取决于由所述处理电路系统执行的处理操作的动态功率消耗水平。
从另一方面可见,本发明提供一种处理数据的方法,该方法包含以下步骤:
使用处理电路系统执行处理操作;以及
与能量管理电路系统进行能量管理信号通信;
其中能量管理信号包括:
(i)静态功率消耗信号,该静态功率消耗信号指示所述设备的独立于由所述处理电路系统执行的处理操作的静态功率消耗水平;以及
(ii)动态功率消耗信号,该动态功率消耗信号指示所述设备的取决于由该处理电路执行的处理操作的动态功率消耗水平。
从另一方面可见,本发明提供一种管理至少一个用于处理数据的设备的功率消耗的方法,该方法包含以下步骤:
与所述至少一个用于处理数据的设备进行能量管理信号的通信;
其中能量管理信号包括:
(i)静态功率消耗信号,该静态功率消耗信号指示所述设备的独立于由所述设备内的处理电路系统执行的处理操作的静态功率消耗水平;以及
(ii)动态功率消耗信号,该动态功率消耗信号指示所述设备的取决于由所述处理电路系统执行的处理操作的动态功率消耗水平。
现在将参考附图并借助于示例来描述本发明的实施例。
附图说明
图1示意性地图示包括用于交换能量管理信号的机构的片上系统集成电路;
图2示意性地图示电路系统,该电路系统消耗能量且包括用于与能量管理电路系统通信的接口电路系统;
图3示意性地图示包括接口电路系统的能量管理电路系统,该接口电路系统用于与消费者电路系统通信;
图4示意性地图示如由能量管理电路系统执行的能量管理控制;以及
图5为流程图,该图示意性地图示处理电路系统对从能量管理电路系统接收的分配信号的响应。
具体实施方式
图1示意性地图示片上系统集成电路2,片上系统集成电路2包括能量管理电路系统4及多个实例的处理电路系统6、8、10,其中所有处理电路系统6、8、10均消耗如由能量管理电路系统4管理的能量。能量管理电路系统4包括管理器能量接口电路系统12,管理器能量接口电路系统12与各消费者能量接口电路系统14、16、18进行能量管理信号通信,消费者能量接口电路系统14、16、18与不同实例的处理电路系统6、8、10相关联。
处理电路系统6、8、10实例中的每一者被提供有其自身的操作电压VSOC0、VSOC、VSOC2,这些操作电压由在能量管理电路系统4控制下操作的片上调节器20生成。处理电路系统6、8、10实例中的每一者亦接收由时钟生成器22生成的各时钟信号CLK0、CLK1、CLK2,其中时钟生成器22亦在能量管理电路系统4的控制下操作。能量管理电路系统4可独立地变化供应至处理电路系统6、8、10的不同实例的操作电压及时钟频率。
能量管理电路系统被耦接至温度传感器24及处理传感器26,该温度传感器24及处理传感器26分别将温度指示信号及制造制程变化指示信号提供至能量管理电路系统4。片上系统集成电路在低功率环境下操作时通常具有均匀温度,且因此温度传感器24可提供温度信号,该温度信号提供处理电路系统6、8、10中每个不同实例的可接受的操作温度的指示。因此,视集中量测的温度而定,能量管理电路系统4温度补偿能量管理电路系统4从这些不同电流源接收的功率消耗信号。以同样的方式,处理传感器26可产生指示制造制程变化的信号,藉由该信号,个体的不同集成电路将具有不同的功率消耗特征,这取决于制造中可能出现的个体芯片对芯片或晶圆对晶圆变化。可提供诸如处理传感器26的特征电路,以给出特定集成电路的个别制程变化的指示,且将此指示提供至能量管理电路系统4,以便特征电路可补偿该特征电路接收以考虑此制程变化的功率消耗信号。制程变化通常不在给定集成电路内变化,且因此可基于芯片宽度对制程变化做出补偿。
图2示意性图示处理电路系统28的一实例及与该实例有关的消费者能量接口电路系统30。处理电路系统28接收具有时钟频率的操作时钟信号CLK,该时钟频率由能量管理电路系统4控制。操作电压VSOC被供应至处理电路系统,且操作电压VSOC可(至少概念地)被认为将能量供应至动态电流源32及静态电流源34两者。动态电流源32提供处理电路系统执行处理操作必需的动态电流,且漏泄电流源34提供与处理电路系统28有关的漏泄电流(例如,尽管漏泄电流源34在静态模式下(诸如停止时钟模式、数据保持模式或功率闸控模式)时,由于这些电路经时控,在执行处理时亦有漏泄电流)。
