CN105406458B - A kind of wind-powered electricity generation collects the practical appraisal procedure of system ability of supplying electric power and device - Google Patents

A kind of wind-powered electricity generation collects the practical appraisal procedure of system ability of supplying electric power and device Download PDF

Info

Publication number
CN105406458B
CN105406458B CN201410431599.4A CN201410431599A CN105406458B CN 105406458 B CN105406458 B CN 105406458B CN 201410431599 A CN201410431599 A CN 201410431599A CN 105406458 B CN105406458 B CN 105406458B
Authority
CN
China
Prior art keywords
msup
mrow
msub
msqrt
collection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410431599.4A
Other languages
Chinese (zh)
Other versions
CN105406458A (en
Inventor
谢欢
赵亚清
吴涛
姚谦
李长宇
付宏伟
李善颖
王非
史扬
曹天植
金海峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
North China Electric Power Research Institute Co Ltd
Original Assignee
State Grid Corp of China SGCC
North China Electric Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, North China Electric Power Research Institute Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201410431599.4A priority Critical patent/CN105406458B/en
Publication of CN105406458A publication Critical patent/CN105406458A/en
Application granted granted Critical
Publication of CN105406458B publication Critical patent/CN105406458B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

本发明涉及一种风电汇集系统送电能力实用评估方法及装置,其中,该评估方法适用于动态无功补偿装置,所述动态无功补偿装置采用纯感性支路恒无功控制,所述方法包括:根据纯感性支路恒无功控制获取风电汇集系统的电压‑无功灵敏度;投入单组固定电容,根据所述风电汇集系统的电压‑无功灵敏度获取投入的单组固定电容补偿后引起的电压变化幅度,并根据投入的单组固定电容补偿后引起的电压变化幅度获取风电汇集系统电压波动可控的必要条件;根据所述风电汇集系统电压波动可控的必要条件获取风电汇集系统送电能力实用评估修正方程;利用所述风电汇集系统送电能力实用评估修正方程实现风电汇集系统送电能力实用评估。

The present invention relates to a practical evaluation method and device for the power transmission capacity of a wind power collection system, wherein the evaluation method is suitable for a dynamic reactive power compensation device, and the dynamic reactive power compensation device adopts a purely inductive branch constant reactive power control, and the method Including: obtaining the voltage-reactive power sensitivity of the wind power collection system according to the constant reactive power control of the pure inductive branch; inputting a single set of fixed capacitors, and obtaining the input single set of fixed capacitors according to the voltage-reactive power sensitivity of the wind power collection system. According to the range of voltage change of the input single set of fixed capacitor compensation, the necessary conditions for the controllable voltage fluctuation of the wind power collection system are obtained; according to the necessary conditions for the controllable voltage fluctuation of the wind power collection system, the wind power collection system Practical evaluation and correction equation of electric capacity; the practical evaluation of power transmission capacity of the wind power collection system is realized by using the correction equation for practical evaluation of the power transmission capacity of the wind power collection system.

Description

一种风电汇集系统送电能力实用评估方法及装置A practical evaluation method and device for power transmission capacity of a wind power collection system

技术领域technical field

本发明涉及送电能力评估领域,特别涉及一种风电汇集系统送电能力实用评估方法及装置。The invention relates to the field of power transmission capacity evaluation, in particular to a practical evaluation method and device for the power transmission capacity of a wind power collection system.

背景技术Background technique

随着风电并网容量逐年增加,电网的经济调度与安全运行面临巨大的挑战。准确评估实际风电系统的送电能力,不仅是防范系统运行点接近或达到静态电压稳定极限的重要手段,也是保证系统电压调整灵敏度正常可控的关键方法。一般运行工况下,要求系统内最大单组无功补偿装置投切引起所在母线电压变化不宜超过额定电压的2.5%。With the increase of wind power grid-connected capacity year by year, the economic dispatch and safe operation of the power grid are facing great challenges. Accurately evaluating the power transmission capacity of the actual wind power system is not only an important means to prevent the system operating point from approaching or reaching the static voltage stability limit, but also a key method to ensure that the system voltage adjustment sensitivity is normal and controllable. Under normal operating conditions, it is required that the change in bus voltage caused by the switching of the largest single reactive power compensation device in the system should not exceed 2.5% of the rated voltage.

如图1所示,为传统地风电汇集系统等效电路示意图。我国风电系统典型结构可用图1电路等效,风电汇集系统用单个风电场模拟。在图1中,E:外部等值无穷大母线电压;V:风电场并网母线电压;P:风电场外送有功功率;Qc:单组固定电容补偿容量;QL:动态无功补偿装置感性支路初始吸收无功;X:传输线路等值电抗;现有风电汇集系统送电能力评估方程需借助静态电压灵敏度方法推导,并未考虑控制器动态特性的影响。As shown in FIG. 1 , it is a schematic diagram of an equivalent circuit of a traditional wind power collection system. The typical structure of my country's wind power system can be equivalent to the circuit in Figure 1, and the wind power collection system is simulated by a single wind farm. In Fig. 1, E: external equivalent infinite bus voltage; V: grid-connected bus voltage of wind farm; P: active power sent out by wind farm; Q c : compensation capacity of single fixed capacitor; Q L : dynamic reactive power compensation device The initial reactive power absorbed by the inductive branch; X: the equivalent reactance of the transmission line; the evaluation equation of the current transmission capacity of the existing wind power collection system needs to be derived by means of the static voltage sensitivity method, and the influence of the dynamic characteristics of the controller is not considered.

