CN105449206A - LiFe1-xZrxPO4 electrode material and preparation method thereof - Google Patents

LiFe1-xZrxPO4 electrode material and preparation method thereof Download PDF

Info

Publication number
CN105449206A
CN105449206A CN201510972614.0A CN201510972614A CN105449206A CN 105449206 A CN105449206 A CN 105449206A CN 201510972614 A CN201510972614 A CN 201510972614A CN 105449206 A CN105449206 A CN 105449206A
Authority
CN
China
Prior art keywords
electrode material
ball
life
ball milling
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510972614.0A
Other languages
Chinese (zh)
Inventor
邬石根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510972614.0A priority Critical patent/CN105449206A/en
Publication of CN105449206A publication Critical patent/CN105449206A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention aims at providing a LiFe1-xZrxPO4 electrode material and a preparation method thereof. The preparation method comprises the following steps: preparing a proper amount of FeC2O4.2H2O, Li2CO3, NH4H2PO4 and ZrO2; mixing the raw materials according to a proportion Li: P: Fe: Ze=1: 1: 1-x: x (x is greater than or equal to 0.01 and less than or equal to 0.1); pouring a proper amount of the mixed raw materials and cane sugar into a ball milling jar, putting steel balls in a certain mass proportion and filling up the jar by acetone; fastening the lid of the jar and putting the jar on a ball mill to mill; after the ball milling, pouring out the supernatant liquid and taking out the subnatant metal powder to air sufficiently; putting the aired powder in a high-temperature calcining furnace to calcine under the protection of argon; and taking out the powder to obtain the LiFe1-xZrxPO4 electrode material.

Description

A kind of LiFe 1-xzr xpO 4electrode material and preparation method thereof
Technical field
The present invention relates to a kind of electrode material, particularly a kind of ferric phosphate aluminium electrode material of other metallic atoms that adulterate and preparation technology thereof, belong to field of batteries.
Background technology
Lithium battery is a class is negative material, the battery using non-aqueous electrolytic solution by lithium metal or lithium alloy.Within 1912, lithium metal battery is proposed by GilbertN.Lewis the earliest and studies.During 20 century 70, M.S.Whittingham proposes and the lithium ion battery that begins one's study.Because the chemical characteristic of lithium metal is very active, make the processing of lithium metal, preservation, use, very high to environmental requirement.So lithium battery is not applied for a long time.Along with the development of science and technology, present lithium battery becomes main flow.But lithium battery majority is secondary cell, also once property battery.Life-span and the fail safe of the secondary cell of minority are poor.Afterwards, it took Carbon Materials as negative pole that Sony corporation of Japan has been invented, and to make the lithium battery of positive pole containing the compound of lithium, in charge and discharge process, did not have lithium metal, only had lithium ion, Here it is lithium ion battery.When charging to battery, the positive pole of battery has lithium ion to generate, the lithium ion of generation through electrolyte movement to negative pole.And be layer structure as the carbon of negative pole, it has a lot of micropore, and the lithium ion reaching negative pole is just embedded in the micropore of carbon-coating, and the lithium ion of embedding is more, and charging capacity is higher.Equally, when discharging to battery (we use the process of battery), the lithium ion be embedded in negative pole carbon-coating is deviate from, and move back again positive pole.
In the composition of lithium ion battery, positive electrode plays decisive role to its chemical property, security performance and even the developing direction in future.Anode material for lithium-ion batteries common at present mainly contains the cobalt acid lithium of layer structure and the LiFePO4 etc. of olivine structural.Wherein, LiCoO 2structure comparison is stablized, electrochemical performance, be the positive electrode of commercialization comparative maturity at present, but the overcharge resistant ability of this material is poor, declines rapidly in higher charging voltage specific capacity, LiFePO 4belong to newer positive electrode, 1997, the people such as Padhit proposed olivine-type LiFePO 4positive electrode, it is extensive that it possesses raw material sources, with low cost, pollution-free, security performance is high, the advantages such as resulting materials no hygroscopicity, and it has higher specific capacity, and (theoretical specific capacity is 170mAh/g, specific energy is 550Wh/kg) and higher operating voltage (3.4V), along with the rising of temperature, the specific capacity of battery also can significantly improve, it is more satisfactory a kind of positive electrode, but the defect of the crystal structure due to self, LiFePO4 has extremely low electronic conductivity and ion diffusion rates, hinder its application in commercial cells.
In order to overcome the problems referred to above, the present invention is at LiFePO 4preparation process in, add ZrO 3, then make LiFePO by ball-milling technology, high temperature solid-state method 4add a small amount of metallic Z r ion in lattice, electrode material prepared by the method substantially increases the conduction rate of ion, compensate for the shortcoming that ion diffusion rates is low, has a good application prospect in electrode material.
Summary of the invention
The object of this invention is to provide a kind of LiFe 1-xzr xpO 4electrode material and preparation method thereof.This preparation method comprises the steps:
(1) get appropriate FeC 2o 42H 2o, Li 2cO 3, NH 4h 2pO 4and ZrO 2, by it according to Li:P:Fe:Zr=1:1:1-x:x(0.01≤X≤0.1) ratio mixing;
(2) get a ball grinder again, the raw material of appropriate mixing and sucrose are poured in tank, then drop into the steel ball of certain mass ratio, then fill tank with acetone, after being covered tightly by lid, place ball milling on ball mill;
(3) after ball milling terminates, open ball grinder, pour out supernatant liquid, then take out lower metal powder;
(4) the metal dust poured out fully is dried;
Again by dry powder place in a high-temperature calcination stove;
(6), after high-temperature calcination stove being full of argon gas, calcine;
(7) the powder through calcination processing is taken out, cool to obtain a kind of LiFe 1-xzr xpO 4electrode material.
Preferentially, step (1) in, FeC 2o 42H 2o, Li 2cO 3, NH 4h 2pO 4and ZrO 2purity be chemical pure.
Preferentially, step (2) in, ratio of grinding media to material is 20:1, and planetary ball mill speeds control 300-400r/min runs.
Preferentially, step (3) in, the time of carrying out ball milling with planetary ball mill is 4-6h.
Preferentially, step (6) in, high-temperature calcination temperature is 600-800 DEG C, and time controling is at 8-10h.
The present invention has following advantages and characteristic:
(1) the chemical property performance of modified electrode material is excellent;
(2) preparation technology is simple, easy to operate;
(3) flow process is short, is easy to realize industrialization.
Embodiment one:
Get appropriate FeC 2o 42H 2o, Li 2cO 3, NH 4h 2pO 4and ZrO 2, its ratio according to Li:P:Fe:Zr=1:1:0.99:0.1 is mixed, get a ball grinder again, the raw material of the mixing of appropriate 5g and the sucrose of 3g are poured in tank, drop into the steel ball of 200g again, then tank is filled with acetone soln, lid is covered tightly ball milling on rear placement ball mill, mill speed arranges 300r/min, after ball milling 6h, stop ball milling, open ball grinder, pour out supernatant liquid, take out lower metal powder again, metal dust is fully dried, again by dry powder place in a high-temperature calcination stove, after high-temperature calcination stove is full of argon gas, calcine at 600 DEG C, take out after 10h and cool to obtain a kind of LiFe 1-xzr xpO 4electrode material.
Embodiment two:
Get appropriate FeC 2o 42H 2o, Li 2cO 3, NH 4h 2pO 4and ZrO 2, its ratio according to Li:P:Fe:Zr=1:1:0.95:0.05 is mixed, get a ball grinder again, the raw material of the mixing of appropriate 10g and the sucrose of 5g are poured in tank, drop into the steel ball of 400g again, then tank is filled with acetone soln, lid is covered tightly ball milling on rear placement ball mill, mill speed arranges 400r/min, after ball milling 4h, stop ball milling, open ball grinder, pour out supernatant liquid, take out lower metal powder again, metal dust is fully dried, again by dry powder place in a high-temperature calcination stove, after high-temperature calcination stove is full of argon gas, calcine at 700 DEG C, take out after 9h and cool to obtain a kind of LiFe 1-xzr xpO 4electrode material.
Embodiment three:
Get appropriate FeC 2o 42H 2o, Li 2cO 3, NH 4h 2pO 4and ZrO 2, its ratio according to Li:P:Fe:Zr=1:1:0.9:0.1 is mixed, get a ball grinder again, the raw material of the mixing of appropriate 10g and the sucrose of 5g are poured in tank, drop into the steel ball of 400g again, then tank is filled with acetone soln, lid is covered tightly ball milling on rear placement ball mill, mill speed arranges 400r/min, after ball milling 5h, stop ball milling, open ball grinder, pour out supernatant liquid, take out lower metal powder again, metal dust is fully dried, again by dry powder place in a high-temperature calcination stove, after high-temperature calcination stove is full of argon gas, calcine at 800 DEG C, take out after 8h and cool to obtain a kind of LiFe 1-xzr xpO 4electrode material.

Claims (5)

1. a LiFe 1-xzr xpO 4electrode material, is characterized in that, the preparation method of this electrode material carries out according to the following steps:
(1) get appropriate FeC 2o 42H 2o, Li 2cO 3, NH 4h 2pO 4and ZrO 2, by it according to Li:P:Fe:Zr=1:1:1-x:x(0.01≤X≤0.1) ratio mixing;
(2) get a ball grinder again, the raw material of appropriate mixing and sucrose are poured in tank, then drop into the steel ball of certain mass ratio, then fill tank with acetone, after being covered tightly by lid, place ball milling on ball mill;
(3) after ball milling terminates, open ball grinder, pour out supernatant liquid, then take out lower metal powder;
(4) the metal dust poured out fully is dried;
Again by dry powder place in a high-temperature calcination stove;
(6), after high-temperature calcination stove being full of argon gas, calcine;
(7) the powder through calcination processing is taken out, cool to obtain a kind of LiFe 1-xzr xpO 4electrode material.
2. a kind of LiFe according to claim 1 1-xzr xpO 4electrode material, is characterized in that, step (1) in, FeC 2o 42H 2o, Li 2cO 3, NH 4h 2pO 4and ZrO 2purity be chemical pure.
3. a kind of LiFe according to claim 1 1-xzr xpO 4electrode material, is characterized in that, step (2) in, ratio of grinding media to material is 20:1, and planetary ball mill speeds control 300-400r/min runs.
4. a kind of LiFe according to claim 1 1-xzr xpO 4electrode material, is characterized in that, step (3) in, the time of carrying out ball milling with planetary ball mill is 4-6h.
5. a kind of LiFe according to claim 1 1-xzr xpO 4electrode material, is characterized in that, step (6) in, high-temperature calcination temperature is 600-800 DEG C, and time controling is at 8-10h.
CN201510972614.0A 2015-12-23 2015-12-23 LiFe1-xZrxPO4 electrode material and preparation method thereof Pending CN105449206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510972614.0A CN105449206A (en) 2015-12-23 2015-12-23 LiFe1-xZrxPO4 electrode material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510972614.0A CN105449206A (en) 2015-12-23 2015-12-23 LiFe1-xZrxPO4 electrode material and preparation method thereof

Publications (1)

Publication Number Publication Date
CN105449206A true CN105449206A (en) 2016-03-30

Family

ID=55559167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510972614.0A Pending CN105449206A (en) 2015-12-23 2015-12-23 LiFe1-xZrxPO4 electrode material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN105449206A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792780A (en) * 2005-10-27 2006-06-28 复旦大学 Zinc ion mixed olivine structure LiFePo4 and its preparation process and application
CN101013751A (en) * 2007-02-12 2007-08-08 王海波 Ball-shaped lithium-ion battery anode material doped with rare earth and method for making same
CN101369657A (en) * 2007-08-13 2009-02-18 深圳市比克电池有限公司 Multicomponent doping spherical lithium iron phosphate anode material and method of manufacturing the same
CN101651198A (en) * 2009-09-09 2010-02-17 江苏双登集团有限公司 Doping lithium iron phosphate material and preparation method and application thereof
CN101719549A (en) * 2009-11-05 2010-06-02 翟东军 Composite ferrous lithium phosphate for lithium ion battery anode material and preparation method thereof
CN101800315A (en) * 2010-04-09 2010-08-11 曲阜毅威能源股份有限公司 Multielement-doped lithium iron phosphate positive electrode material and preparation method thereof
CN102104148A (en) * 2010-12-31 2011-06-22 北京中科浩运科技有限公司 Mixed rare earth compound-doped and modified lithium iron phosphate cathode material and preparation method thereof
CN102324519A (en) * 2011-09-28 2012-01-18 中国东方电气集团有限公司 High-conductivity ferrous phosphate lithium cathode material for lithium ion battery and preparation method thereof
CN102468479A (en) * 2010-11-18 2012-05-23 芯和能源股份有限公司 Manufacturing method for lithium iron phosphate cathode material
CN102881901A (en) * 2012-10-10 2013-01-16 绵阳天明新能源科技有限公司 Doped modified lithium iron phosphate and preparation method thereof
CN103050697A (en) * 2012-12-31 2013-04-17 中山火炬职业技术学院 Method for preparing micron-sized LiFePO4/C serving as high-rate lithium ion battery anode material
CN104393291A (en) * 2014-11-10 2015-03-04 三峡大学 LiFePO4 positive electrode material modified jointly by doping and coating and preparation method thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792780A (en) * 2005-10-27 2006-06-28 复旦大学 Zinc ion mixed olivine structure LiFePo4 and its preparation process and application
CN101013751A (en) * 2007-02-12 2007-08-08 王海波 Ball-shaped lithium-ion battery anode material doped with rare earth and method for making same
CN101369657A (en) * 2007-08-13 2009-02-18 深圳市比克电池有限公司 Multicomponent doping spherical lithium iron phosphate anode material and method of manufacturing the same
CN101651198A (en) * 2009-09-09 2010-02-17 江苏双登集团有限公司 Doping lithium iron phosphate material and preparation method and application thereof
CN101719549A (en) * 2009-11-05 2010-06-02 翟东军 Composite ferrous lithium phosphate for lithium ion battery anode material and preparation method thereof
CN101800315A (en) * 2010-04-09 2010-08-11 曲阜毅威能源股份有限公司 Multielement-doped lithium iron phosphate positive electrode material and preparation method thereof
CN102468479A (en) * 2010-11-18 2012-05-23 芯和能源股份有限公司 Manufacturing method for lithium iron phosphate cathode material
CN102104148A (en) * 2010-12-31 2011-06-22 北京中科浩运科技有限公司 Mixed rare earth compound-doped and modified lithium iron phosphate cathode material and preparation method thereof
CN102324519A (en) * 2011-09-28 2012-01-18 中国东方电气集团有限公司 High-conductivity ferrous phosphate lithium cathode material for lithium ion battery and preparation method thereof
CN102881901A (en) * 2012-10-10 2013-01-16 绵阳天明新能源科技有限公司 Doped modified lithium iron phosphate and preparation method thereof
CN103050697A (en) * 2012-12-31 2013-04-17 中山火炬职业技术学院 Method for preparing micron-sized LiFePO4/C serving as high-rate lithium ion battery anode material
CN104393291A (en) * 2014-11-10 2015-03-04 三峡大学 LiFePO4 positive electrode material modified jointly by doping and coating and preparation method thereof

Similar Documents

Publication Publication Date Title
CN102738465B (en) Preparation method of lithium iron manganese phosphate cathode composite material
CN103872287A (en) Composite positive electrode material of graphene and lithium iron phosphate battery and preparation method thereof
CN101290988A (en) Preparation of positive electrode material of lithium ion cell namely lithium iron phosphate
CN102306772A (en) Method for preparing fluorine sodium ferrous phosphate positive electrode material of mixed ion battery
CN104617293B (en) A kind of preparation method of the carbon coated lithium ferrous phosphate composite material of fluorine richness
CN105514428A (en) Composite electrode material and preparation technology thereof
CN114242968A (en) Carbon-coated sodium iron fluorophosphate material and preparation method and application thereof
CN102623705A (en) Lithium ion battery cathode material LiFePO4/C, and preparation method and application thereof
CN103050698A (en) Vanadium lithium iron phosphate anode material and preparation method thereof
CN105576237A (en) Zn-added lithium ion battery cathode material and preparation method thereof
CN103887497B (en) A kind of preparation method of the more caryogram core shell structure phosphatic composite cathode materials of lithium ion battery
CN105591103A (en) Modification process of lithium ion battery cathode material
CN104347852A (en) Preparation method of lithium manganese phosphate-lithium vanadium phosphate composite material
CN103682337B (en) A kind of low content high graphitization carbon-coated LiFePO 4 for lithium ion batteries
CN101582496A (en) Method for preparing cathode material of lithium/carbon iron phosphate for lithium ion battery
CN104103836B (en) A kind of sodium and manganese codoped modification ferric metasilicate lithium positive electrode material and preparation method thereof
CN103579621A (en) Preparation method of battery positive material
CN108172813B (en) Composite cathode material and preparation method thereof
CN107482181B (en) Composite lithium ion battery anode material Li3V2(PO4)3/C and preparation method thereof
CN102364728B (en) Positive electrode material for lithium ion cells and preparation method thereof
CN105514427A (en) Ti doped LiFe(1-x)TixPO4 electrode material
CN104332628A (en) Preparation method and lithium ion battery of lithium ion battery positive material
CN105449206A (en) LiFe1-xZrxPO4 electrode material and preparation method thereof
CN102522549A (en) Preparation method of carbon-coated and doped lithium-iron phosphate
CN101867043A (en) Method for preparing lithium ion battery anode material of LiFePO4/C

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160330

WD01 Invention patent application deemed withdrawn after publication