消费者能量接口电路系统30包括静态功率消耗信号产生器36、动态功率消耗信号产生器38及操作控制电路系统40。静态功率消耗信号产生器36从处理电路系统28接收信号,该信号指示处理电路系统28的当前静态操作模式。静态模式可包括待机模式,在该模式下,除时钟停止外,状态信号在处理电路系统内保持于原位;保持模式,在该模式下状态信号被保存至保持电路系统(诸如气球闩),以便这些状态信号可经恢复且处理被恢复;及断电状态,在该状态下,处理电路系统经功率闸控,且状态信号不再保持于处理电路系统28的内部。本领技术人员将熟知静态模式的其他形式。静态功率消耗信号产生器36使用这些接收的模式信号,以产生供应至能量管理电路系统4的相应的静态功率消耗信号。此静态功率消耗信号为温度计编码的对数信号,该信号试图给出与当前静态行为有关的所消耗的功率的绝对值。应了解,此静态行为包括由于漏泄所消耗的功率。当处理电路系统执行处理操作时及当处理电路系统未执行处理操作时都将发生漏泄。静态功率消耗信号因此独立于是否处理电路系统正执行处理操作,且该静态功率消耗信号可被添加至动态功率信号,以在处理电路系统28正执行处理操作时获取对所消耗的总功率的量测。
动态功率消耗信号产生器38从处理电路系统28接收信号,该信号指示正由处理电路系统28执行的当前处理活动。例如,此活动信号可指示缓存未中/命中的速率;加载/储存及/或算术运算的速率;处理电路系统是否在仅接收模式、仅传输模式或既接收又传输模式等。动态功率消耗信号产生器38使用此活动信号,以产生适当的动态功率消耗信号(该信号又经温度计编码);且动态功率消耗信号产生器38提供估计的绝对动态功率消耗的对数指示,该估计的绝对动态功率消耗取决于当前正由处理电路系统28执行的处理操作。藉由能量管理电路系统可将此动态功率消耗信号添加至静态功率消耗信号,以提供对处理电路系统28在给定时间点消耗的总功率的量测。
操作控制电路系统40从能量管理电路系统4接收分配信号,且操作控制电路系统40使用此分配信号以产生供应至处理电路系统28的控制信号。例如,此控制信号可将限制强加于处理电路系统28的操作,以使得该控制信号可保持在分配的功率预算内。此功率预算可与峰值功率限制、平均功率消耗限制或一些其他功率消耗限制有关。可对处理电路系统28施加的控制实例为处理电路系统28可节流处理电路系统28的行为,诸如屏幕刷新率、无线信号轮询速率等。
为了使得能量管理电路系统4与消费者能量接口电路系统30之间的通信简化且更稳定,可使用异步请求/确认握手方法、协议传递能量管理信号。考虑到能量管理电路系统4通常可在不同电压域中操作(参阅图1)且能量管理电路系统4可与处理电路系统6、8、10的不同实例(这些实例(例如)在特定时间点可经功率闸控且其时钟已停止)异步,这些方法是有用的。
图3示意性地图示能量管理状态机42及管理器能量接口电路系统44形式的能量管理电路系统。管理器能量接口电路系统44包括静态功率消耗信号接收器46、动态功率消耗信号接收器48及分配信号产生器50。如先前所论述,这些组件分别接收且产生静态功率消耗信号、动态功率消耗信号及分配信号。能量管理状态机42接收来自温度传感器24的温度输入及来自处理传感器26的处理输入。能量管理状态机42可使用这些输入连同信息(该信息表示处理电路系统6、8、10的不同实例的当前操作电压及时钟频率)以校正从处理电路系统6、8、10的各实例接收的静态功率消耗信号及动态功率消耗信号。更具体而言,动态功率消耗信号可对温度、制程、操作电压及时钟频率进行补偿。静态功率消耗信号可对温度、制程及操作电压进行补偿。个体集成电路的特征数据或个体集成电路设计储存于存储器52之内,且表示随温度消耗的功率的变化速率(dP/dT)、随电压消耗的功率的变化速率(dP/dV)及如所需的可能的其他校正参数。