设单组无功补偿装置容量为Qc,稳定运行中可控制的电压变化幅度不可超过ξ。在不考虑动态无功补偿装置控制影响时,其感性支路可视为固定电感,因此得到静态电压灵敏度公式(如式1),并由此推得静态电压可控的必要条件如式2:Assuming that the capacity of a single group of reactive power compensation devices is Q c , the controllable voltage variation range in stable operation cannot exceed ξ. When the influence of the control of the dynamic reactive power compensation device is not considered, its inductive branch can be regarded as a fixed inductance, so the static voltage sensitivity formula (such as formula 1) is obtained, and the necessary conditions for static voltage controllability are deduced as formula 2:

最终由式2推得未计及动态无功补偿装置控制影响的风电汇集系统送电能力评估方程,见式3:Finally, the evaluation equation of the transmission capacity of the wind power collection system that does not take into account the influence of the control of the dynamic reactive power compensation device is deduced from Equation 2, as shown in Equation 3:

由于风电系统送电能力现有评估方程未考虑风电场内动态无功补偿装置控制的影响,因此由该评估方程的估算结果并不准确,容易造成实际风电系统送电能力的过高估计,导致系统电压调整灵敏度过大而引起单组电容补偿后电压波动幅度超过ξ的后果,严重威胁系统稳定运行。Since the existing evaluation equation of wind power system power transmission capacity does not consider the influence of dynamic reactive power compensation device control in the wind farm, the estimation result of this evaluation equation is not accurate, which may easily lead to overestimation of the actual wind power system power transmission capacity, resulting in The excessive sensitivity of the system voltage adjustment causes the consequences of voltage fluctuations exceeding ξ after compensation by a single group of capacitors, which seriously threatens the stable operation of the system.

目前关于大规模风电汇集系统有功送出能力评估方程的推导多是基于风电接入系统的静态电压灵敏度方法,实际上,风电场内无功源种类繁多,除了静态电容器外,动态无功补偿装置的应用也很广泛,因此只考虑静态特性、未计及动态无功补偿装置控制影响的风电系统送电能力评估方程不准确,可能会造成风电系统送出能力的过高估计,威胁系统安全。At present, the derivation of the evaluation equation for the active power delivery capability of large-scale wind power collection systems is mostly based on the static voltage sensitivity method of the wind power access system. In fact, there are many types of reactive power sources in the wind farm. In addition to static capacitors, dynamic reactive power compensation devices It is also widely used, so the wind power system transmission capacity evaluation equation that only considers static characteristics and does not take into account the influence of dynamic reactive power compensation device control is inaccurate, which may cause overestimation of wind power system transmission capacity and threaten system security.

发明内容Contents of the invention

为解决上述技术问题,本发明提出一种风电汇集系统送电能力实用评估方法及装置,避免了在现有技术中,未计及动态无功补偿装置控制影响的风电系统送电能力评估方程不准确,可能会造成风电系统送出能力的过高估计。In order to solve the above technical problems, the present invention proposes a practical evaluation method and device for the power transmission capacity of the wind power collection system, which avoids the inconsistency of the power transmission capacity evaluation equation of the wind power system that does not take into account the influence of the control of the dynamic reactive power compensation device in the prior art. Accuracy may lead to an overestimation of the output capacity of the wind power system.

为实现上述目的,本发明提供了一种风电汇集系统送电能力实用评估方法,其特征在于,该评估方法适用于动态无功补偿装置,所述动态无功补偿装置采用纯感性支路恒无功控制,所述方法包括:In order to achieve the above purpose, the present invention provides a practical evaluation method for the power transmission capacity of the wind power collection system, which is characterized in that the evaluation method is suitable for a dynamic reactive power compensation device, and the dynamic reactive power compensation device adopts a purely inductive branch constant reactive power power control, the method comprising:

根据纯感性支路恒无功控制获取风电汇集系统的电压-无功灵敏度;Obtain the voltage-reactive power sensitivity of the wind power collection system according to the constant reactive power control of the pure inductive branch;

投入单组固定电容,根据所述风电汇集系统的电压-无功灵敏度获取投入的单组固定电容补偿后引起的电压变化幅度,并根据投入的单组固定电容补偿后引起的电压变化幅度获取风电汇集系统电压波动可控的必要条件;Put in a single set of fixed capacitors, and obtain the range of voltage change caused by the compensation of the input single set of fixed capacitors according to the voltage-reactive power sensitivity of the wind power collection system, and obtain the range of voltage changes caused by the input of a single set of fixed capacitors after compensation. Necessary conditions for pooling system voltage fluctuations to be controllable;

根据所述风电汇集系统电压波动可控的必要条件获取风电汇集系统送电能力实用评估修正方程;According to the necessary conditions for the controllable voltage fluctuation of the wind power collection system, a practical evaluation correction equation for the power transmission capacity of the wind power collection system is obtained;

利用所述风电汇集系统送电能力实用评估修正方程实现风电汇集系统送电能力实用评估。The practical evaluation of the power transmission capacity of the wind power collection system is realized by using the correction equation for the practical evaluation of the power transmission capacity of the wind power collection system.

优选地,所述风电汇集系统的电压-无功灵敏度的表达式为:Preferably, the voltage-reactive power sensitivity expression of the wind power collection system is:

其中,QL表示为动态无功补偿装置感性支路初始吸收无功;E表示为外部等值无穷大母线电压;V表示为风电场并网母线电压;P表示为风电场外送有功功率;X表示为传输线路等值电抗。Among them, Q L represents the initial reactive power absorbed by the inductive branch of the dynamic reactive power compensation device; E represents the external equivalent infinite bus voltage; V represents the wind farm grid-connected bus voltage; P represents the active power sent out by the wind farm; X Expressed as the equivalent reactance of the transmission line.

优选地,所述投入的单组固定电容补偿后引起的电压变化幅度的表达式为:Preferably, the expression of the range of voltage change caused by the input of a single set of fixed capacitance compensation is:

其中,Qc表示为单组固定电容容量。Among them, Qc is expressed as a single set of fixed capacitance.

优选地,所述风电汇集系统电压波动可控的必要条件:Preferably, the necessary conditions for the voltage fluctuation of the wind power collection system to be controllable:

其中,ξ表示为投入单组电容补偿后电压变化幅度限值。Among them, ξ represents the limit value of the voltage change amplitude after inputting a single set of capacitance compensation.

