CN105400938B - 一种低温高磁感取向硅钢的生产方法 - Google Patents

一种低温高磁感取向硅钢的生产方法 Download PDF

Info

Publication number
CN105400938B
CN105400938B CN201510824300.6A CN201510824300A CN105400938B CN 105400938 B CN105400938 B CN 105400938B CN 201510824300 A CN201510824300 A CN 201510824300A CN 105400938 B CN105400938 B CN 105400938B
Authority
CN
China
Prior art keywords
nitriding
silicon steel
steel
low temperature
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510824300.6A
Other languages
English (en)
Other versions
CN105400938A (zh
Inventor
许光
郭小龙
王若平
毛炯辉
骆新根
高洋
陈文聪
苏懿
林勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Iron and Steel Co Ltd
Original Assignee
Wuhan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Iron and Steel Co Ltd filed Critical Wuhan Iron and Steel Co Ltd
Priority to CN201510824300.6A priority Critical patent/CN105400938B/zh
Publication of CN105400938A publication Critical patent/CN105400938A/zh
Application granted granted Critical
Publication of CN105400938B publication Critical patent/CN105400938B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

一种低温高磁感取向硅钢的生产方法:炼钢、铸坯、加热、热轧、常化后酸洗;第一次冷轧;脱碳退火;第二次冷轧;渗氮处理;常规高温退火。本发明通过在脱碳后进行第二次冷轧,再进行渗氮,使渗氮过程中渗入的氮元素在钢板厚度方向上分布更加均匀,减缓高温退火过程中抑制剂的熟化速度,从而使P1.7/50至少降低0.054 W/kg,B800至少能提高0.01T,使钢板磁性能得到显著提高。