能量管理状态机42控制分配信号产生器,以产生发送至有关处理电路系统6、8、10的实例的分配信号,以便如先前所论述控制这些电路系统的操作/模式。能量管理状态机42还控制片上调节器20及时钟产生器22,以将操作电压(用于动态模式及静态模式两者)供应至处理电路系统,以及将时钟频率(例如快、慢、停止的时钟频率)供应至处理电路系统6、8、10的有关实例。
亦与图3的能量管理电路系统有关的是供能电路系统,在此实例中,供能电路系统包含能量收集控制电路系统54。在使用能量收集的一实施例中,收集的能量的量的指示由能量收集控制电路系统54接收,且该指示经传递至能量管理状态机42作为可用能量的指示。能量管理状态机42可使用此信息,以有效地为集成电路2设定功率预算,且因此使用分配信号产生器50产生适当的分配信号。能量管理状态机42接收的指示供能电路系统54的行为的其他信号包括一信号,该信号指示集成电路当前是使用电荷储存装置电源(例如电池或超级电容器)还是外部主电源操作,且若该集成电路使用电荷储存装置电源操作,则指示该电荷储存装置内哪些是可用能量。能量管理状态机42可再次使用这些信号,以设定适当的功率预算和产生适当的分配信号,以及以控制集成电路的不同部分的操作电压、时钟频率、操作模式等。
图4为流程图,该流程图示意性地图示如由能量管理状态机42执行的能量管理控制。在步骤56处,直至等待到已接收到功率消耗信号,才开始进行处理。步骤58决定功率信号是否为动态功率信号。若功率消耗信号为动态功率消耗信号,则步骤60就操作温度变化进行校正。步骤62就有关处理电路系统的操作电压进行校正,而步骤64就有关处理电路系统的操作频率进行校正。步骤66就作为芯片宽度参数的制程变化进行校正。步骤68随后读取集成电路内另一处理电路系统的当前的能量要求,且步骤70决定待分配给处理电路系统(该处理电路系统发送功率消耗信号)以及另一处理电路系统(该处理电路系统可能受已发信号的功率消耗变化的影响)的功率。步骤72决定是否要求由能量管理状态机42管理的任何处理电路系统的时钟频率或操作电压(或模式等)的任何改变。若要求这样的改变,则在步骤74处做出这样的改变。若不要求改变,则略过步骤74。步骤76将功率分配信号发送回处理电路系统(该处理电路系统发起已接收的动态功率消耗信号)以及任何其他处理电路系统(该处理电路系统已改变该电路系统的功率分配)。
若在步骤58处决定接收的信号不为动态功率消耗信号,则该信号为静态功率消耗信号。步骤78就当前操作温度校正静态功率消耗信号。步骤80就当前的操作电压(不同的电压水平可与不同的静态状态(诸如时钟停止、保持、功率闸控等)有关)进行校正。步骤82根据有关集成电路的制程变化而执行静态功率消耗信号的校正。步骤84随后读取当前已就位的其他处理电路系统的功率要求;且步骤86决定是否要求对发送静态功率消耗信号的处理电路系统的静态模式做出任何改变。若要求这样的改变,则随后在步骤88处触发这样的改变。若不要求改变,则可略过步骤88。如在步骤88处触发的静态模式的改变亦可具有集成电路内其他处理电路系统的操作的后果,且视需要这些改变可用信号被发送给处理电路系统的其他实例。一个处理电路实例的静态行为的变化可能要求别处静态或动态行为的变化。同样地,动态行为的变化可能要求别处静态或动态行为的其他变化。
图5为流程图,该图示意性地图示处理电路系统的实例如何响应接收的分配信号。在步骤90处,直至等待到已接收分配信号,才开始进行处理。随后,步骤92决定是否要求操作中的任何变化。若要求改变,则步骤94决定处理电路系统当前是否在静态模式下。若处理电路系统当前在静态模式下,则步骤96对静态节点做出适当的改变(例如在时钟停止、状态保持及功率闸控模式之间切换)。若在步骤94处决定该处理电路系统不在静态模式下,则处理随后进行至步骤98,在步骤98处执行处理电路系统的动态处理操作参数的适当变化,以满足由在步骤90处接收的分配信号指示的功率预算。例如,操作参数的此变化可改变如先前所述的刷新周期或无线轮询周期。

Claims (23)

1.一种用于处理数据的设备,该设备包含:
处理电路系统,该处理电路系统被配置以执行处理操作;以及
消费者能量接口电路系统,该消费者能量接口电路系统耦接所述处理电路系统,且被配置以与能量管理电路系统进行能量管理信号通信;
其中所述能量管理信号包括:
(i)静态功率消耗信号,该静态功率消耗信号指示所述设备的独立于由所述处理电路系统执行的处理操作的静态功率消耗水平,其中所述静态功率消耗信号独立于所述设备的操作温度;以及
(ii)动态功率消耗信号,该动态功率消耗信号指示所述设备的取决于由该设备执行的处理操作的动态功率消耗水平。
2.如权利要求1所述的设备,其中所述静态功率消耗信号指示至少部分地由于所述处理电路系统内的漏泄电流消耗的功率。
3.如权利要求1所述的设备,其中当所述设备未执行处理操作时,所述静态功率消耗信号根据所述设备的多个模式中的所选一者变化,所述多个模式包括以下模式中的至少一者:
(i)待机模式,在该模式下,所述设备的状态信号保持在原位,以使得所述设备能够在不必恢复所述状态信号的情况下恢复处理;
(ii)状态保持模式,在该模式下,所述设备的状态信号被保存至所述设备内的状态保持电路系统,以使得所述设备能够藉由从所述状态保持电路系统恢复所述状态信号来恢复处理;及
(iii)断电模式,在该模式下,所述设备的状态信号不再储存于所述设备之内,且对所述设备的电源断开。
4.如权利要求1所述的设备,其中所述动态功率消耗信号指示对由所述处理操作消耗的功率的预测。
5.如权利要求4所述的设备,其中所述动态功率消耗信号取决于所述设备内检测到的处理活动的水平而变化。
6.如权利要求4和5中任一项所述的设备,其中所述动态功率消耗信号取决于由所述设备执行的处理操作的模式而变化。
7.如权利要求1所述的设备,其中所述能量管理信号包括分配信号,该分配信号指示由所述能量管理电路系统分配的供所述设备使用的功率水平。
8.如权利要求7所述的设备,包括操作控制电路,所述操作控制电路响应于所述分配信号以控制所述处理电路系统的操作,以使得所述设备的功率消耗不超过由所述能量管理电路系统分配的所述功率水平。
9.如权利要求1所述的设备,其中所述能量管理信号中的至少一者使用功率水平的对数编码。
10.如权利要求1所述的设备,其中所述能量管理信号中的至少一者使用功率水平的温度计编码。
11.如权利要求1所述的设备,其中所述静态功率消耗信号及所述动态功率消耗信号中的一个或多个表示所述设备的功率消耗的绝对水平。
12.如权利要求1所述的设备,其中与所述能量管理电路系统进行所述能量管理信号通信使用所述消费者能量接口电路系统与所述能量管理电路系统之间的异步请求确认握手。
13.一种用于处理数据的设备,该设备包含:
处理装置,该处理装置用于执行处理操作;以及
消费者能量接口装置,该消费者能量接口装置用于与能量管理电路系统进行能量管理信号通信以用于管理能量;
其中所述能量管理信号包括:
(i)静态功率消耗信号,该静态功率消耗信号指示所述设备的独立于由所述处理装置执行的处理操作的静态功率消耗水平,其中所述静态功率消耗信号独立于所述设备的操作温度;以及
(ii)动态功率消耗信号,该动态功率消耗信号指示所述设备的取决于由所述处理装置执行的处理操作的动态功率消耗水平。
14.一种用于管理至少一个用于处理数据的设备的功率消耗的能量管理电路系统,该能量管理电路系统包含:
管理器能量接口电路系统,该管理器能量接口电路系统被配置以与所述至少一个用于处理数据的设备进行能量管理信号的通信;
其中所述能量管理信号包括:
(i)静态功率消耗信号,该静态功率消耗信号指示所述设备的独立于由所述设备内的处理电路系统执行的处理操作的静态功率消耗水平,其中所述静态功率消耗信号独立于所述设备的操作温度;以及
(ii)动态功率消耗信号,该动态功率消耗信号指示所述设备的取决于由所述处理电路系统执行的处理操作的动态功率消耗水平。
15.如权利要求14所述的能量管理电路系统,包括能量控制器电路系统,该能量控制器电路系统被配置以决定以下中的至少一者:
(i)就所述能量管理电路系统检测到的所述设备的操作温度而校正的所述设备的静态功率消耗的绝对水平;
(ii)就所述能量管理电路系统检测到的所述设备的操作电压而校正的所述设备的静态功率消耗的绝对水平;
(iii)就所述设备的制造制程变化而校正的所述设备的静态功率消耗的绝对水平;
(iv)就由所述能量管理电路系统检测到的所述设备的操作温度而校正的所述设备的动态功率消耗的绝对水平;
(v)就由所述能量管理电路系统检测到的所述设备的操作电压而校正的所述设备的动态功率消耗的绝对水平;
(vi)就所述设备的制造制程变化而校正的所述设备的动态功率消耗的绝对水平;以及
(vii)就所述能量管理电路系统检测到的所述设备的操作频率而校正的所述设备的动态功率消耗的绝对水平。
16.如权利要求15所述的能量管理电路系统,其中所述能量控制器电路系统储存指示以下一者或更多者的数据:
(i)所述设备的静态功率消耗及动态功率消耗随所述设备的温度而变化的速率;以及
(ii)所述设备的静态功率消耗随所述设备的操作电压而变化的速率。
17.如权利要求15和16中任一项所述的能量管理电路系统,其中所述能量控制器电路系统被配置以藉由改变以下一者或更多者而响应所述能量管理信号:
(i)在所述设备正执行处理操作时被供应至所述设备的操作时钟信号的频率;
(ii)在所述设备正执行处理操作时被供应至所述设备的操作电压;以及
(iii)在所述设备未执行处理操作时被供应至所述设备的操作电压。
18.如权利要求14所述的能量管理电路系统,其中所述能量管理电路系统为能量管理状态机。
19.如权利要求15所述的能量管理电路系统,包括供能电路系统,该供能电路系统被配置以向所述至少用于处理数据的设备供应能量,及向所述能量管理电路系统提供指示所述供能电路系统能够提供多少功率的信号。
20.如权利要求19所述的能量管理电路系统,其中所述供能电路系统包含以下一者或更多者:
能量收集电路系统;
电荷储存电路系统;以及
外部电源电路系统。
21.一种用于管理至少一个用于处理数据的设备的功率消耗的能量管理电路系统,该能量管理电路系统包括:
管理器能量接口装置,该管理器能量接口装置用于与所述至少一个用于处理数据的设备进行能量管理信号的通信;
其中所述能量管理信号包括:
(i)静态功率消耗信号,该静态功率消耗信号指示所述设备的独立于由所述设备内的处理电路系统执行的处理操作的静态功率消耗水平,其中所述静态功率消耗信号独立于所述设备的操作温度;以及
(ii)动态功率消耗信号,该动态功率消耗信号指示所述设备的取决于由所述处理电路系统执行的处理操作的动态功率消耗水平。
22.一种处理数据的方法,该方法包含以下步骤:
使用设备的处理电路系统执行处理操作;以及
使用所述设备的能量管理电路系统进行能量管理信号通信;
其中所述能量管理信号包括:
(i)静态功率消耗信号,该静态功率消耗信号指示所述设备的独立于由所述处理电路系统执行的处理操作的静态功率消耗水平,其中所述静态功率消耗信号独立于所述设备的操作温度;以及
(ii)动态功率消耗信号,该动态功率消耗信号指示所述设备的取决于由该处理电路执行的处理操作的动态功率消耗水平。
23.一种管理至少一个用于处理数据的设备的功率消耗的方法,该方法包含以下步骤:
与所述至少一个用于处理数据的设备进行能量管理信号的通信;
其中所述能量管理信号包括:
(i)静态功率消耗信号,该静态功率消耗信号指示所述设备的独立于由所述设备内的处理电路系统执行的处理操作的静态功率消耗水平,其中所述静态功率消耗信号独立于所述设备的操作温度;以及
(ii)动态功率消耗信号,该动态功率消耗信号指示所述设备的取决于由所述处理电路系统执行的处理操作的动态功率消耗水平。
CN201480045134.3A 2013-08-21 2014-06-16 功率信号接口 Active CN105452988B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1314939.8 2013-08-21
GBGB1314939.8A GB201314939D0 (en) 2013-08-21 2013-08-21 Power signal interface
GB1315582.5A GB2517513B (en) 2013-08-21 2013-09-02 Power signal interface
GB1315582.5 2013-09-02
PCT/GB2014/051846 WO2015025124A1 (en) 2013-08-21 2014-06-16 Power signal interface

Publications (2)

Publication Number Publication Date
CN105452988A CN105452988A (zh) 2016-03-30
CN105452988B true CN105452988B (zh) 2019-06-07

Family

ID=49302004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480045134.3A Active CN105452988B (zh) 2013-08-21 2014-06-16 功率信号接口

Country Status (8)

Country Link
US (1) US10007314B2 (zh)
EP (1) EP3036598B1 (zh)
KR (1) KR102201470B1 (zh)
CN (1) CN105452988B (zh)
AR (1) AR097415A1 (zh)
GB (2) GB201314939D0 (zh)
TW (1) TWI628538B (zh)
WO (1) WO2015025124A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101927233B1 (ko) * 2015-03-16 2018-12-12 한국전자통신연구원 이기종 멀티-코어 시스템의 gpu 전력 측정 방법
US10042410B2 (en) * 2015-06-11 2018-08-07 International Business Machines Corporation Managing data center power consumption
US9625924B2 (en) * 2015-09-22 2017-04-18 Qualcomm Incorporated Leakage current supply circuit for reducing low drop-out voltage regulator headroom
US10963408B2 (en) * 2017-06-01 2021-03-30 University Of Virginia Patent Foundation System on a chip with customized data flow architecture
US11281279B2 (en) * 2019-04-02 2022-03-22 Apple Inc. Tracking power consumption using multiple sampling frequencies
US11164784B2 (en) 2019-08-22 2021-11-02 Micron Technology, Inc. Open-drain transistor monitoring circuit in a multi-chip package to control power
US11237612B2 (en) 2019-08-22 2022-02-01 Micron Technology, Inc. Charge-sharing capacitive monitoring circuit in a multi-chip package to control power
US10884480B1 (en) 2019-08-22 2021-01-05 Micron Technology, Inc. Current summing monitoring circuit in a multi-chip package to control power

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545272A (zh) * 2010-09-20 2012-07-04 三星电子株式会社 分级电力管理电路、电力管理方法以及片上系统

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6990594B2 (en) 2001-05-02 2006-01-24 Portalplayer, Inc. Dynamic power management of devices in computer system by selecting clock generator output based on a current state and programmable policies
US6983389B1 (en) 2002-02-01 2006-01-03 Advanced Micro Devices, Inc. Clock control of functional units in an integrated circuit based on monitoring unit signals to predict inactivity
JP2003330549A (ja) 2002-05-10 2003-11-21 Hitachi Ltd 半導体集積回路、電源回路及び情報記録媒体
US20060068746A1 (en) 2004-09-30 2006-03-30 Nokia Corporation Direct conversion receiver radio frequency integrated circuit
EP1677175B1 (en) * 2004-12-31 2013-08-28 ST-Ericsson SA Dynamic power management in system on chips (SOC)
US7426649B2 (en) * 2005-02-09 2008-09-16 International Business Machines Corporation Power management via DIMM read operation limiter
US7882370B2 (en) 2006-09-01 2011-02-01 International Business Machines Corporation Static pulsed bus circuit and method having dynamic power supply rail selection
KR100852188B1 (ko) 2007-02-27 2008-08-13 삼성전자주식회사 동적 전압 스케일링 시스템 및 방법
US7925901B2 (en) * 2007-03-15 2011-04-12 International Business Machines Corporation Method and system for estimating processor utilization from power measurements
US7953994B2 (en) 2007-03-26 2011-05-31 Stmicroelectronics Pvt. Ltd. Architecture incorporating configurable controller for reducing on chip power leakage
US7818592B2 (en) * 2007-04-18 2010-10-19 Globalfoundries Inc. Token based power control mechanism
US8296121B2 (en) * 2007-04-25 2012-10-23 Cadence Design Systems, Inc. Method and apparatus for controlling power in an emulation system
US20080307240A1 (en) * 2007-06-08 2008-12-11 Texas Instruments Incorporated Power management electronic circuits, systems, and methods and processes of manufacture
US8024590B2 (en) * 2007-12-10 2011-09-20 Intel Corporation Predicting future power level states for processor cores
CN101493717B (zh) 2009-02-19 2011-04-13 浪潮电子信息产业股份有限公司 一种用于soc的动态多时钟低功耗ahb总线的设计方法
US8880922B2 (en) * 2009-03-05 2014-11-04 Hitachi, Ltd. Computer and power management system for computer
US20110131427A1 (en) * 2009-12-02 2011-06-02 Jorgenson Joel A Power management states
US8527794B2 (en) * 2010-05-27 2013-09-03 Advanced Micro Devices, Inc. Realtime power management of integrated circuits
EP2402721B1 (en) * 2010-07-02 2016-08-10 Stichting IMEC Nederland Power management system for wireless autonomous transducer solutions
US8943334B2 (en) * 2010-09-23 2015-01-27 Intel Corporation Providing per core voltage and frequency control
US8438416B2 (en) 2010-10-21 2013-05-07 Advanced Micro Devices, Inc. Function based dynamic power control
US9092219B2 (en) * 2010-11-02 2015-07-28 Advanced Micro Devices, Inc. Method and system of sampling to automatically scale digital power estimates with frequency
US8645733B2 (en) 2011-05-13 2014-02-04 Microsoft Corporation Virtualized application power budgeting
WO2013008934A1 (ja) 2011-07-13 2013-01-17 日東電工株式会社 オンデマンド型電力制御システム、オンデマンド型電力制御システムプログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体
US8909961B2 (en) * 2011-11-29 2014-12-09 Ati Technologies Ulc Method and apparatus for adjusting power consumption level of an integrated circuit
US8862909B2 (en) 2011-12-02 2014-10-14 Advanced Micro Devices, Inc. System and method for determining a power estimate for an I/O controller based on monitored activity levels and adjusting power limit of processing units by comparing the power estimate with an assigned power limit for the I/O controller
US9235252B2 (en) * 2012-12-21 2016-01-12 Intel Corporation Dynamic balancing of power across a plurality of processor domains according to power policy control bias
US20140237272A1 (en) * 2013-02-19 2014-08-21 Advanced Micro Devices, Inc. Power control for data processor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545272A (zh) * 2010-09-20 2012-07-04 三星电子株式会社 分级电力管理电路、电力管理方法以及片上系统

Also Published As

Publication number Publication date
KR20160044467A (ko) 2016-04-25
GB2517513A (en) 2015-02-25
WO2015025124A1 (en) 2015-02-26
CN105452988A (zh) 2016-03-30
EP3036598A1 (en) 2016-06-29
US20160170465A1 (en) 2016-06-16
GB2517513B (en) 2021-02-24
EP3036598B1 (en) 2020-06-10
GB201314939D0 (en) 2013-10-02
KR102201470B1 (ko) 2021-01-12
GB201315582D0 (en) 2013-10-16
AR097415A1 (es) 2016-03-16
TWI628538B (zh) 2018-07-01
US10007314B2 (en) 2018-06-26
TW201508468A (zh) 2015-03-01

Similar Documents

Publication Publication Date Title
CN105452988B (zh) 功率信号接口
CN104169832B (zh) 提供处理器的能源高效的超频操作
CN102246117B (zh) 非对称多处理器上的自适应线程调度设备及方法
US8370663B2 (en) Power management with dynamic frequency adjustments
TWI475373B (zh) 控制裝置、控制方法、電腦程式產品、及電子裝置
US20100011233A1 (en) Adaptive power control
CN102667668A (zh) 用于计算装置的动态低功率模式实施方案
CN101802750A (zh) 用于降低片上系统的功耗的设备和方法
TW200910078A (en) Data processing device with low-power cache access mode
KR20090077952A (ko) 정보 처리 시스템에서의 프로세서의 전력 조절을 위한 장치 및 방법
WO2014151323A1 (en) Processor control system
CN111240457A (zh) 一种基于risc-v的动态功耗管理方法
Hayashikoshi et al. Normally-off MCU architecture for low-power sensor node
Girban et al. A glance on WSN lifetime and relevant factors for energy consumption
CN1985232B (zh) 自适应电压调节
Vo Implementing energy saving techniques for sensor nodes in IoT applications
US11442491B2 (en) Dynamic power monitor monitoring power basted on clock cycle, processor, and system on chip
US9176777B2 (en) System for determining operating time of a computer to execute assigned tasks based on an amount of change per unit time of a stored electric power
CN105260006A (zh) 延长智能设备待机时长的方法和装置
CN107797897A (zh) 包括主设备和从设备的系统以及该系统的操作方法
CN206259869U (zh) 测温装置和电磁加热装置
Riley et al. A modular and power-intelligent architecture for wireless sensor nodes
Hesse et al. Towards a comprehensive power consumption model for wireless sensor nodes
Pawar et al. Power Gating and Its Application in Wake-Up Radio.
KR20090086866A (ko) 멀티-코어 프로세서의 전원제어장치 및 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180530

Address after: cambridge

Applicant after: Advanced Risc Machines Ltd.

Applicant after: Anne science and Technology (China) Co., Ltd.

Address before: cambridge

Applicant before: Advanced Risc Machines Ltd.

GR01 Patent grant
GR01 Patent grant