优选地,所述风电汇集系统送电能力实用评估修正方程的表达式为:Preferably, the expression of the correction equation for the practical evaluation of the power transmission capacity of the wind power collection system is:

为实现上述目的,本发明还提供了一种风电汇集系统送电能力实用评估装置,该评估装置适用于动态无功补偿装置,所述动态无功补偿装置采用纯感性支路恒无功控制,所述装置包括:In order to achieve the above purpose, the present invention also provides a practical evaluation device for the power transmission capacity of the wind power collection system, the evaluation device is suitable for a dynamic reactive power compensation device, and the dynamic reactive power compensation device adopts a purely inductive branch constant reactive power control, The devices include:

电压-无功灵敏度获取单元,用于根据纯感性支路恒无功控制获取风电汇集系统的电压-无功灵敏度;The voltage-reactive power sensitivity acquisition unit is used to obtain the voltage-reactive power sensitivity of the wind power collection system according to the constant reactive power control of the pure inductive branch;

电压波动可控的必要条件获取单元,用于投入单组固定电容,根据所述风电汇集系统的电压-无功灵敏度获取投入的单组固定电容补偿后引起的电压变化幅度,根据投入的单组固定电容补偿后引起的电压变化幅度获取风电汇集系统电压波动可控的必要条件;The necessary condition acquisition unit for controllable voltage fluctuations is used to input a single set of fixed capacitors, and obtain the range of voltage change caused by the input of a single set of fixed capacitors after compensation according to the voltage-reactive power sensitivity of the wind power collection system. The necessary condition for the controllable voltage fluctuation of the wind power collection system to obtain the voltage variation range caused by the fixed capacitor compensation;

送电能力实用评估修正方程获取单元,用于根据所述风电汇集系统电压波动可控的必要条件获取风电汇集系统送电能力实用评估修正方程;The power transmission capacity practical evaluation correction equation acquisition unit is used to obtain the wind power collection system practical evaluation correction equation for the wind power collection system according to the necessary condition that the voltage fluctuation of the wind power collection system is controllable;

评估单元,用于利用所述风电汇集系统送电能力实用评估修正方程实现风电汇集系统送电能力实用评估。The evaluation unit is used to realize the practical evaluation of the power transmission capacity of the wind power collection system by using the correction equation for the practical evaluation of the power transmission capacity of the wind power collection system.

优选地,所述电压-无功灵敏度获取单元获取的风电汇集系统的电压-无功灵敏度的表达式为:Preferably, the voltage-reactive power sensitivity expression of the wind power collection system obtained by the voltage-reactive power sensitivity acquisition unit is:

其中,QL表示为动态无功补偿装置感性支路初始吸收无功;E表示为外部等值无穷大母线电压;V表示为风电场并网母线电压;P表示为风电场外送有功功率;X表示为传输线路等值电抗。Among them, Q L represents the initial reactive power absorbed by the inductive branch of the dynamic reactive power compensation device; E represents the external equivalent infinite bus voltage; V represents the wind farm grid-connected bus voltage; P represents the active power sent out by the wind farm; X Expressed as the equivalent reactance of the transmission line.

优选地,所述电压波动可控的必要条件获取单元获取的投入的单组固定电容补偿后引起的电压变化幅度的表达式为:Preferably, the expression of the range of voltage change caused by the input of a single set of fixed capacitors acquired by the acquisition unit for the necessary condition for controllable voltage fluctuation is:

其中,Qc表示为单组固定电容容量。Among them, Qc is expressed as a single set of fixed capacitance.

优选地,所述电压波动可控的必要条件获取单元获取的风电汇集系统电压波动可控的必要条件:Preferably, the necessary condition for controllable voltage fluctuation of the wind power collection system acquired by the acquisition unit is:

其中,ξ表示为投入单组电容补偿后电压变化幅度限值。Among them, ξ represents the limit value of the voltage change amplitude after inputting a single set of capacitance compensation.

优选地,所述送电能力实用评估修正方程获取单元获取的风电汇集系统送电能力实用评估修正方程的表达式为:Preferably, the expression of the practical evaluation correction equation for the power transmission capacity of the wind power collection system acquired by the power transmission capacity practical evaluation correction equation acquisition unit is:

上述技术方案具有如下有益效果:The above technical scheme has the following beneficial effects:

本发明所提出的风电汇集系统送电能力实用评估修正方程考虑了风电场动态无功补偿装置控制的影响,使调度部门能够更加精确的掌握风电系统的实际送电能力,避免了某工况下风电汇集系统送电能力过高估计的事情发生,进一步保证了系统安全稳定。The practical evaluation correction equation for the power transmission capacity of the wind power collection system proposed by the present invention takes into account the influence of the control of the dynamic reactive power compensation device of the wind farm, so that the dispatching department can more accurately grasp the actual power transmission capacity of the wind power system, and avoids The overestimation of the power transmission capacity of the wind power collection system has occurred, which further ensures the safety and stability of the system.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1为传统地风电汇集系统等效电路示意图;FIG. 1 is a schematic diagram of an equivalent circuit of a traditional wind power collection system;

图2为本发明提出的一种风电汇集系统送电能力实用评估方法流程图;Fig. 2 is a flow chart of a practical evaluation method for power transmission capacity of a wind power collection system proposed by the present invention;

图3为本发明提出的一种风电汇集系统送电能力实用评估装置框图;Fig. 3 is a block diagram of a practical evaluation device for power transmission capacity of a wind power collection system proposed by the present invention;

图4为本实施例投入单组容量为20Mvar的电容器后系统电压变化对比图。Fig. 4 is a comparison diagram of system voltage changes after a single set of capacitors with a capacity of 20Mvar is put into use in this embodiment.

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

本发明的工作原理为:目前风电场运行中为避免日常运行中不必要的功率损耗,通常将动态无功补偿装置容性支路设为手动投退,动态无功补偿装置采用纯感性支路恒无功控制。因此具备以上特征的风电系统送电能力评估需考虑详细动态无功补偿装置感性支路恒无功控制的影响。式4为考虑感性支路恒无功控制后系统的电压-无功灵敏度:The working principle of the present invention is: in order to avoid unnecessary power loss in daily operation in the current wind farm operation, the capacitive branch of the dynamic reactive power compensation device is usually set as manual switching, and the dynamic reactive power compensation device adopts a purely inductive branch Constant reactive power control. Therefore, the evaluation of the power transmission capacity of the wind power system with the above characteristics needs to consider the influence of the constant reactive power control of the inductive branch of the detailed dynamic reactive power compensation device. Equation 4 is the voltage-reactive power sensitivity of the system after considering the constant reactive power control of the inductive branch:

其中,QL为动态无功补偿装置感性支路初始吸收无功,其它参数仍与图1相同。设单组固定电容容量仍为Qc,则投入单组固定电容后引起的电压变化幅度为:Among them, Q L is the initial reactive power absorbed by the inductive branch of the dynamic reactive power compensation device, and other parameters are still the same as those in Figure 1. Assuming that the capacity of a single set of fixed capacitors is still Qc, the range of voltage change caused by putting in a single set of fixed capacitors is:

同样设投入单组电容补偿后电压变化幅度限值为ξ,则系统电压波动可控的必要条件变为:Similarly, if the voltage change range limit is ξ after a single set of capacitor compensation is put into use, then the necessary conditions for the controllable voltage fluctuation of the system become:

最终由式6推得风电汇集系统送电能力实用评估修正方程:Finally, the correction equation for the practical evaluation of the power transmission capacity of the wind power collection system is deduced from Equation 6:

观察现有风电送电能力评估方程与修正方程得出,考虑动态无功补偿装置控制后,且同时满足电压波动幅度要求的情况下,风电送电能力估算值减小,风电系统送电能力被削弱。从而避免了因风电系统送出能力的过高估计使得严重威胁系统稳定运行。Observing the existing evaluation equation and correction equation of wind power transmission capacity, it can be concluded that after considering the control of dynamic reactive power compensation device and meeting the requirements of voltage fluctuation range, the estimated value of wind power transmission capacity will decrease, and the power transmission capacity of wind power system will be reduced. weaken. Thus avoiding the overestimation of the output capacity of the wind power system, which seriously threatens the stable operation of the system.

基于上述工作原理,本发明提出了一种风电汇集系统送电能力实用评估方法流程图,如图2所示,该评估方法适用于动态无功补偿装置,所述动态无功补偿装置采用纯感性支路恒无功控制,所述方法包括:Based on the above working principle, the present invention proposes a flow chart of a practical evaluation method for the transmission capacity of a wind power collection system. Branch constant reactive power control, the method includes:

步骤201):根据纯感性支路恒无功控制获取风电汇集系统的电压-无功灵敏度;Step 201): Obtain the voltage-reactive power sensitivity of the wind power collection system according to the constant reactive power control of the pure inductive branch;

步骤202):投入单组固定电容,根据所述风电汇集系统的电压-无功灵敏度获取投入的单组固定电容补偿后引起的电压变化幅度,并根据投入的单组固定电容补偿后引起的电压变化幅度获取风电汇集系统电压波动可控的必要条件;Step 202): Putting in a single set of fixed capacitors, according to the voltage-reactive power sensitivity of the wind power collection system, obtaining the range of voltage change caused by the input of the single set of fixed capacitors after compensation, and according to the voltage caused by the input of the single set of fixed capacitors after compensation The range of change obtains the necessary conditions for the controllable voltage fluctuation of the wind power collection system;

步骤203):根据所述风电汇集系统电压波动可控的必要条件获取风电汇集系统送电能力实用评估修正方程;Step 203): According to the necessary conditions for the controllable voltage fluctuation of the wind power collection system, obtain a practical evaluation correction equation for the power transmission capacity of the wind power collection system;

步骤204):利用所述风电汇集系统送电能力实用评估修正方程实现风电汇集系统送电能力实用评估。Step 204): Utilizing the correction equation for the practical evaluation of the power transmission capacity of the wind power collection system to realize the practical evaluation of the power transmission capacity of the wind power collection system.

其中,所述风电汇集系统的电压-无功灵敏度的表达式为:Wherein, the expression of the voltage-reactive power sensitivity of the wind power collection system is:

上式中,QL表示为动态无功补偿装置感性支路初始吸收无功;E表示为外部等值无穷大母线电压;V表示为风电场并网母线电压;P表示为风电场外送有功功率;X表示为传输电抗。In the above formula, Q L represents the initial reactive power absorbed by the inductive branch of the dynamic reactive power compensation device; E represents the external equivalent infinite bus voltage; V represents the wind farm grid-connected bus voltage; P represents the active power sent from the wind farm ; X represents the transmission reactance.

其中,所述投入的单组固定电容补偿后引起的电压变化幅度的表达式为:Wherein, the expression of the range of voltage change caused by the input of a single set of fixed capacitance compensation is:

上式中,Qc表示为单组固定电容容量。In the above formula, Qc is expressed as a single set of fixed capacitance.

其中,所述风电汇集系统电压波动可控的必要条件:Among them, the necessary conditions for the voltage fluctuation of the wind power collection system to be controllable:

上式中,ξ表示为投入单组电容补偿后电压变化幅度限值。In the above formula, ξ represents the limit value of the voltage change amplitude after inputting a single set of capacitor compensation.

其中,所述风电汇集系统送电能力实用评估修正方程的表达式为:Wherein, the expression of the correction equation for the practical evaluation of the power transmission capacity of the wind power collection system is:

如图3所示,为本发明提出的一种风电汇集系统送电能力实用评估装置框图。该评估装置适用于动态无功补偿装置,所述动态无功补偿装置采用纯感性支路恒无功控制,所述装置包括:As shown in FIG. 3 , it is a block diagram of a practical evaluation device for power transmission capacity of a wind power collection system proposed by the present invention. This evaluation device is suitable for dynamic reactive power compensation device, which adopts pure inductive branch constant reactive power control, and the device includes:

电压-无功灵敏度获取单元301,用于根据纯感性支路恒无功控制获取风电汇集系统的电压-无功灵敏度;The voltage-reactive power sensitivity acquisition unit 301 is used to obtain the voltage-reactive power sensitivity of the wind power collection system according to the constant reactive power control of the pure inductive branch;

电压波动可控的必要条件获取单元302,用于投入单组固定电容,根据所述风电汇集系统的电压-无功灵敏度获取投入的单组固定电容补偿后引起的电压变化幅度,根据投入的单组固定电容补偿后引起的电压变化幅度获取风电汇集系统电压波动可控的必要条件;The necessary condition acquisition unit 302 for controllable voltage fluctuations is used to input a single set of fixed capacitors, and obtain the range of voltage change caused by the input of a single set of fixed capacitors after compensation according to the voltage-reactive power sensitivity of the wind power collection system. The necessary condition for obtaining the controllable voltage fluctuation of the wind power collection system is obtained from the voltage change range caused by the group fixed capacitor compensation;

送电能力实用评估修正方程获取单元303,用于根据所述风电汇集系统电压波动可控的必要条件获取风电汇集系统送电能力实用评估修正方程;The power transmission capacity practical evaluation correction equation acquisition unit 303 is used to obtain the wind power collection system practical evaluation correction equation according to the necessary conditions for the controllable voltage fluctuation of the wind power collection system;

评估单元304,用于利用所述风电汇集系统送电能力实用评估修正方程实现风电汇集系统送电能力实用评估。The evaluation unit 304 is configured to implement the practical evaluation of the power transmission capacity of the wind power collection system by using the correction equation for the practical evaluation of the power transmission capacity of the wind power collection system.

为了深入了解本发明,下面结合附图和应用实例对本发明的实施例作进一步详细描述。In order to understand the present invention in depth, the embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings and application examples.

目前风电场中固定电容的单组容量约为20Mvar,根据电力系统相关规定,系统内单组无功补偿装置投切引起的所在母线电压变化不宜超过额定电压的2.5%。以图1中简单系统为例,计算出评估方程修正前后图1系统送电能力估算值。系统具体参数如下:外部等值无穷大母线电压:E=1(pu);风电场并网点电压:V=1(pu);系统基准容量:S=1000MVA;单组固定电容补偿容量:Qc=0.02(pu);动态无功补偿装置感性支路初始吸收无功:QL=0.039(pu);传输线路等值电抗:X=0.6(pu)。At present, the capacity of a single group of fixed capacitors in wind farms is about 20Mvar. According to the relevant regulations of the power system, the voltage change of the busbar caused by switching of a single group of reactive power compensation devices in the system should not exceed 2.5% of the rated voltage. Taking the simple system in Fig. 1 as an example, calculate the estimated value of power transmission capacity of the system in Fig. 1 before and after the evaluation equation is revised. The specific parameters of the system are as follows: external equivalent infinite bus voltage: E = 1 (pu); wind farm grid-connected point voltage: V = 1 (pu); system reference capacity: S = 1000MVA; single group fixed capacitance compensation capacity: Q c = 0.02(pu); the initial reactive power absorbed by the inductive branch of the dynamic reactive power compensation device: Q L =0.039(pu); the equivalent reactance of the transmission line: X=0.6(pu).

为满足电压波动幅度小于额定电压的2.5%,由风电汇集系统送电能力现有评估方程得到的风电有功出力P应小于0.83(pu),而由式6所列修正方程得出的风电有功出力P应低于0.76(pu),显然考虑动态无功补偿装置控制后,在正常电压波动幅度内,风电送电能力估算值明显减小。In order to satisfy that the voltage fluctuation range is less than 2.5% of the rated voltage, the wind power active output P obtained from the existing evaluation equation of the wind power collection system transmission capacity should be less than 0.83(pu), while the wind power active output P obtained by the correction equation listed in Equation 6 P should be lower than 0.76(pu). Obviously, after considering the control of the dynamic reactive power compensation device, within the normal voltage fluctuation range, the estimated value of wind power transmission capacity is significantly reduced.

为验证修正方程的准确性,设置图1简单风电系统有功出力P分别为0.83(pu)、0.76(pu),其它参数不变,得到相同容量电容投切后风电场并网点电压变化。如图4所示,为本实施例投入单组容量为20Mvar的电容器后系统电压变化对比图。由图4得出,当风电系统实际有功出力为现有评估方程估算值,且未考虑动态无功补偿装置控制情况下,单组容量为20Mvar的电容投切后,电压变化幅度未超过2.5%,而考虑动态无功补偿装置控制后电压变化幅度达到2.8%,已超过2.5%;当风电系统实际有功出力为修正评估方程估算值时,相同容量电容投切后,电压变化幅度未超过2.5%。很明显,现有评估方程容易造成实际系统送电能力过高估计,而修正方程则更准确,更贴近实际运行工况。In order to verify the accuracy of the correction equation, the active output P of the simple wind power system in Figure 1 is set to 0.83 (pu) and 0.76 (pu) respectively, and other parameters remain unchanged. As shown in FIG. 4 , it is a comparison chart of system voltage changes after a single set of capacitors with a capacity of 20Mvar is put into use in this embodiment. It can be concluded from Figure 4 that when the actual active power output of the wind power system is the estimated value of the existing evaluation equation, and the control of the dynamic reactive power compensation device is not considered, the voltage change range does not exceed 2.5% after a single group of capacitors with a capacity of 20Mvar is switched. , and considering the control of the dynamic reactive power compensation device, the voltage change range reaches 2.8%, which is more than 2.5%. . Obviously, the existing evaluation equations tend to overestimate the power transmission capacity of the actual system, while the revised equations are more accurate and closer to the actual operating conditions.

以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.

Claims (2)

1.一种风电汇集系统送电能力实用评估方法,其特征在于,该评估方法适用于动态无功补偿装置,所述动态无功补偿装置采用纯感性支路恒无功控制,所述方法包括:1. A practical evaluation method for power transmission capacity of a wind power collection system, characterized in that the evaluation method is applicable to a dynamic reactive power compensation device, and the dynamic reactive power compensation device adopts a purely inductive branch constant reactive power control, and the method includes : 根据纯感性支路恒无功控制获取风电汇集系统的电压-无功灵敏度,其中,所述风电汇集系统的电压-无功灵敏度的表达式为:The voltage-reactive power sensitivity of the wind power collection system is obtained according to the pure inductive branch constant reactive power control, wherein the expression of the voltage-reactive power sensitivity of the wind power collection system is: <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>V</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>Q</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mi>X</mi> <mi>V</mi> <msqrt> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mi>X</mi> <msqrt> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mrow><mfrac><mrow><mo>&amp;part;</mo><mi>V</mi></mrow><mrow><mo>&amp;part;</mo><mi>Q</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>X</mi><mi>V</mi><msqrt><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</msup>mo><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></msup></msup>mrow></msqrt></mrow><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msub><mi>Q</mi><mi>L</mi></msub><mi>X</mi><msqrt><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></mrow></msqrt></mrow></mfrac></mrow> 其中,QL表示为动态无功补偿装置感性支路初始吸收无功;E表示为外部等值无穷大母线电压;V表示为风电场并网母线电压;P表示为风电场外送有功功率;X表示为传输线路等值电抗;Among them, Q L represents the initial reactive power absorbed by the inductive branch of the dynamic reactive power compensation device; E represents the external equivalent infinite bus voltage; V represents the wind farm grid-connected bus voltage; P represents the active power sent out by the wind farm; X Expressed as the equivalent reactance of the transmission line; 投入单组固定电容,根据所述风电汇集系统的电压-无功灵敏度获取投入的单组固定电容补偿后引起的电压变化幅度,并根据投入的单组固定电容补偿后引起的电压变化幅度获取风电汇集系统电压波动可控的必要条件,其中,所述投入的单组固定电容补偿后引起的电压变化幅度的表达式为:Put in a single set of fixed capacitors, and obtain the range of voltage change caused by the compensation of the input single set of fixed capacitors according to the voltage-reactive power sensitivity of the wind power collection system, and obtain the range of voltage changes caused by the input of a single set of fixed capacitors after compensation. Integrating the necessary conditions for the controllable voltage fluctuation of the system, wherein the expression of the voltage variation range caused by the input of a single set of fixed capacitance compensation is: <mrow> <mi>&amp;Delta;</mi> <mi>V</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mi>X</mi> <mi>V</mi> <msqrt> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mi>X</mi> <msqrt> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mrow><mi>&amp;Delta;</mi><mi>V</mi><mo>=</mo><mfrac><mrow><msub><mi>Q</mi><mi>c</mi></msub><mi>X</mi><mi>V</mi><msqrt><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></mrow></msqrt></mrow><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msub><mi>Q</mi><mi>L</mi></msub><mi>X</mi><msqrt><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></mrow></msqrt></mrow></mfrac></mrow> 其中,Qc表示为单组固定电容容量,Among them, Qc is expressed as a single set of fixed capacitance, 所述风电汇集系统电压波动可控的必要条件:Necessary conditions for the controllable voltage fluctuation of the wind power collection system: <mrow> <mfrac> <mrow> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mi>X</mi> <mi>V</mi> <msqrt> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mi>X</mi> <msqrt> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>&lt;</mo> <mi>&amp;xi;</mi> </mrow> <mrow><mfrac><mrow><msub><mi>Q</mi><mi>c</mi></msub><mi>X</mi><mi>V</mi><msqrt><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></mrow></msqrt></mrow><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msub><mi>Q</mi><mi>L</mi></msub><mi>X</mi><msqrt><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></mrow></msqrt></mrow></mfrac><mo>&lt;</mo><mi>&amp;xi;</mi></mrow> 其中,ξ表示为投入单组电容补偿后电压变化幅度限值;Among them, ξ represents the limit value of the voltage change amplitude after inputting a single set of capacitor compensation; 根据所述风电汇集系统电压波动可控的必要条件获取风电汇集系统送电能力实用评估修正方程,其中,所述风电汇集系统送电能力实用评估修正方程的表达式为:According to the necessary condition for the controllable voltage fluctuation of the wind power collection system, a practical evaluation correction equation for the power transmission capacity of the wind power collection system is obtained, wherein the expression of the practical evaluation correction equation for the power transmission capacity of the wind power collection system is: <mrow> <mi>P</mi> <mo>&lt;</mo> <msqrt> <mfrac> <mrow> <mn>4</mn> <msup> <mi>&amp;xi;</mi> <mn>2</mn> </msup> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mi>X</mi> <mi>V</mi> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;Q</mi> <mi>L</mi> </msub> <mi>X</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mo>(</mo> <mrow> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mi>X</mi> <mi>V</mi> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;Q</mi> <mi>L</mi> </msub> <mi>X</mi> </mrow> <mo>)</mo> <mo>+</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mi>X</mi> <mi>V</mi> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;Q</mi> <mi>L</mi> </msub> <mi>X</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>8</mn> <msup> <mi>&amp;xi;</mi> <mn>2</mn> </msup> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>)</mo> </mrow> </mrow> <mrow> <mn>8</mn> <msup> <mi>&amp;xi;</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </mfrac> </msqrt> <mo>;</mo> </mrow> <mrow><mi>P</mi><mo>&lt;</mo><msqrt><mfrac><mrow><mn>4</mn><msup><mi>&amp;xi;</mi><mn>2</mn></msup><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><mrow><mo>(</mo><msub><mi>Q</mi><mi>c</mi></msub><mi>X</mi><mi>V</mi><mo>+</mo><mn>2</mn><msub><mi>&amp;xi;Q</mi><mi>L</mi></msub><mi>X</mi><mo>)</mo></mrow><mrow><mo>(</mo><mo>(</mo><mrow><msub><mi>Q</mi><mi>c</mi></msub><mi>X</mi><mi>V</mi><mo>+</mo><mn>2</mn><msub><mi>&amp;xi;Q</mi><mi>L</mi></msub><mi>X</mi></mrow><mo>)</mo><mo>+</mo><msqrt><mrow><msup><mrow><mo>(</mo><msub><mi>Q</mi><mi>c</mi></msub><mi>X</mi><mi>V</mi><mo>+</mo><mn>2</mn><msub><mi>&amp;xi;Q</mi><mi>L</mi></msub><mi>X</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mn>8</mn><msup><mi>&amp;xi;</mi><mn>2</mn></msup><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup></mrow></msqrt><mo>)</mo></mrow></mrow><mrow><mn>8</mn><msup><mi>&amp;xi;</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></mrow></mfrac></msqrt><mo>;</mo></mrow> 利用所述风电汇集系统送电能力实用评估修正方程实现风电汇集系统送电能力实用评估。The practical evaluation of the power transmission capacity of the wind power collection system is realized by using the correction equation for the practical evaluation of the power transmission capacity of the wind power collection system. 2.一种风电汇集系统送电能力实用评估装置,其特征在于,该评估装置适用于动态无功补偿装置,所述动态无功补偿装置采用纯感性支路恒无功控制,所述装置包括:2. A practical evaluation device for power transmission capacity of a wind power collection system, characterized in that the evaluation device is suitable for a dynamic reactive power compensation device, and the dynamic reactive power compensation device adopts a purely inductive branch constant reactive power control, and the device includes : 电压-无功灵敏度获取单元,用于根据纯感性支路恒无功控制获取风电汇集系统的电压-无功灵敏度,其中,所述电压-无功灵敏度获取单元获取的风电汇集系统的电压-无功灵敏度的表达式为:The voltage-reactive power sensitivity acquisition unit is used to obtain the voltage-reactive power sensitivity of the wind power collection system according to the constant reactive power control of the pure inductive branch, wherein the voltage-reactive power sensitivity of the wind power collection system obtained by the voltage-reactive power sensitivity acquisition unit The expression of work sensitivity is: <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>V</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>Q</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mi>X</mi> <mi>V</mi> <msqrt> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mi>X</mi> <msqrt> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mrow><mfrac><mrow><mo>&amp;part;</mo><mi>V</mi></mrow><mrow><mo>&amp;part;</mo><mi>Q</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>X</mi><mi>V</mi><msqrt><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</msup>mo><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></msup></msup>mrow></msqrt></mrow><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msub><mi>Q</mi><mi>L</mi></msub><mi>X</mi><msqrt><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></mrow></msqrt></mrow></mfrac></mrow> 其中,QL表示为动态无功补偿装置感性支路初始吸收无功;E表示为外部等值无穷大母线电压;V表示为风电场并网母线电压;P表示为风电场外送有功功率;X表示为传输线路等值电抗;Among them, Q L represents the initial reactive power absorbed by the inductive branch of the dynamic reactive power compensation device; E represents the external equivalent infinite bus voltage; V represents the wind farm grid-connected bus voltage; P represents the active power sent out by the wind farm; X Expressed as the equivalent reactance of the transmission line; 电压波动可控的必要条件获取单元,用于投入单组固定电容,根据所述风电汇集系统的电压-无功灵敏度获取投入的单组固定电容补偿后引起的电压变化幅度,根据投入的单组固定电容补偿后引起的电压变化幅度获取风电汇集系统电压波动可控的必要条件,其中,所述电压波动可控的必要条件获取单元获取的投入的单组固定电容补偿后引起的电压变化幅度的表达式为:The necessary condition acquisition unit for controllable voltage fluctuations is used to input a single set of fixed capacitors, and obtain the range of voltage change caused by the input of a single set of fixed capacitors after compensation according to the voltage-reactive power sensitivity of the wind power collection system. The range of voltage change caused by fixed capacitor compensation is used to obtain the necessary conditions for controllable voltage fluctuations of the wind power collection system. The expression is: <mrow> <mi>&amp;Delta;</mi> <mi>V</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mi>X</mi> <mi>V</mi> <msqrt> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mi>X</mi> <msqrt> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mrow><mi>&amp;Delta;</mi><mi>V</mi><mo>=</mo><mfrac><mrow><msub><mi>Q</mi><mi>c</mi></msub><mi>X</mi><mi>V</mi><msqrt><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></mrow></msqrt></mrow><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msub><mi>Q</mi><mi>L</mi></msub><mi>X</mi><msqrt><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></mrow></msqrt></mrow></mfrac></mrow> 其中,Qc表示为单组固定电容容量,Among them, Qc is expressed as a single set of fixed capacitance, 所述电压波动可控的必要条件获取单元获取的风电汇集系统电压波动可控的必要条件:The necessary conditions for the controllable voltage fluctuations of the wind power collection system obtained by the acquisition unit are: <mrow> <mfrac> <mrow> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mi>X</mi> <mi>V</mi> <msqrt> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>Q</mi> <mi>L</mi> </msub> <mi>X</mi> <msqrt> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>P</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mo>&lt;</mo> <mi>&amp;xi;</mi> </mrow> <mrow><mfrac><mrow><msub><mi>Q</mi><mi>c</mi></msub><mi>X</mi><mi>V</mi><msqrt><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></mrow></msqrt></mrow><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><msub><mi>Q</mi><mi>L</mi></msub><mi>X</mi><msqrt><mrow><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><msup><mi>P</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></mrow></msqrt></mrow></mfrac><mo>&lt;</mo><mi>&amp;xi;</mi></mrow> 其中,ξ表示为投入单组电容补偿后电压变化幅度限值;Among them, ξ represents the limit value of the voltage change amplitude after inputting a single set of capacitor compensation; 送电能力实用评估修正方程获取单元,用于根据所述风电汇集系统电压波动可控的必要条件获取风电汇集系统送电能力实用评估修正方程,其中,所述送电能力实用评估修正方程获取单元获取的风电汇集系统送电能力实用评估修正方程的表达式为:A practical evaluation correction equation acquisition unit for power transmission capacity, configured to obtain a practical evaluation correction equation for power transmission capacity of the wind power collection system according to the necessary conditions for controllable voltage fluctuations of the wind power collection system, wherein the practical evaluation correction equation acquisition unit for power transmission capacity The expression of the obtained correction equation for the practical evaluation of the power transmission capacity of the wind power collection system is: <mrow> <mi>P</mi> <mo>&lt;</mo> <msqrt> <mfrac> <mrow> <mn>4</mn> <msup> <mi>&amp;xi;</mi> <mn>2</mn> </msup> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mi>X</mi> <mi>V</mi> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;Q</mi> <mi>L</mi> </msub> <mi>X</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mo>(</mo> <mrow> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mi>X</mi> <mi>V</mi> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;Q</mi> <mi>L</mi> </msub> <mi>X</mi> </mrow> <mo>)</mo> <mo>+</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mi>c</mi> </msub> <mi>X</mi> <mi>V</mi> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;Q</mi> <mi>L</mi> </msub> <mi>X</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>8</mn> <msup> <mi>&amp;xi;</mi> <mn>2</mn> </msup> <msup> <mi>E</mi> <mn>2</mn> </msup> <msup> <mi>V</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>)</mo> </mrow> </mrow> <mrow> <mn>8</mn> <msup> <mi>&amp;xi;</mi> <mn>2</mn> </msup> <msup> <mi>X</mi> <mn>2</mn> </msup> </mrow> </mfrac> </msqrt> <mo>;</mo> </mrow> <mrow><mi>P</mi><mo>&lt;</mo><msqrt><mfrac><mrow><mn>4</mn><msup><mi>&amp;xi;</mi><mn>2</mn></msup><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup><mo>-</mo><mrow><mo>(</mo><msub><mi>Q</mi><mi>c</mi></msub><mi>X</mi><mi>V</mi><mo>+</mo><mn>2</mn><msub><mi>&amp;xi;Q</mi><mi>L</mi></msub><mi>X</mi><mo>)</mo></mrow><mrow><mo>(</mo><mo>(</mo><mrow><msub><mi>Q</mi><mi>c</mi></msub><mi>X</mi><mi>V</mi><mo>+</mo><mn>2</mn><msub><mi>&amp;xi;Q</mi><mi>L</mi></msub><mi>X</mi></mrow><mo>)</mo><mo>+</mo><msqrt><mrow><msup><mrow><mo>(</mo><msub><mi>Q</mi><mi>c</mi></msub><mi>X</mi><mi>V</mi><mo>+</mo><mn>2</mn><msub><mi>&amp;xi;Q</mi><mi>L</mi></msub><mi>X</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mn>8</mn><msup><mi>&amp;xi;</mi><mn>2</mn></msup><msup><mi>E</mi><mn>2</mn></msup><msup><mi>V</mi><mn>2</mn></msup></mrow></msqrt><mo>)</mo></mrow></mrow><mrow><mn>8</mn><msup><mi>&amp;xi;</mi><mn>2</mn></msup><msup><mi>X</mi><mn>2</mn></msup></mrow></mfrac></msqrt><mo>;</mo></mrow> 评估单元,用于利用所述风电汇集系统送电能力实用评估修正方程实现风电汇集系统送电能力实用评估。The evaluation unit is used to realize the practical evaluation of the power transmission capacity of the wind power collection system by using the correction equation for the practical evaluation of the power transmission capacity of the wind power collection system.
CN201410431599.4A 2014-08-28 2014-08-28 A kind of wind-powered electricity generation collects the practical appraisal procedure of system ability of supplying electric power and device Active CN105406458B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410431599.4A CN105406458B (en) 2014-08-28 2014-08-28 A kind of wind-powered electricity generation collects the practical appraisal procedure of system ability of supplying electric power and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410431599.4A CN105406458B (en) 2014-08-28 2014-08-28 A kind of wind-powered electricity generation collects the practical appraisal procedure of system ability of supplying electric power and device

Publications (2)

Publication Number Publication Date
CN105406458A CN105406458A (en) 2016-03-16
CN105406458B true CN105406458B (en) 2017-11-03

Family

ID=55471783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410431599.4A Active CN105406458B (en) 2014-08-28 2014-08-28 A kind of wind-powered electricity generation collects the practical appraisal procedure of system ability of supplying electric power and device

Country Status (1)

Country Link
CN (1) CN105406458B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811459A (en) * 2016-04-28 2016-07-27 国网新疆电力公司经济技术研究院 Optimized division method for direct-current outgoing wind power base balance regional grid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103246939A (en) * 2013-05-14 2013-08-14 南京南瑞集团公司 Security and stability margin based on-line identification method for power network operating safety risk incidents
CN103337855A (en) * 2013-05-09 2013-10-02 国家电网公司 Electrical network operation risk assessment method of wind electricity large-scale tripping
CN103384069A (en) * 2013-06-13 2013-11-06 广东电网公司电力科学研究院 Method and system for adjusting sensitivity of offshore wind plant current collecting system
CN103490426A (en) * 2013-09-25 2014-01-01 国家电网公司 Comprehensive control method for voltage stabilization of large-scale wind electricity switching-in weak sending end electrical power system
CN103746389A (en) * 2014-01-21 2014-04-23 国家电网公司 Reactive compensation configuration method based on reactive voltage feature for wind power 500kV collecting transformer substation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839024B2 (en) * 2008-07-29 2010-11-23 General Electric Company Intra-area master reactive controller for tightly coupled windfarms

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337855A (en) * 2013-05-09 2013-10-02 国家电网公司 Electrical network operation risk assessment method of wind electricity large-scale tripping
CN103246939A (en) * 2013-05-14 2013-08-14 南京南瑞集团公司 Security and stability margin based on-line identification method for power network operating safety risk incidents
CN103384069A (en) * 2013-06-13 2013-11-06 广东电网公司电力科学研究院 Method and system for adjusting sensitivity of offshore wind plant current collecting system
CN103490426A (en) * 2013-09-25 2014-01-01 国家电网公司 Comprehensive control method for voltage stabilization of large-scale wind electricity switching-in weak sending end electrical power system
CN103746389A (en) * 2014-01-21 2014-04-23 国家电网公司 Reactive compensation configuration method based on reactive voltage feature for wind power 500kV collecting transformer substation

Also Published As

Publication number Publication date
CN105406458A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
CN105305402B (en) A kind of direct-current micro-grid busbar voltage robust autonomous control method
CN104793148B (en) Distributed generator islanding detection method based on grid entry point characteristic harmonics voltage measurement
CN107017646A (en) The double-fed blower fan sub-synchronous oscillation suppression method controlled based on virtual impedance
CN107026470A (en) Automatic voltage for photovoltaic system is adjusted
CN202975110U (en) Electrical parameter measurement module
CN104104251B (en) A kind of robust control method of the combining inverter based on SSR-KDF
CN104079193A (en) Device for direct current component adjustment and control method thereof
CN104466957B (en) A kind of load model parameters discrimination method based on actual measurement microvariations data
CN104993489B (en) Determination Method of Optimal Load Shedding Amount in Isolated Grid Emergency
CN102769292B (en) Method for enhancing voltage safety margin of wind farm
CN102790398B (en) Method for determining total reactive power control capability of grid-connected point in wind farm
CN105406458B (en) A kind of wind-powered electricity generation collects the practical appraisal procedure of system ability of supplying electric power and device
CN105449691B (en) A kind of double-fed wind power system reactive-load compensation method
CN104897956B (en) A kind of active power of online active measurement power network and the method for frequency characteristic coefficient
CN104465233A (en) Configuration method with voltage dip character of low-voltage releasing devices taken into consideration
CN103577698A (en) On-line voltage stability judging method for alternating current and direct current series-parallel system
CN204044246U (en) A kind of square formation insulation impedance detection system of photovoltaic generating system
CN107069797B (en) A grid-connected method for distributed wind farms with doubly-fed wind turbines
CN106026155B (en) The equivalent method of the small interference impedance of flexible direct current converter station
CN203896297U (en) Low voltage photovoltaic power generation meter box
Jiapaer et al. Study on capacity of wind power integrated into power grid based on static voltage stability
CN204517422U (en) Preventing distributed electricity generation system pours in down a chimney the system of electrical power to electrical network
CN102769301B (en) Voltage control method for wind farm wind turbine-side voltage in dangerous state
CN206673849U (en) The high-performance electric source module that nuclear power station reactor core Nuclear measurement system uses
CN106300413A (en) A kind of dynamic electric voltage recovery device using nonlinear autoregressive and control strategy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant