CN105444343A - Air conditioner load priority interruption method based on electricity utilization comfort level - Google Patents

Air conditioner load priority interruption method based on electricity utilization comfort level Download PDF

Info

Publication number
CN105444343A
CN105444343A CN201510641078.6A CN201510641078A CN105444343A CN 105444343 A CN105444343 A CN 105444343A CN 201510641078 A CN201510641078 A CN 201510641078A CN 105444343 A CN105444343 A CN 105444343A
Authority
CN
China
Prior art keywords
air conditioner
air
period
conditioning
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510641078.6A
Other languages
Chinese (zh)
Other versions
CN105444343B (en
Inventor
颜庆国
杨斌
陈楚
肖文举
薛璐
鲜景润
胡佳琪
阮文俊
张昊纬
肖宇华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Huiheshi Technology Co Ltd
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Nanjing Power Supply Co of Jiangsu Electric Power Co
Original Assignee
Beijing Huiheshi Technology Co Ltd
State Grid Corp of China SGCC
State Grid Jiangsu Electric Power Co Ltd
Nanjing Power Supply Co of Jiangsu Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Huiheshi Technology Co Ltd, State Grid Corp of China SGCC, State Grid Jiangsu Electric Power Co Ltd, Nanjing Power Supply Co of Jiangsu Electric Power Co filed Critical Beijing Huiheshi Technology Co Ltd
Priority to CN201510641078.6A priority Critical patent/CN105444343B/en
Publication of CN105444343A publication Critical patent/CN105444343A/en
Application granted granted Critical
Publication of CN105444343B publication Critical patent/CN105444343B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及一种基于用电舒适度的空调负荷优先级中断方法,其包括步骤:(1)确定空调响应时段和控制时段长度,确定响应时段内的空调负荷削峰总量,收集控制时段的各空调开断状态以及室内温度数据;(2)确定各空调温度设定值以及浮动范围;(3)建立空调负荷的用电舒适度指标以及对应的空调负荷控制模型;(4)根据实际数据计算空调的用电舒适度指标以及对应的空调负荷状态;(5)将各个舒适度指标按大小排序,结合空调负荷削峰总量确定最终空调的中断方案。本发明基于用电舒适度指标计算的空调负荷优先级中断方法具备可行性和有效性,在应用时可为空调负荷参与削峰提供具体的参考方案,实现达到电网削峰要求的同时最大限度保证用电舒适度的优化效果。

The present invention relates to an air conditioner load priority interruption method based on electricity comfort, which includes the steps of: (1) determining the air conditioner response time period and the length of the control period, determining the total amount of air conditioner load peak-shaving within the response period, and collecting the data of the control period The on-off status and indoor temperature data of each air conditioner; (2) Determine the temperature setting value and floating range of each air conditioner; (3) Establish the electricity comfort index of the air conditioner load and the corresponding air conditioner load control model; (4) According to the actual data Calculate the power consumption comfort index of the air conditioner and the corresponding air conditioner load status; (5) sort each comfort index by size, and determine the final air conditioner interruption plan based on the total amount of peak load shaving of the air conditioner. The air-conditioning load priority interruption method based on the electricity comfort index calculation of the present invention is feasible and effective, and can provide a specific reference scheme for air-conditioning loads to participate in peak shaving during application, so as to achieve the peak shaving requirements of the power grid while ensuring the maximum The optimization effect of electricity comfort.

Description

一种基于用电舒适度的空调负荷优先级中断方法A Priority Interruption Method for Air-Conditioning Loads Based on Electricity Comfort

技术领域technical field

本发明涉及电网负荷调控技术领域,特别是一种基于用电舒适度的空调负荷优先级中断方法。The invention relates to the technical field of power grid load control, in particular to an air-conditioning load priority interruption method based on electricity comfort.

背景技术Background technique

空调负荷的急剧增长是夏季电网负荷曲线恶化和电力紧缺的重要原因,给电网安全生产和经济运行带来极大挑战。空调负荷调控因其调控成本低、调控效果显著、能效提升空间大等特点,将逐步发展成为电网调峰的重要手段。调动空调负荷参与电网削峰,实现峰时段负荷需求降低,可以有效缓解电力供需的矛盾,提高系统可靠性,减缓电网设施的投资压力,提高能源利用率,减少一次能源的消耗。The sharp increase of air-conditioning load is an important reason for the deterioration of the grid load curve and power shortage in summer, which brings great challenges to the safe production and economic operation of the grid. Air-conditioning load control will gradually develop into an important means of power grid peak regulation due to its low control cost, significant control effect, and large room for energy efficiency improvement. Mobilizing air-conditioning loads to participate in power grid peak shaving and reducing load demand during peak hours can effectively alleviate the contradiction between power supply and demand, improve system reliability, reduce investment pressure on power grid facilities, improve energy utilization, and reduce primary energy consumption.

目前与空调负荷参与需求响应的相关研究大多从空调负荷参与负荷优化的方法入手,进行关闭空调主机,调整设置温度,调节出水温度等等,没有从具体的优化效果和优化后对用户的影响进行分析。因此,研究一种兼顾削峰要求和用户舒适度的空调负荷参与电网削峰的具体实施方案具有重要意义。At present, most of the relevant research on air conditioning load participation in demand response starts with the method of air conditioning load participation in load optimization, such as shutting down the air conditioner host, adjusting the set temperature, adjusting the outlet water temperature, etc., without analyzing the specific optimization effect and the impact on users after optimization. analyze. Therefore, it is of great significance to study a specific implementation scheme for air-conditioning loads to participate in power grid peak shaving, which takes into account both peak shaving requirements and user comfort.

发明内容Contents of the invention

本发明要解决的技术问题为:优化空调负荷调控的效果,并在空调负荷调控满足电网削峰要求的同时,兼顾空调用户的用电舒适度。The technical problem to be solved by the present invention is to optimize the effect of air-conditioning load regulation, and to take into account the power consumption comfort of air-conditioning users while the air-conditioning load regulation meets the peak-shaving requirements of the power grid.

本发明采取的技术方案具体为:一种基于用电舒适度的空调负荷优先级中断方法,包括以下步骤:The technical solution adopted by the present invention is specifically: a method for interrupting the priority of air-conditioning load based on electricity comfort, including the following steps:

(1)确定空调响应时段和控制时段长度,确定响应时段内的空调负荷削峰总量,收集控制时段内的各空调开断状态以及室内温度数据:(1) Determine the air conditioner response period and the length of the control period, determine the total amount of air conditioner load shaving during the response period, and collect the off-state and indoor temperature data of each air conditioner during the control period:

1.1确定空调响应开始时间ton和响应结束时间toff1.1 Determine the air conditioner response start time t on and response end time t off ;

1.2确定控制时段长度Δt分钟,则在响应时段内共有个时段;1.2 Determine the length of the control period Δt minutes, then there are a total of period;

1.3确定参与响应的空调数量I,定义i为空调编号;1.3 Determine the number I of air conditioners participating in the response, and define i as the number of air conditioners;

1.4收集各空调响应开始时刻开断状态以及室内温度数据:定义第i台空调在响应开始时的空调开断状态为Si,0,室内温度为Ti,0,第n时段的室外温度为 1.4 Collect the off-state and indoor temperature data of each air conditioner at the beginning of the response: define the off-state of the i-th air conditioner at the beginning of the response as S i,0 , the indoor temperature as T i,0 , and the outdoor temperature in the nth period as

1.5确定响应时段内第n时段的空调负荷理想削峰量Paim,n1.5 Determine the ideal peak-shaving amount P aim,n of the air-conditioning load in the nth period of the response period;

(2)确定各空调温度设定值以及浮动范围:(2) Determine the temperature setting value and floating range of each air conditioner:

2.1确定各空调温度设定值Ti,set2.1 Determine the temperature setting value T i,set of each air conditioner;

2.2确定各空调温度浮动范围ΔTi,set2.2 Determine the temperature floating range ΔT i,set of each air conditioner;

(3)建立空调负荷的用电舒适度指标以及对应的空调负荷控制模型:(3) Establish the electricity comfort index of air-conditioning load and the corresponding air-conditioning load control model:

3.1建立空调负荷的用电舒适度指标Ki,n3.1 Establish the electricity comfort index K i,n of the air-conditioning load:

KK ii ,, nno == || TT ii ,, nno -- TT ii ,, sthe s ee tt || ΔTΔT ii ,, sthe s ee tt -- -- -- (( 11 ))

其中:Ki,n是第i台空调在第n时段的舒适度指标;Ti,n是第i台空调在第n时段的室内温度;Ti,set是第i台空调的空调温度设定值;ΔTi,set是第i台空调的空调温度浮动范围,即室内温度允许范围为Ti,set~Ti,set+ΔTi,setAmong them: K i,n is the comfort index of the i-th air conditioner in the nth period; T i,n is the indoor temperature of the i-th air conditioner in the nth period; T i,set is the air-conditioning temperature setting of the i-th air conditioner Fixed value; ΔT i,set is the air-conditioning temperature floating range of the i-th air conditioner, that is, the allowable range of indoor temperature is T i,set ~T i,set +ΔT i,set ;

3.2建立对应空调负荷控制模型:3.2 Establish the corresponding air-conditioning load control model:

假定空调工作于制冷模式,空调运行状态与室温设定有关:当室温高于最高值时,使得空调通电;低于最低值时,使得空调断电;处于设定范围内时,空调保持原来状态,则控制模型如下:Assuming that the air conditioner works in cooling mode, the operating state of the air conditioner is related to the room temperature setting: when the room temperature is higher than the maximum value, the air conditioner is powered on; , then the control model is as follows:

SS ii ,, nno == 00 TT ii .. nno &le;&le; TT ii ,, sthe s ee tt 11 TT ii .. nno &GreaterEqual;&Greater Equal; TT ii ,, sthe s ee tt ++ &Delta;T&Delta;T ii ,, sthe s ee tt SS ii ,, nno -- 11 TT ii ,, sthe s ee tt << TT ii .. nno << TT ii ,, sthe s ee tt ++ &Delta;T&Delta;T ii ,, sthe s ee tt -- -- -- (( 22 ))

其中:Si,n是第i台空调在第n时段内的空调开断状态,Si,n-1是第i台空调在第n-1时段内的空调开断状态;Among them: S i,n is the air conditioner off state of the i-th air conditioner in the nth time period, S i,n-1 is the air conditioner off state of the i-th air conditioner in the n-1 time period;

室内温度变化随空调状态变化的关系为:The relationship between indoor temperature change and air conditioner state change is:

TT ii ,, nno ++ 11 == TT nno ++ 11 oo uu tt -- &mu;P&mu;P ii SS ii ,, nno ++ 11 // AA -- (( TT nno ++ 11 oo uu tt -- &eta;P&eta;P ii SS ii ,, nno ++ 11 // AA ii ,, nno -- TT ii ,, nno )) &epsiv;&epsiv; -- -- -- (( 33 ))

其中:Ti.n+1是第i台空调在第n+1时段的室内温度;是第i台空调在第n+1时段的室外温度;为t时刻空调的功率;Si,n+1为空调的开断状态,开启时为1关断为0;Pi为第i台空调开启时额定制冷消耗功率,PiSi,n+1是第i台空调在第n+1时段的实际功率;η为空调能效比;A为导热系数,单位为1/(kW·℃-1);ε为散热函数,Δt为控制时间间隔,TC为时间常数,;Among them: T i.n+1 is the indoor temperature of the i-th air conditioner in the n+1 period; is the outdoor temperature of the i-th air conditioner in the n+1 period; is the power of the air conditioner at time t; S i,n+1 is the on-off state of the air conditioner, which is 1 when it is on and 0 when it is off; P i is the rated cooling power consumption when the i-th air conditioner is on, P i S i,n+ 1 is the actual power of the i-th air conditioner at the n+1 period; η is the energy efficiency ratio of the air conditioner; A is the thermal conductivity, the unit is 1/(kW·℃-1); ε is the heat dissipation function, Δt is the control time interval, T C is the time constant;

(4)根据实际数据计算空调的用电舒适度指标以及对应的空调负荷状态:(4) Calculate the power consumption comfort index of the air conditioner and the corresponding air conditioner load status according to the actual data:

根据各空调响应开始时刻实际开断状态Si,1以及室内温度Ti,1,计算第i台空调在N个时段内的用电舒适度指标Ki,1,...,Ki,N,空调开断状态Si,1,...,Si,N,室内温度Ti,1,...,Ti,NAccording to the actual on-off state S i,1 and the indoor temperature T i,1 of each air conditioner at the beginning of the response, calculate the electricity comfort index K i,1 ,...,K i, N , air conditioner off state S i,1 ,...,S i,N , indoor temperature T i,1 ,...,T i,N ;

由此可以得到第n个时段的初始中断方案:即第n个时段内,I台空调在负荷控制下的开断状态为:From this, the initial interruption scheme for the nth time period can be obtained: that is, in the nth time period, the on-off state of an air conditioner under load control is:

SS nno 00 == (( SS 11 ,, nno ,, ...... SS ii ,, nno ,, ...... SS II ,, nno )) TT -- -- -- (( 44 ))

(5)将各个舒适度指标按大小排序,结合空调负荷削峰总量确定最终空调的中断方案:(5) Sort each comfort index according to size, and determine the final air-conditioning interruption plan in combination with the total amount of air-conditioning load shaving:

5.1计算第n个时段初始中断方案对应的削峰量判断是否满足若不满足则执行步骤5.2,若满足则执行步骤5.5;5.1 Calculate the initial outage scheme for the nth time period Corresponding amount of clipping Judging whether it is satisfied If it is not satisfied, go to step 5.2, if it is satisfied, go to step 5.5;

5.2筛选第n时段中,Si,n=1的空调,即该时段内处于开启状态的空调负荷,其对应用电舒适度指标为并将这些空调负荷的用电舒适度指标从大到小排序,舒适度指标值越大,表明用户满意度越高,相应该空调的用电优先级越低,而其参与需求响应的中断优先级则越高;5.2 Screen the air conditioner with S i,n = 1 in the nth period, that is, the air conditioner load that is turned on during this period, and its corresponding electric comfort index is The power consumption comfort index of these air-conditioning loads is sorted from large to small. The larger the comfort index value is, the higher the user satisfaction is, and the lower the power consumption priority of the air conditioner is, and the interruption priority of its participation in demand response is the higher the level;