Description

一种低温高磁感取向硅钢的生产方法
技术领域
本发明涉及一种取向硅钢的生产方法,具体地属于一种低温高磁感取向硅钢的生产方法。高磁感取向硅钢有两种生产方式:一种在热轧工序采用板坯高温加热热轧法生产,称为高温高磁感取向硅钢(高温HiB钢);另一种是采用低温加热热轧,并在后工序进行渗氮处理的方法生产,称为低温高磁感取向硅钢(低温HiB钢)。
背景技术
低温HiB钢即低温高磁感取向硅钢的重要特点是后天形成抑制剂,即通过短时渗氮处理,将N元素渗入钢板;在后续高温退火过程中,渗入的部分N元素与Als(酸溶铝)结合,形成AlN抑制剂。这种方式形成的抑制剂在钢板厚度方向分布不均匀(表层浓度高,中心浓度低),在高温退火过程中较不稳定。随着钢带减薄,抑制剂也更容易熟化,如果钢板厚度降至0.20mm以下,表面效应也越发突出,此时抑制剂熟化速度更快。
现有技术生产低温HiB钢的主要流程:
(1)炼钢;
(2)热轧:热轧加热温度1100℃~1250℃,之后进行粗轧、精轧,热轧板厚度1.5mm~2.5mm;
(3)常化退火处理;
(4)冷轧;
(5)脱碳退火后,进行渗氮处理;
(6)高温退火;
经检索:中国专利公开号为CN104018068A的文献,公开了一种厚度为0.18mm的高磁感取向硅钢的制备方法,生产流程包括:热轧、常化、酸洗、一次冷轧、时效、二次冷轧、脱碳渗氮、高温退火、激光刻痕、涂覆涂层等步骤。该专利是通过延长冷轧时效时间,调整固溶碳的分布状态,改善位错组态的稳定性,促进磁性能的改善。该方法不能解决低温高磁感取向硅钢高温退火过程中AlN抑制剂不稳定的问题,因而无法使磁性水平得到显著提高。
中国专利公开号为CN103882289A的文献,公开了用一般取向硅钢原料制造高磁感冷轧取向硅钢的生产方法。其特点为在高温退火时,设置两个台阶的低保温和一个台阶高保温,控制氮气渗氮量≥16ppm,以提高取向硅钢的性能。但由于高温退火阶段,利用氮气渗入钢带基体的N很有限,且渗氮量分布不均匀,因此通过变换N2比例或升温速度很难使产品性能有显著提高。
中国专利公开号为CN103540846A的文献,公开了一种薄规格、超低铁损、低噪声高磁感取向硅钢片及其制备方法,其组成为C:0.003~0.05wt%;Si:4.1~9wt%;Mn:0.05~0.5wt%;Al:0.02~0.06wt%;Sn:0.01~1wt%;Mo:0.05~0.1wt%;Cu:0.2~1wt%;N:0.003~0.02wt%;P:0.002~0.06wt%;S:0.001~0.008wt%,余量为铁和其它不可避免的杂质。通过热轧、冷轧、退火等工艺制得高磁感取向硅钢片。该硅钢片具有超低铁损、高磁通密度、低磁致伸缩系数,厚度薄等优异性能。该文献主要是通过调整取向硅钢的成分实现其优异性能的,但成分设计中Si含量非常高,最高达到9%,其存在在热轧、冷轧时极容易出现边裂、断带问题,甚至完全不可完成轧制。
中国专利公开号为CN103834908A的文献,公开了一种提高取向硅钢电磁性能的生产方法。其特点为(1)常化后钢板内尺寸在30~100nm的AlN析出物占总AlN析出物的30~80%体积比;(2)在氮气、氢气、氨气混合气氛中氮化处理,根据前述常化后钢板内30~100nm的AlN析出物比例对渗入氮含量进行控制:[N]=(315-2×AlN(30~100))±20ppm。该方法通过加强常化过程中析出物的控制,可以使产品磁性水平更加稳定,有利于大规模生产的稳定进行。但该文献与目前的低温HiB钢常规的生产工艺基本相同,仍存在高温退火过程中AlN抑制剂不稳定的问题,产品磁性水平难以得到显著提升。
发明内容
本发明在于克服现有技术存在的不足,提供一种通过在两次冷轧间进行脱碳,使渗氮过程中渗入的氮元素在钢板厚度方向上分布更加均匀,减缓高温退火过程中抑制剂的熟化速度,从而使P1.7/50至少降低0.054 W/kg,B800至少能提高0.01T的低温高磁感取向硅钢的生产方法
实现上述目的的措施:
一种低温高磁感取向硅钢的生产方法,其步骤:
1)炼钢、铸坯、加热、热轧、常化后酸洗;
2)进行第一次冷轧;
3)进行脱碳退火,800~850℃;
4)进行第二次冷轧,并控制总压下率在5~40%;
5)进行渗氮处理,渗氮气氛为NH3、N2、H2的混合气,渗氮温度为700~1000℃;并控制渗入N量在20~349ppm;
6)进行常规高温退火。
其在于:在脱碳后进行渗氮,渗氮气氛为NH3、N2、H2的混合气,渗氮温度为700℃~1000℃,控制渗入N量不超过330ppm。
本发明中主要工艺的机理
本发明之所以在脱碳退火后进行第二次冷轧,是由于在第二次冷轧过程中,一次再结晶晶粒间的晶界发生移动,晶界原子排列更加混乱;同时,钢板中形成大量位错,其能使在后续渗氮过程中,N原子很容易沿原子排列混乱的晶界、位错部位渗入钢板基体,从而增加了N原子的渗入深度,使N原子在钢板中分布更加均匀;并使后续的高温退火工序中,形成的AlN在钢板厚度方向分布更加均匀,不易发生熟化,从而提高了抑制剂的稳定性,进而改善产品磁性水平。
本发明中之所以控制第二次冷轧总压下率在5~40%,是由于脱碳退火时形成的一次再结晶晶粒,其尺寸与位向对成品磁性水平有显著影响,须尽量避免一次再结晶晶粒发生过于严重的变形或者破碎现象。
本发明与现有技术相比,通过在脱碳后进行第二次冷轧,再进行渗氮,使渗氮过程中渗入的氮元素在钢板厚度方向上分布更加均匀,减缓高温退火过程中抑制剂的熟化速度,从而使P1.7/50至少降低0.054 W/kg,B800至少能提高0.01T,使钢板磁性能得到显著提高,满足了需要更高端产品的用户的需求。
具体实施方式
下面对本发明予以详细描述:
表1至表6为本发明各实施例及对比例的主要工艺参数及磁性能情况列表;
表7为本发明各实施例相同厚度规格产品磁性能改善情况。
本发明各实施例均按照以下步骤生产:
1)炼钢、铸坯、加热、热轧、常化后酸洗;
2)进行第一次冷轧;
3)进行脱碳退火,800~850℃;
4)进行第二次冷轧,并控制总压下率在5~40%;
5)进行渗氮处理,渗氮气氛为NH3、N2、H2的混合气,渗氮温度为700~1000℃;并控制渗入N量在20~349ppm;
6)进行常规高温退火。
注:以下各实施例,如果进行两次渗氮处理,则高温退火前钢板中N含量与第二次冷轧前钢板中的N含量之差,称为第二次冷轧后渗氮量。
实施例1
实施例2
实施例3
实施例4
实施例5
实施例6
表7本发明各实施例相同厚度规格产品磁性能改善情况
从表7可以看出,用本发明工艺生产的低温高磁感取向硅钢,对于相同厚度规格的产品而言,其磁性能改善情况显著。
本具体实施方式仅为最佳例举,并非对本发明技术方案的限制性实施。

Claims (2)

1.一种低温高磁感取向硅钢的生产方法,其步骤:
1)炼钢、铸坯、加热、热轧、常化后酸洗;
2)进行第一次冷轧;
3)进行脱碳退火,800~850℃;
4)进行第二次冷轧,并控制总压下率在5~40%;
5)进行渗氮处理,渗氮气氛为NH3、N2、H2的混合气,渗氮温度为700~1000℃;并控制渗入N量在205~349ppm;
6)进行常规高温退火。
2.如权利要求1所述的一种低温高磁感取向硅钢的生产方法,其特征在于:在脱碳后进行渗氮,渗氮气氛为NH3、N2、H2的混合气,渗氮温度为700℃~1000℃,控制渗入N量不超过330ppm。
CN201510824300.6A 2015-11-24 2015-11-24 一种低温高磁感取向硅钢的生产方法 Active CN105400938B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510824300.6A CN105400938B (zh) 2015-11-24 2015-11-24 一种低温高磁感取向硅钢的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510824300.6A CN105400938B (zh) 2015-11-24 2015-11-24 一种低温高磁感取向硅钢的生产方法

Publications (2)

Publication Number Publication Date
CN105400938A CN105400938A (zh) 2016-03-16
CN105400938B true CN105400938B (zh) 2017-09-29

Family

ID=55466691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510824300.6A Active CN105400938B (zh) 2015-11-24 2015-11-24 一种低温高磁感取向硅钢的生产方法

Country Status (1)

Country Link
CN (1) CN105400938B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218853B (zh) * 2019-06-26 2020-11-24 武汉钢铁有限公司 制备低温高磁感取向硅钢的工艺方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278666A (ja) * 1994-04-05 1995-10-24 Nippon Steel Corp 等方的な磁気特性を有する無方向性電磁鋼板の製造方法
CN102330021B (zh) * 2011-09-16 2013-03-27 刘鹏程 低温取向硅钢生产全工艺

Also Published As

Publication number Publication date
CN105400938A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
CN104018068B (zh) 一种厚度为0.18mm的高磁感取向硅钢的制备方法
JP6496411B2 (ja) 方向性電磁鋼板およびその製造方法
EP2623621B1 (en) Production method of grain-oriented silicon steel with high magnetic flux density
EP2584054A1 (en) Oriented electromagnetic steel plate production method
CN102575314B (zh) 低铁损、高磁通密度、取向电工钢板及其制造方法
CN110055393A (zh) 一种薄规格低温高磁感取向硅钢带生产方法
CN106702260A (zh) 一种高磁感低铁损无取向硅钢及其生产方法
CN107460293A (zh) 一种低温高磁感取向硅钢的生产方法
US11603572B2 (en) Grain-oriented electrical steel sheet and method for manufacturing same
CN102127708A (zh) 一种低温板坯加热生产取向电工钢的方法
KR101131729B1 (ko) 고자속밀도 방향성 전기강판의 제조방법
CN105400938B (zh) 一种低温高磁感取向硅钢的生产方法
KR101353549B1 (ko) 방향성 전기강판 및 그 제조방법
CN102492816B (zh) 采用间歇式渗氮生产高磁感取向硅钢带的方法
CN107460292A (zh) 一种提高低温高磁感取向硅钢边部性能的加工方法
CN100436631C (zh) 一种低碳高锰取向电工钢板及其制造方法
CN110055489A (zh) 低温高磁感取向硅钢的快速渗氮方法
KR101263795B1 (ko) 저철손 고자속밀도 방향성 전기강판과 그 제조방법 및 여기에 사용되는 방향성 전기강판 슬라브
KR102240382B1 (ko) 방향성의 전기강판 및 그 제조 방법
KR101353554B1 (ko) 방향성 전기강판 및 그 제조방법
KR100650554B1 (ko) 두께가 두꺼운 방향성 전기강판의 제조방법
KR101516377B1 (ko) 방향성 전기강판 및 그 제조방법
KR100347597B1 (ko) 고자속밀도방향성전기강판의제조방법
KR101131721B1 (ko) 자기 특성이 우수한 방향성 전기강판의 제조방법
CN115747650A (zh) 一种低温高磁感取向硅钢及提高其磁性能稳定性的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170726

Address after: 430083 Qingshan District, Hubei, Wuhan factory before the door No. 2

Applicant after: Wuhan iron and Steel Company Limited

Address before: 430080 Wuhan, Hubei Friendship Road, No. 999, Wuchang

Applicant before: Wuhan Iron & Steel (Group) Corp.

GR01 Patent grant
GR01 Patent grant