假设有X台空调在第n个时段处于开启状态,由大到小排序后依次为:Assuming that there are X air conditioners that are turned on in the nth time period, they are sorted from large to small as follows:

K1,n (1),K2,n (1),...,Kx,n (1),...,KX,n (1)K 1,n (1) ,K 2,n (1) ,...,K x,n (1) ,...,K X,n (1) ;

5.3因为n时段内处于开启的空调负荷中K1,n (1)对应的空调用电满意度最高,中断优先级也最高,故将K1,n (1)对应的空调负荷开断状态Si,n置为0,即由开启变为关断,将Si,n代入式(4)得到第n个时段新的中断方案Sn5.3 Because K 1,n (1) corresponds to the highest air-conditioning power satisfaction and the highest interruption priority among the air-conditioning loads that are turned on during the n period, so the air-conditioning load corresponding to K 1,n (1) is switched off in the state S i, n are set to 0, that is, from on to off, and S i, n are substituted into formula (4) to get the new interruption scheme S n of the nth period;

5.4计算新的方案对应的削峰量Pn,判断其是否满足Pn≥Paim,n,若不满足则重复步骤5.2至5.3,若满足则执行步骤5.5;5.4 Calculate the peak-shaving amount P n corresponding to the new plan, and judge whether it satisfies P n ≥ Paim ,n , if not, repeat steps 5.2 to 5.3, and if it is satisfied, go to step 5.5;

5.5输出第n时段中断方案;5.5 Output the interruption scheme for the nth period;

5.6重复1~N个时段的中断方案计算,可以得到总响应时段内的总中断方案:5.6 Repeat the calculation of the interruption scheme for 1 to N periods, and the total interruption scheme in the total response period can be obtained:

SS == (( SS 11 ,, ...... SS ii ,, ........ SS II )) == SS 11 ,, 11 ...... SS 11 ,, nno ...... SS 11 ,, NN .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. SS ii ,, 11 ...... SS ii ,, nno ...... SS ii ,, NN .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. SS II ,, 11 ...... SS II ,, nno ...... SS II .. NN -- -- -- (( 55 ))

即得到I台空调N个时段中各时段内的总响应方案。That is, the total response scheme in each period of N periods of one air conditioner is obtained.

本发明基于空调负荷的用电舒适度指标建立空调负荷的控制模型从而得到满足用户用电舒适度的初始中断方案,然后根据时段内的削峰目标,以及空调负荷的中断优先级进行中断方案修正,得到最终兼顾削峰要求和用户舒适度的空调负荷中断方法。The present invention establishes the control model of the air-conditioning load based on the power consumption comfort index of the air-conditioning load to obtain an initial interruption scheme that satisfies the user's electricity consumption comfort, and then corrects the interruption scheme according to the peak-shaving target within a time period and the interruption priority of the air-conditioning load , to obtain an air-conditioning load interruption method that finally takes into account peak-shaving requirements and user comfort.

进一步的,本发明公式(3)中,空调能效比η取值为2.8;导热系数A取值为0.68;散热函数ε取值为0.70,控制时间间隔取值为15min;上述取值能够使得本发明方法获得更好的调控效果。Further, in the formula (3) of the present invention, the value of the air-conditioning energy efficiency ratio η is 2.8; the value of the thermal conductivity A is 0.68; the value of the heat dissipation function ε is 0.70, and the value of the control time interval is 15min; the above values can make this Invention method to obtain better control effect.

有益效果:本发明基于用电舒适度指标计算的空调负荷优先级中断方法具备可行性和有效性,能应用于公共楼宇空调负荷集中调控的负荷优化模式,为空调负荷参与削峰提供具体的参考方案,实现在达到电网削峰要求的同时最大限度保证用电舒适度的优化效果。Beneficial effects: the method for interrupting the priority of air-conditioning load based on the calculation of electricity comfort index in the present invention is feasible and effective, and can be applied to the load optimization mode of centralized regulation and control of air-conditioning loads in public buildings, providing specific reference for air-conditioning loads to participate in peak shaving The scheme realizes the optimization effect of maximizing the comfort of electricity consumption while meeting the requirements of power grid peak shaving.

附图说明Description of drawings

图1为本发明提供的一种基于用电舒适度的空调负荷优先级中断方法流程图;Fig. 1 is a flow chart of an air-conditioning load priority interruption method based on electricity comfort provided by the present invention;

图2为一种基于用电舒适度的空调负荷优先级中断方法最终中断方案的求解流程图;Fig. 2 is a flow chart for solving the final interruption scheme of an air-conditioning load priority interruption method based on electricity comfort;

图3为基于用电舒适度的空调负荷优先级中断方法的优化效果图。Fig. 3 is an optimization effect diagram of the air-conditioning load priority interruption method based on electricity comfort.

具体实施方式detailed description

以下通过一个实例来说明下本发明具体实施方式:The specific implementation of the present invention is described below by an example:

(1)确定空调响应时段和控制时段长度,确定响应时段内的空调负荷削峰总量,收集控制时段的各空调开断状态以及室内温度数据(1) Determine the air conditioner response period and the length of the control period, determine the total amount of air conditioner load shaving during the response period, and collect the off-state and indoor temperature data of each air conditioner during the control period

1.1确定空调响应开始时间ton=11:00和响应结束时间toff=12:30;1.1 Determine the air conditioner response start time t on =11:00 and response end time t off =12:30;

1.2确定控制时段长度Δt=15min分钟,则在响应时段内共有个时段;1.2 Determine the length of the control period Δt = 15min minutes, then there will be a total of period;

1.3确定参与响应的空调数量I=5,则i为空调编号,i∈I;1.3 Determine the number of air conditioners participating in the response I = 5, then i is the air conditioner number, i∈I;

1.4收集各空调响应开始时刻开断状态以及室内外温度数据:1.4 Collect the on-off status and indoor and outdoor temperature data of each air conditioner at the beginning of the response:

第i台空调在响应前的初始空调开断状态为[Si,0]T=[11111]T,室内温度为[Ti,0]T=[28.227.525.625.228.6]TThe initial off-state of the i-th air conditioner before responding is [S i,0 ] T =[11111] T , and the indoor temperature is [T i,0 ] T =[28.227.525.625.228.6] T ,

不同时段内的室外温度为 &lsqb; T n o u t &rsqb; = 34.2 33.9 34.4 34.8 34.8 34.9 ; The outdoor temperature in different time periods is &lsqb; T no o u t &rsqb; = 34.2 33.9 34.4 34.8 34.8 34.9 ;

1.5确定响应时段内第n时段的空调负荷理想削峰量[Paim,n]=[568665]。1.5 Determine the ideal air-conditioning load peak-shaving amount [P aim,n ]=[568665] in the nth period of the response period.

(2)确定各空调温度设定值以及浮动范围(2) Determine the temperature setting value and floating range of each air conditioner

2.1确定各空调温度设定值[Ti,set]T=[2626262526]T2.1 Determine the temperature setting value of each air conditioner [T i, set ] T = [2626262526] T ;

2.2确定各空调温度浮动范围ΔTi,set=1.5。2.2 Determine the temperature floating range of each air conditioner ΔT i,set =1.5.

(3)建立空调负荷的用电舒适度指标以及对应的空调负荷控制模型(3) Establish the electricity comfort index of air-conditioning load and the corresponding air-conditioning load control model

3.1建立空调负荷的用电舒适度指标Ki,n3.1 Establish the electricity comfort index K i,n of the air-conditioning load:

KK ii ,, nno == || TT ii ,, nno -- TT ii ,, sthe s ee tt || &Delta;T&Delta;T ii ,, sthe s ee tt -- -- -- (( 11 ))

其中:Ki,n是第i台空调在第n时段的舒适度指标;Ti,n是第i台空调在第n时段的室内温度;Ti,set是第i台空调的空调温度设定值;ΔTi,set是第i台空调的空调温度浮动范围,即室内温度允许范围为Ti,set~Ti,set+ΔTi,setAmong them: K i,n is the comfort index of the i-th air conditioner in the nth period; T i,n is the indoor temperature of the i-th air conditioner in the nth period; T i,set is the air-conditioning temperature setting of the i-th air conditioner Fixed value; ΔT i,set is the air-conditioning temperature floating range of the i-th air conditioner, that is, the allowable range of indoor temperature is T i,set ~T i,set +ΔT i,set ;

3.2建立对应空调负荷控制模型3.2 Establish the corresponding air-conditioning load control model

假定空调工作于制冷模式,空调运行状态与室温设定有关。当室温高于最高值时,空调通电;低于最低值时,空调断电;处于设定范围内时,空调保持原来状态。其控制模型如下:Assuming that the air conditioner works in cooling mode, the operating status of the air conditioner is related to the room temperature setting. When the room temperature is higher than the maximum value, the air conditioner is powered on; when it is lower than the minimum value, the air conditioner is powered off; when it is within the set range, the air conditioner remains in its original state. Its control model is as follows:

SS ii ,, nno == 00 TT ii .. nno &le;&le; TT ii ,, sthe s ee tt 11 TT ii .. nno &GreaterEqual;&Greater Equal; TT ii ,, sthe s ee tt ++ &Delta;T&Delta;T ii ,, sthe s ee tt SS ii ,, nno -- 11 TT ii ,, sthe s ee tt << TT ii .. nno << TT ii ,, sthe s ee tt ++ &Delta;T&Delta;T ii ,, sthe s ee tt -- -- -- (( 22 ))

其中:Si,n是第i台空调在第n时段内的空调开断状态,Si,n-1是第i台空调在第n-1时段内的空调开断状态。Among them: S i,n is the air conditioner off state of the i-th air conditioner in the nth time period, S i,n-1 is the air conditioner off state of the i-th air conditioner in the n-1 time period.

室内温度变化随空调状态变化的方程为:The equation for the change of indoor temperature with the state of the air conditioner is:

TT ii ,, nno ++ 11 == TT nno ++ 11 oo uu tt -- &eta;P&eta;P ii SS ii ,, nno ++ 11 // AA -- (( TT nno ++ 11 oo uu tt -- &eta;P&eta;P ii SS ii ,, nno ++ 11 // AA -- TT ii ,, nno )) &epsiv;&epsiv; == TT nno ++ 11 oo uu tt -- 0.70.7 (( TT nno ++ 11 oo uu tt -- TT ii ,, nno )) -- 3.093.09 SS ii ,, nno ++ 11 -- -- -- (( 33 ))

其中:Ti.n+1是第i台空调在第n+1时段的室内温度;是在第n+1时段的室外温度;为t时刻空调的功率;Si,n+1为空调的开断状态,开启时为1关断为0;Pi为第i台空调开启时额定制冷消耗功率,这里计算中将5台空调都默认为2.5kW,PiSi,n+1是第i台空调在第n+1时段的实际功率;η为空调能效比,为2.8;A为导热系数,单位为1/(kW·℃-1),取0.68;ε为散热函数,Δt为控制时间间隔,定为15min,TC为时间常数,ε取0.70。Among them: T i.n+1 is the indoor temperature of the i-th air conditioner in the n+1 period; is the outdoor temperature in the n+1th period; is the power of the air conditioner at time t; S i,n+1 is the on-off state of the air conditioner, which is 1 when it is turned on and 0 when it is turned off; P i is the rated cooling power consumption of the i-th air conditioner when it is turned on. Both default to 2.5kW, P i S i,n+1 is the actual power of the i-th air conditioner at the n+1 period; η is the energy efficiency ratio of the air conditioner, which is 2.8; A is the thermal conductivity, and the unit is 1/(kW· ℃-1), take 0.68; ε is the heat dissipation function, Δt is the control time interval, set as 15min, T C is the time constant, ε is taken as 0.70.

(4)根据实际数据计算空调的用电舒适度指标以及对应的空调负荷状态(4) Calculate the power comfort index of the air conditioner and the corresponding air conditioner load status based on the actual data

根据各空调响应开始时刻实际开断状态Si,1以及室内温度Ti,1,计算第i台空调在N个时段内的用电舒适度指标Ki,1,...,Ki,N,空调开断状态Si,1,...,Si,N,室内温度Ti,1,...,Ti,N,其中i∈I。According to the actual on-off state S i,1 and the indoor temperature T i,1 of each air conditioner at the beginning of the response, calculate the electricity comfort index K i,1 ,...,K i, N , air conditioner off-state S i,1 ,...,S i,N , indoor temperature T i,1 ,...,T i,N , where i∈I.

以第1个时段第1台空调为例,在响应前,S1,0=1,T1,0=28.2,计算可得用电舒适度指标 K 1 , 0 = | 28.2 - 26 | 1.5 = 1.467 : Take the first air conditioner in the first period as an example, before responding, S 1,0 = 1, T 1,0 = 28.2, Calculation of available electricity comfort index K 1 , 0 = | 28.2 - 26 | 1.5 = 1.467 :

由于T1,1=28.2>(T1,set+ΔT1,set),故第1个时段空调控制状态仍为开启S1,2=1;Since T 1,1 =28.2>(T 1,set +ΔT 1,set ), the air conditioner control status is still on in the first period S 1,2 =1;

根据室内温度变化随空调状态变化的方程可计算得第1个时段内的室内温度为T1,2=26.91,According to the equation that the indoor temperature changes with the state of the air conditioner It can be calculated that the indoor temperature in the first period is T 1,2 = 26.91,

第1个时段的用电舒适度指标 K 1 , 1 = | 26.91 - 26 | 1.5 = 0.601. Electricity comfort index in the first period K 1 , 1 = | 26.91 - 26 | 1.5 = 0.601.

同理对其他几台空调进行计算,可以得到第1个时段的初始中断方案:即第1个时段内,I台空调的开断状态:Similarly, by calculating the other several air conditioners, the initial interruption scheme of the first period can be obtained: that is, the on-off state of the I air conditioner in the first period:

SS 11 00 == (( SS 11 ,, 22 ,, ...... SS ii ,, 22 ,, ...... SS II ,, 22 )) TT == 11 11 00 11 11 TT -- -- -- (( 44 ))

(5)将各个舒适度指标按大小排序,结合空调负荷削峰总量确定最终空调的中断方案(5) Sort each comfort index according to size, and determine the final air-conditioning interruption plan based on the total amount of air-conditioning load peak-shaving

初始中断方案仅考虑了响应过程中用户的用电舒适度,没有考虑该方案是否能达到预期削峰效果,为实现各个时段达到削峰目标,还需进行基于中断优先级的中断方案优化:The initial interruption scheme only considers the user's power consumption comfort during the response process, and does not consider whether the scheme can achieve the expected peak-shaving effect. In order to achieve the peak-shaving target at each time period, it is necessary to optimize the interruption scheme based on the interruption priority:

5.1计算第n个时段初始中断方案对应的削峰量判断是否满足若不满足则执行步骤5.2,若满足则执行步骤5.5;5.1 Calculate the initial outage scheme for the nth time period Corresponding amount of clipping Judging whether it is satisfied If it is not satisfied, go to step 5.2, if it is satisfied, go to step 5.5;

5.2筛选第n时段中,Si,n=1的空调,即该时段内处于开启状态的空调负荷,其对应用电舒适度指标为Ki,n (1)=Ki,n,并将这些空调负荷的用电舒适度指标从大到小排序,舒适度指标值越大,表明用户满意度越高,相应该空调的用电优先级越低,而其参与需求响应的中断优先级则越高;5.2 Screen the air conditioner with S i,n =1 in the nth period, that is, the air conditioner load that is turned on during this period, and its corresponding electric comfort index is K i,n (1) =K i,n , and The power consumption comfort index of these air-conditioning loads is sorted from large to small. The larger the comfort index value is, the higher the user satisfaction is, and the lower the power consumption priority of the air conditioner is, and the interruption priority of its participation in demand response is higher. higher;

假设有X台空调在第n个时段处于开启状态,由大到小排序后依次为:Assuming that there are X air conditioners that are turned on in the nth time period, they are sorted from large to small as follows:

K1,n (1),K2,n (1),...,Kx,n (1),...,KX,n (1)K 1,n (1) ,K 2,n (1) ,...,K x,n (1) ,...,K X,n (1) .

5.3因为n时段内处于开启的空调负荷中K1,n (1)对应的空调用电满意度最高,中断优先级也最高,故将K1,n (1)对应的空调负荷开断状态Si,n置为0,即由开启变为关断,将Si,n代入式(4)得到第n个时段新的中断方案Sn5.3 Because K 1,n (1) corresponds to the highest air-conditioning power satisfaction and the highest interruption priority among the air-conditioning loads that are turned on during the n period, so the air-conditioning load corresponding to K 1,n (1) is switched off in the state S i, n are set to 0, that is, from on to off, and S i, n are substituted into formula (4) to get the new interruption scheme S n of the nth period;

5.4计算新的方案对应的削峰量Pn,判断其是否满足Pn≥Paim,n,若不满足重复进行步骤5.2至5.3,若满足则执行步骤5.5;5.4 Calculate the peak-shaving amount P n corresponding to the new plan, and judge whether it satisfies P n ≥ Paim ,n , if not, repeat steps 5.2 to 5.3, and if so, perform step 5.5;

5.5输出第n时段中断方案;5.5 Output the interruption scheme for the nth period;

5.6重复1~N个时段的中断方案计算,可以得到总响应时段内的总中断方案:5.6 Repeat the calculation of the interruption scheme for 1 to N periods, and the total interruption scheme in the total response period can be obtained:

SS == (( SS 11 ,, ...... SS ii ,, ........ SS II )) == SS 11 ,, 11 ...... SS 11 ,, nno ...... SS 11 ,, NN .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. SS ii ,, 11 ...... SS ii ,, nno ...... SS ii ,, NN .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. SS II ,, 11 ...... SS II ,, nno ...... SS II .. NN -- -- -- (( 55 ))

5.7输出I台空调N各时段内的总响应方案。最终中断方案如表1所示:5.7 Output the total response scheme of I air conditioner N in each time period. The final interrupt scheme is shown in Table 1:

表1基于用电舒适度的空调负荷优先级中断方案Table 1 Air-conditioning load priority interruption scheme based on electricity comfort

表2基于用电舒适度的空调负荷优先级中断后室内温度变化Table 2 Changes in indoor temperature after interruption of air-conditioning load priority based on electricity comfort

时段period of time 00 11 22 33 44 55 66 空调1air conditioner 1 28.228.2 26.9126.91 29.0129.01 30.6330.63 28.7928.79 30.5930.59 28.7928.79 空调2air conditioner 2 27.527.5 29.5129.51 27.7427.74 29.7429.74 31.0231.02 29.0629.06 30.8130.81 空调3air conditioner 3 25.625.6 28.1828.18 29.929.9 28.1628.16 30.1530.15 30.8530.85 28.9828.98 空调4air conditioner 4 25.225.2 27.927.9 26.6126.61 28.9528.95 27.6227.62 29.4729.47 25.9125.91 空调5air conditioner 5 28.628.6 27.1927.19 29.0329.03 28.5428.54 30.4230.42 28.6428.64 30.5230.52 室外温度Outdoor temperature 34.234.2 33.933.9 34.434.4 34.834.8 34.834.8 34.934.9

表3基于用电舒适度的空调负荷优先级中断后用电舒适度指标变化Table 3 Changes in power consumption comfort index after interruption of air-conditioning load priority based on power consumption comfort

时段period of time 00 11 22 33 44 55 66 空调1air conditioner 1 1.4671.467 0.580.58 2.0072.007 3.0873.087 1.861.86 3.063.06 1.861.86 空调2air conditioner 2 11 2.342.34 1.161.16 2.4932.493 3.3473.347 2.042.04 3.2073.207 空调3air conditioner 3 0.2670.267 1.4531.453 2.62.6 1.441.44 2.7672.767 3.233.23 1.9871.987 空调4air conditioner 4 0.1330.133 1.9331.933 1.071.07 2.6332.633 1.7451.745 2.982.98 0.6060.606 空调5air conditioner 5 1.7331.733 0.7930.793 2.022.02 1.6941.694 2.9472.947 1.761.76 3.0133.013

最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that: the present invention can still be Any modification or equivalent replacement that does not depart from the spirit and scope of the present invention shall be covered by the scope of the claims of the present invention.

Claims (2)

1.一种基于用电舒适度的空调负荷优先级中断方法,其特征是,包括以下步骤:1. A method for interruption of air-conditioning load priority based on electricity comfort, characterized in that it comprises the following steps: (1)确定空调响应时段和控制时段长度,确定响应时段内的空调负荷削峰总量,收集控制时段内的各空调开断状态以及室内温度数据:(1) Determine the length of the air conditioner response period and control period, determine the total amount of air conditioner load shaving during the response period, and collect the off-state and indoor temperature data of each air conditioner during the control period: 1.1确定空调响应开始时间ton和响应结束时间toff1.1 Determine the air conditioner response start time t on and response end time t off ; 1.2确定控制时段长度Δt分钟,则在响应时段内共有个时段;1.2 Determine the length of the control period Δt minutes, then there are a total of period; 1.3确定参与响应的空调数量I,定义i为空调编号;1.3 Determine the number I of air conditioners participating in the response, and define i as the number of air conditioners; 1.4收集各空调响应开始时刻开断状态以及室内温度数据:定义第i台空调在响应开始时的空调开断状态为Si,0,室内温度为Ti,0,第n时段的室外温度为 1.4 Collect the off-state and indoor temperature data of each air conditioner at the beginning of the response: define the off-state of the i-th air conditioner at the beginning of the response as S i,0 , the indoor temperature as T i,0 , and the outdoor temperature in the nth period as 1.5确定响应时段内第n时段的空调负荷理想削峰量Paim,n1.5 Determine the ideal peak-shaving amount P aim,n of the air-conditioning load in the nth period of the response period; (2)确定各空调温度设定值以及浮动范围:(2) Determine the temperature setting value and floating range of each air conditioner: 2.1确定各空调温度设定值Ti,set2.1 Determine the temperature setting value T i,set of each air conditioner; 2.2确定各空调温度浮动范围ΔTi,set2.2 Determine the temperature floating range ΔT i,set of each air conditioner; (3)建立空调负荷的用电舒适度指标以及对应的空调负荷控制模型:(3) Establish the electricity comfort index of air-conditioning load and the corresponding air-conditioning load control model: 3.1建立空调负荷的用电舒适度指标Ki,n3.1 Establish the electricity comfort index K i,n of the air-conditioning load: KK ii ,, nno == || TT ii ,, nno -- TT ii ,, sthe s ee tt || &Delta;T&Delta;T ii ,, sthe s ee tt -- -- -- (( 11 )) 其中:Ki,n是第i台空调在第n时段的舒适度指标;Ti,n是第i台空调在第n时段的室内温度;Ti,set是第i台空调的空调温度设定值;ΔTi,set是第i台空调的空调温度浮动范围,即室内温度允许范围为Ti,set~Ti,set+ΔTi,setAmong them: K i,n is the comfort index of the i-th air conditioner in the nth period; T i,n is the indoor temperature of the i-th air conditioner in the nth period; T i,set is the air-conditioning temperature setting of the i-th air conditioner Fixed value; ΔT i,set is the air-conditioning temperature floating range of the i-th air conditioner, that is, the allowable range of indoor temperature is T i,set ~T i,set +ΔT i,set ; 3.2建立对应空调负荷控制模型:3.2 Establish the corresponding air-conditioning load control model: 假定空调工作于制冷模式,空调运行状态与室温设定有关:当室温高于最高值时,使得空调通电;低于最低值时,使得空调断电;处于设定范围内时,空调保持原来状态,则控制模型如下:Assuming that the air conditioner works in cooling mode, the operating status of the air conditioner is related to the room temperature setting: when the room temperature is higher than the maximum value, the air conditioner is powered on; when it is lower than the minimum value, the air conditioner is powered off; when it is within the set range, the air conditioner maintains the original state , then the control model is as follows: SS ii ,, nno == 00 TT ii ,, nno &le;&le; TT ii ,, sthe s ee tt 11 TT ii ,, nno &GreaterEqual;&Greater Equal; TT ii ,, sthe s ee tt ++ &Delta;T&Delta;T ii ,, sthe s ee tt SS ii ,, nno -- 11 TT ii ,, sthe s ee tt << TT ii ,, nno << TT ii ,, sthe s ee tt ++ &Delta;T&Delta;T ii ,, sthe s ee tt -- -- -- (( 22 )) 其中:Si,n是第i台空调在第n时段内的空调开断状态,Si,n-1是第i台空调在第n-1时段内的空调开断状态;Among them: S i,n is the air conditioner off state of the i-th air conditioner in the nth time period, S i,n-1 is the air conditioner off state of the i-th air conditioner in the n-1 time period; 室内温度变化随空调状态变化的关系为:The relationship between indoor temperature change and air conditioner state change is: TT ii ,, nno ++ 11 == TT nno ++ 11 oo uu tt -- &eta;P&eta;P ii SS ii ,, nno ++ 11 // AA -- (( TT nno ++ 11 oo uu tt -- &eta;P&eta;P ii SS ii ,, nno ++ 11 // AA -- TT ii ,, nno )) &epsiv;&epsiv; -- -- -- (( 33 )) 其中:Ti.n+1是第i台空调在第n+1时段的室内温度;是第i台空调在第n+1时段的室外温度;为t时刻空调的功率;Si,n+1为空调的开断状态,开启时为1关断为0;Pi为第i台空调开启时额定制冷消耗功率,PiSi,n+1是第i台空调在第n+1时段的实际功率;η为空调能效比;A为导热系数,单位为1/(kW·℃-1);ε为散热函数,Δt为控制时间间隔,TC为时间常数;Among them: T i.n+1 is the indoor temperature of the i-th air conditioner in the n+1 period; is the outdoor temperature of the i-th air conditioner in the n+1 period; is the power of the air conditioner at time t; S i,n+1 is the on-off state of the air conditioner, which is 1 when it is on and 0 when it is off; P i is the rated cooling power consumption when the i-th air conditioner is on, P i S i,n+ 1 is the actual power of the i-th air conditioner at the n+1 period; η is the energy efficiency ratio of the air conditioner; A is the thermal conductivity, the unit is 1/(kW·℃-1); ε is the heat dissipation function, Δt is the control time interval, T C is the time constant; (4)根据实际数据计算空调的用电舒适度指标以及对应的空调负荷状态:(4) Calculate the power consumption comfort index of the air conditioner and the corresponding air conditioner load status according to the actual data: 根据各空调响应开始时刻实际开断状态Si,1以及室内温度Ti,1,计算第i台空调在N个时段内的用电舒适度指标Ki,1,...,Ki,N,空调开断状态Si,1,...,Si,N,室内温度Ti,1,...,Ti,NAccording to the actual on-off state S i,1 and the indoor temperature T i,1 of each air conditioner at the beginning of the response, calculate the electricity comfort index K i,1 ,...,K i, N , air conditioner off state S i,1 ,...,S i,N , indoor temperature T i,1 ,...,T i,N ; 由此可以得到第n个时段的初始中断方案:即第n个时段内,I台空调在负荷控制下的开断状态为:From this, the initial interruption scheme for the nth time period can be obtained: that is, in the nth time period, the on-off state of an air conditioner under load control is: SS nno 00 == (( SS 11 ,, nno ,, ...... SS ii ,, nno ,, ...... SS II ,, nno )) TT -- -- -- (( 44 )) (5)将各个舒适度指标按大小排序,结合空调负荷削峰总量确定最终空调的中断方案:(5) Sort each comfort index according to size, and determine the final air-conditioning interruption plan in combination with the total amount of air-conditioning load shaving: 5.1计算第n个时段初始中断方案对应的削峰量判断是否满足若不满足则执行步骤5.2,若满足则执行步骤5.5;5.1 Calculate the initial outage scheme for the nth time period Corresponding amount of clipping Judging whether it is satisfied If it is not satisfied, go to step 5.2, if it is satisfied, go to step 5.5; 5.2筛选第n时段中,Si,n=1的空调,即该时段内处于开启状态的空调负荷,其对应用电舒适度指标为Ki,n (1)=Ki,n,并将这些空调负荷的用电舒适度指标从大到小排序,舒适度指标值越大,表明用户满意度越高,相应该空调的用电优先级越低,而其参与需求响应的中断优先级则越高;5.2 Screen the air conditioner with S i,n =1 in the nth period, that is, the air conditioner load that is turned on during this period, and its corresponding electric comfort index is K i,n (1) =K i,n , and The power consumption comfort index of these air-conditioning loads is sorted from large to small. The larger the comfort index value is, the higher the user satisfaction is, and the lower the power consumption priority of the air conditioner is, and the interruption priority of its participation in demand response is higher. higher; 假设有X台空调在第n个时段处于开启状态,由大到小排序后依次为:Assuming that there are X air conditioners that are turned on in the nth time period, they are sorted from large to small as follows: K1,n (1),K2,n (1),...,Kx,n (1),...,KX,n (1)K 1,n (1) ,K 2,n (1) ,...,K x,n (1) ,...,K X,n (1) ; 5.3因为n时段内处于开启的空调负荷中K1,n (1)对应的空调用电满意度最高,中断优先级也最高,故将K1,n (1)对应的空调负荷开断状态Si,n置为0,即由开启变为关断,将Si,n代入式(4)得到第n个时段新的中断方案Sn5.3 Because K 1,n (1) corresponds to the highest air-conditioning power satisfaction and the highest interruption priority among the air-conditioning loads that are turned on during the n period, so the air-conditioning load corresponding to K 1,n (1) is switched off in the state S i, n are set to 0, that is, from on to off, and S i, n are substituted into formula (4) to get the new interruption scheme S n of the nth period; 5.4计算新的方案对应的削峰量Pn,判断其是否满足Pn≥Paim,n,若不满足则重复步骤5.2至5.3,若满足则执行步骤5.5;5.4 Calculate the peak-shaving amount P n corresponding to the new plan, and judge whether it satisfies P n ≥ Paim ,n , if not, repeat steps 5.2 to 5.3, and if it is satisfied, go to step 5.5; 5.5输出第n时段中断方案;5.5 Output the interruption scheme for the nth period; 5.6重复1~N个时段的中断方案计算,可以得到总响应时段内的总中断方案:5.6 Repeat the calculation of the interruption scheme for 1 to N periods, and the total interruption scheme in the total response period can be obtained: SS == (( SS 11 ,, ...... SS ii ,, ...... SS II )) == SS 11 ,, 11 ...... SS 11 ,, nno ...... SS 11 ,, NN .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. SS ii ,, 11 ...... SS ii ,, nno ...... SS ii ,, NN .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. SS II ,, 11 ...... SS II ,, nno ...... SS II .. NN -- -- -- (( 55 )) 即得到I台空调N个时段中各时段内的总响应方案。That is, the total response scheme in each period of N periods of one air conditioner is obtained. 2.根据权利要求1所述的方法,其特征是,公式(3)中,空调能效比η取值为2.8;导热系数A取值为0.68;散热函数ε取值为0.70,控制时间间隔取值为15min。2. The method according to claim 1, characterized in that, in formula (3), the value of air-conditioning energy efficiency ratio η is 2.8; the value of thermal conductivity A is 0.68; the value of heat dissipation function ε is 0.70, and the control time interval is 0.70. The value is 15min.
CN201510641078.6A 2015-09-30 2015-09-30 Air conditioner load priority interruption method based on electricity utilization comfort level Active CN105444343B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510641078.6A CN105444343B (en) 2015-09-30 2015-09-30 Air conditioner load priority interruption method based on electricity utilization comfort level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510641078.6A CN105444343B (en) 2015-09-30 2015-09-30 Air conditioner load priority interruption method based on electricity utilization comfort level

Publications (2)

Publication Number Publication Date
CN105444343A true CN105444343A (en) 2016-03-30
CN105444343B CN105444343B (en) 2020-03-13

Family

ID=55554833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510641078.6A Active CN105444343B (en) 2015-09-30 2015-09-30 Air conditioner load priority interruption method based on electricity utilization comfort level

Country Status (1)

Country Link
CN (1) CN105444343B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105864963A (en) * 2016-04-05 2016-08-17 东南大学 Aggregation air conditioner load control method based on conversion time priority list
CN106451472A (en) * 2016-10-24 2017-02-22 国电南瑞科技股份有限公司 A method for users to participate in power grid peak regulation based on virtual machines
CN106485068A (en) * 2016-10-08 2017-03-08 东南大学 A kind of polymerization modeling method of air conditioner load
CN107178869A (en) * 2017-04-24 2017-09-19 东南大学 The polymerization control despicking method of convertible frequency air-conditioner load
CN108266958A (en) * 2017-12-08 2018-07-10 广州供电局有限公司 Demand response capacity evaluating method, device, storage medium and computer equipment
CN108562019A (en) * 2018-04-02 2018-09-21 广东美的暖通设备有限公司 Control method and control system, the air-conditioning system of air-conditioning system
CN108599177A (en) * 2018-05-23 2018-09-28 云南电网有限责任公司 A kind of automatic demand response strategy of resident based on dynamic priority
CN109409741A (en) * 2018-10-26 2019-03-01 国网上海市电力公司 A kind of flexible peak regulating method of central air-conditioning
CN109737570A (en) * 2019-01-21 2019-05-10 中国电力科学研究院有限公司 A kind of multi-line operation control method and system
CN110161856A (en) * 2019-05-24 2019-08-23 华南理工大学 A kind of business premises air conditioner load centralized dispatching method
CN110223005A (en) * 2019-06-21 2019-09-10 清华大学 Air conditioner load power supply reliability assessment method and assessment device
CN111520882A (en) * 2020-04-02 2020-08-11 广东汇电云联智能科技有限公司 Automatic measurement method and device for hydraulic balance of air conditioning system and storage medium
CN111697594A (en) * 2020-06-22 2020-09-22 南方电网科学研究院有限责任公司 Demand response control method, system and equipment for limiting load reduction rate of power grid
CN112556109A (en) * 2020-11-25 2021-03-26 国网上海市电力公司 Central air conditioner demand response scheme optimization method based on global temperature adjustment
CN112665159A (en) * 2021-01-07 2021-04-16 西安建筑科技大学 Load rebound quantity optimization and load regulation method and system based on demand response
CN113218053A (en) * 2020-05-29 2021-08-06 国网河北省电力有限公司 Air conditioner load regulation and control system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3718456A1 (en) * 1986-06-11 1987-12-17 Budapesti Eletromos Muevek Method for increasing the load carrying capability of installed low-voltage power distributor systems by means of central control of the switching of periodic loads
JP2002277017A (en) * 2001-03-14 2002-09-25 Daikin Ind Ltd Air conditioner, method for controlling the same, air conditioning system and program thereof
KR100949044B1 (en) * 2009-08-07 2010-03-24 충남대학교산학협력단 Optimized operation method for cooling system
CN103257571A (en) * 2013-04-22 2013-08-21 东南大学 Air conditioning load control strategy making method based on direct load control
CN103746453A (en) * 2013-12-27 2014-04-23 江苏南瑞帕威尔电气有限公司 A power load adjusting system based on user real-time feedback
CN103972896A (en) * 2014-05-13 2014-08-06 国家电网公司 Load modeling and optimal control method based on demand response
CN104374042A (en) * 2014-07-28 2015-02-25 广东电网公司电力科学研究院 Air conditioner load control method and system
CN104990208A (en) * 2015-06-04 2015-10-21 国家电网公司 Method for controlling and reducing peak load of power grid by using air conditioning load

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3718456A1 (en) * 1986-06-11 1987-12-17 Budapesti Eletromos Muevek Method for increasing the load carrying capability of installed low-voltage power distributor systems by means of central control of the switching of periodic loads
JP2002277017A (en) * 2001-03-14 2002-09-25 Daikin Ind Ltd Air conditioner, method for controlling the same, air conditioning system and program thereof
KR100949044B1 (en) * 2009-08-07 2010-03-24 충남대학교산학협력단 Optimized operation method for cooling system
CN103257571A (en) * 2013-04-22 2013-08-21 东南大学 Air conditioning load control strategy making method based on direct load control
CN103746453A (en) * 2013-12-27 2014-04-23 江苏南瑞帕威尔电气有限公司 A power load adjusting system based on user real-time feedback
CN103972896A (en) * 2014-05-13 2014-08-06 国家电网公司 Load modeling and optimal control method based on demand response
CN104374042A (en) * 2014-07-28 2015-02-25 广东电网公司电力科学研究院 Air conditioner load control method and system
CN104990208A (en) * 2015-06-04 2015-10-21 国家电网公司 Method for controlling and reducing peak load of power grid by using air conditioning load

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105864963B (en) * 2016-04-05 2018-08-21 东南大学 A kind of polymerization air conditioner load control method based on transformation time priority list
CN105864963A (en) * 2016-04-05 2016-08-17 东南大学 Aggregation air conditioner load control method based on conversion time priority list
CN106485068A (en) * 2016-10-08 2017-03-08 东南大学 A kind of polymerization modeling method of air conditioner load
CN106485068B (en) * 2016-10-08 2018-12-28 东南大学 A kind of polymerization modeling method of air conditioner load
CN106451472B (en) * 2016-10-24 2018-10-02 国电南瑞科技股份有限公司 A kind of user's participation peak load regulation network method based on virtual robot arm
CN106451472A (en) * 2016-10-24 2017-02-22 国电南瑞科技股份有限公司 A method for users to participate in power grid peak regulation based on virtual machines
CN107178869A (en) * 2017-04-24 2017-09-19 东南大学 The polymerization control despicking method of convertible frequency air-conditioner load
CN107178869B (en) * 2017-04-24 2019-09-20 东南大学 Aggregation control peak shaving method of frequency conversion air conditioner load
CN108266958A (en) * 2017-12-08 2018-07-10 广州供电局有限公司 Demand response capacity evaluating method, device, storage medium and computer equipment
CN108562019A (en) * 2018-04-02 2018-09-21 广东美的暖通设备有限公司 Control method and control system, the air-conditioning system of air-conditioning system
CN108562019B (en) * 2018-04-02 2020-11-27 广东美的暖通设备有限公司 Control method and control system of air conditioning system and air conditioning system
CN108599177A (en) * 2018-05-23 2018-09-28 云南电网有限责任公司 A kind of automatic demand response strategy of resident based on dynamic priority
CN108599177B (en) * 2018-05-23 2021-09-07 云南电网有限责任公司 Dynamic priority based automatic demand response strategy for residential users
CN109409741A (en) * 2018-10-26 2019-03-01 国网上海市电力公司 A kind of flexible peak regulating method of central air-conditioning
CN109409741B (en) * 2018-10-26 2021-12-07 国网上海市电力公司 Flexible peak regulation method of central air conditioner
CN109737570A (en) * 2019-01-21 2019-05-10 中国电力科学研究院有限公司 A kind of multi-line operation control method and system
CN110161856A (en) * 2019-05-24 2019-08-23 华南理工大学 A kind of business premises air conditioner load centralized dispatching method
CN110223005B (en) * 2019-06-21 2021-05-25 清华大学 A kind of air-conditioning load power supply reliability evaluation method and evaluation device
CN110223005A (en) * 2019-06-21 2019-09-10 清华大学 Air conditioner load power supply reliability assessment method and assessment device
CN111520882A (en) * 2020-04-02 2020-08-11 广东汇电云联智能科技有限公司 Automatic measurement method and device for hydraulic balance of air conditioning system and storage medium
CN111520882B (en) * 2020-04-02 2021-09-24 广东汇电云联智能科技有限公司 Automatic measurement method and device for hydraulic balance of air conditioning system and storage medium
CN113218053A (en) * 2020-05-29 2021-08-06 国网河北省电力有限公司 Air conditioner load regulation and control system
CN111697594A (en) * 2020-06-22 2020-09-22 南方电网科学研究院有限责任公司 Demand response control method, system and equipment for limiting load reduction rate of power grid
CN112556109A (en) * 2020-11-25 2021-03-26 国网上海市电力公司 Central air conditioner demand response scheme optimization method based on global temperature adjustment
CN112556109B (en) * 2020-11-25 2022-07-12 国网上海市电力公司 An optimization method of central air conditioning demand response scheme based on global temperature adjustment
CN112665159A (en) * 2021-01-07 2021-04-16 西安建筑科技大学 Load rebound quantity optimization and load regulation method and system based on demand response
CN112665159B (en) * 2021-01-07 2021-12-21 西安建筑科技大学 Demand response-based load rebound optimization, load regulation method and system

Also Published As

Publication number Publication date
CN105444343B (en) 2020-03-13

Similar Documents

Publication Publication Date Title
CN105444343A (en) Air conditioner load priority interruption method based on electricity utilization comfort level
CN104778631B (en) A kind of resident&#39;s electricity consumption model-based optimization method of Demand-Oriented response
CN103257571B (en) Air conditioning load control strategy making method based on direct load control
CN105138847B (en) Convertible frequency air-conditioner load participates in the energy conservation potential appraisal procedure of demand response
CN104613602B (en) A kind of central air-conditioning Precise control method
CN105135623B (en) A kind of central air-conditioning Control of decreasing load method for meeting peak load regulation network and users&#39;comfort
CN104134995B (en) Secondary Frequency Regulation Method for Air Conditioning Load Participation System Based on Energy Storage Modeling
CN110425706A (en) Polymerization air conditioner load towards power grid peak clipping regulates and controls method
CN107449100A (en) Central air-conditioning flexibility peak regulation long-range control method based on distributed structure/architecture
CN106765994B (en) A kind of multifarious air conditioner load clustered control strategy of hold mode
CN110094802A (en) A kind of heat pump and heat storage electric boiler united heat load distribution method and device
CN103336434A (en) Requirement response control method for household temperature control load
CN105605753A (en) Fresh air supply temperature control system based on variable refrigerant volume (VRV) and fresh air fan hybrid air-conditioning system
CN105790286A (en) Strategy for central air conditioner load aggregation and participation in distributed power supply output stabilization
CN107451931A (en) The Optimization Scheduling of home intelligent power equipment
CN108171436B (en) Residential air-conditioning demand response strategy and control method for its impact on the power distribution side
CN109737570B (en) A method and system for multi-line operation control
CN109685396A (en) It is a kind of meter and public building demand response resource power distribution network energy management method
CN109812946B (en) A control method suitable for large-scale residential air-conditioning load group demand response
Li et al. Control method of multi-energy system based on layered control architecture
CN105823175A (en) Air conditioner time-sharing scheduling method based on demand response
TW201027014A (en) Method for managing air conditioning power consumption
CN108122067A (en) A kind of modeling method and system for building demand response dynamic process
CN111681133B (en) Method and device for processing electrical load information
CN108224692B (en) Prediction method of air conditioning flexible control response ability considering outdoor air temperature prediction error

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant