CN105388169B - 中子束过滤器过滤性能测量装置及方法 - Google Patents

中子束过滤器过滤性能测量装置及方法 Download PDF

Info

Publication number
CN105388169B
CN105388169B CN201510760920.8A CN201510760920A CN105388169B CN 105388169 B CN105388169 B CN 105388169B CN 201510760920 A CN201510760920 A CN 201510760920A CN 105388169 B CN105388169 B CN 105388169B
Authority
CN
China
Prior art keywords
neutron
monochromator
deflection
time
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510760920.8A
Other languages
English (en)
Other versions
CN105388169A (zh
Inventor
陈东风
刘蕴韬
余周香
李天富
刘荣灯
王子军
梁峰
肖红文
李眉娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201510760920.8A priority Critical patent/CN105388169B/zh
Publication of CN105388169A publication Critical patent/CN105388169A/zh
Application granted granted Critical
Publication of CN105388169B publication Critical patent/CN105388169B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及中子束过滤器过滤性能测量装置及方法。本发明的一种方案中,所述测量装置包括反应堆,中子传输孔道,中子单色器,飞行时间装置,中子束过滤器。另一种方案中,进一步包括偏转单色器,旋转台。飞行时间方法非常适用于中子能量/波长分布的测量与分析,通过飞行时间谱测量可同时获得并区分初级中子λ及高次谐波中子λ/2、λ/3……λ/n的积分强度,非常快速和直观,并极大地减小了测量误差,尤其是出射束方向飞行时间法测量误差可以忽略。

Description

中子束过滤器过滤性能测量装置及方法
技术领域
本发明具体涉及中子束过滤器过滤性能测量装置及方法,属于中子束过滤器测量领域。
背景技术
反应堆和加速器提供的慢中子通常都具有连续的能谱,这种中子源称为白光中子源。很多核物理实验(例如中子散射实验)需要的是波长为λ,展宽为Δλ(FWHM)的单色中子束。由白光中子源获取单色中子束最常用的方法是使用晶体单色器(如热解石墨、锗、硅、铜、铍、铁及Heusler晶体等)。利用Bragg反射获得的单色中子束除含有波长为λ的初级中子外,还常含有波长为λ/2、λ/3甚至λ/4的高次谐波中子,污染波长为λ的单色中子束。消除高次谐波有效的方法是在单色器入射束上或者出射束上加中子束过滤器。好的中子束过滤器初级中子透过率高,高次谐波中子透过率低。未加过滤器,初级中子及高次谐波中子的积分强度分别为I1、I2、I3…...In;加了过滤器,初级中子及高次谐波中子的积分强度分别为I′1、I′2、I′3…...I′n;可用表征过滤器过滤中子单色器高次谐波过滤性能,称为品质因子,这个值越大表示过滤性能越好。中子束过滤器过滤性能前人的测量方法归纳起来有三种。一是中子粉末衍射法,使用结构简单的材料如硅等的粉末样品在加过滤器前后分别测量其中子粉末衍射谱,通过解谱和修正获得加过滤器前后初级中子及高次谐波中子的积分强度。这种方法的缺点是有时不同波长不同晶面对应的多个衍射峰会重叠在一起分离难度大引入的误差也大,还有就是不同Bragg衍射角德拜锥面修正也会引入误差。此外,衍射强度与中子波长的三次幂成正比,强度低的短波长高次谐波中子经过粉末样品衍射后衍射强度有可能衰减太多而被环境本底淹没。二是测量非弹性非相干散射谱的效应本底比,比较加过滤器前后效应本底比变化结合透射率推断中子束过滤器过滤性能。这种方法非常粗略,误差大,效应本底比没有扣除环境本底,透射率不能区分不同波长的差异。三是晶体反射法,如图1所示,加载晶体分析器通过旋转晶体分析器改变Bragg衍射角分别选出λ/2、λ/3…λ/n的中子,加过滤器前后分别测量积分计数率,由此可计算出某个特定波长高次谐波中子的透射率。这种方法的缺点是需改变Bragg衍射角多次测量,选出λ/n波长中子时也选出了λ/(kn)波长中子(k≥2,k为整数)引入了测量误差。此外,由于不同波长不同Bragg衍射角下晶体分析器的反射率不同,因此无法横向对比加过滤器前后初级中子及高次谐波中子绝对强度。
发明内容
由于中子束过滤器过滤性能前人的测量方法有误差大、数据处理复杂及测量过程复杂等缺点,飞行时间方法非常适用于中子能量/波长分布的测量与分析,本发明针对前人测量方法上存在的问题提出飞行时间法测量中子束过滤器过滤中子单色器高次谐波过滤性能。
具体地,本发明提供一种中子束过滤器过滤性能测量装置,所述测量装置包括反应堆,中子传输孔道,中子单色器,飞行时间装置,偏转单色器,旋转台,待测中子束过滤器;
所述中子传输孔道的一端安装在反应堆出口,所述中子传输孔道的另一端放置中子单色器;偏转单色器的平板垂直放置固定于旋转台的中心,并一起置于中子单色器的出射束方向,旋转台的旋转中心位于所述出射束的中心线上;所述飞行时间装置位于正对偏转单色器的偏转束位置;
待测中子束过滤器位于中子单色器与偏转单色器之间并垂直所述出射束。
进一步地,如上所述的中子束过滤器过滤性能测量装置,所述飞行时间装置包括顺序排列的镉缝,斩波器,飞行管,探测器。
进一步地,如上所述的中子束过滤器过滤性能测量装置,所述中子传输孔道是冷中子导管或真空腔,所述探测器是闪烁体探测器。
本发明还提供一种使用如上装置的中子束过滤器过滤性能测量方法,所述方法包括以下步骤:
(1)选择偏转单色器;
(2)调出偏转束;
(3)飞行时间装置对中;
(4)测量飞行时间谱;
(5)计算透过率;
(6)计算偏转单色器的反射率;
(7)计算品质因子。
进一步地,如上所述的中子单色器高次谐波的测量方法,所述步骤(1)具体过程如下:偏转单色器的材质与中子单色器相同,厚度大于或等于中子单色器;偏转单色器的偏转晶面与中子单色器的反射晶面的米勒指数(hkl)相同;偏转单色器的嵌镶分布半高宽为β′,中子单色器的嵌镶分布半高宽为β,β′≥3β;使用X射线衍射仪测量偏转单色器的摇动曲线,获得所述嵌镶分布半高宽β′。
进一步地,如上所述的中子单色器高次谐波的测量方法,所述步骤(2)和步骤(3)的具体过程如下:
转动旋转台将偏转单色器平板平面调至与中子单色器平板平面平行;将一维中子线探测器置于正对偏转束位置,打开位于待测中子束过滤器前中子飞行路径上的屏蔽门放出中子束,转动旋转台在初始位置附近步进扫描,微调线探测器位置,确保偏转束照射到线探测器中心区,记录每个角度下线探测器积分计数率;将旋转台旋转至线探测器积分计数率最大的角度;关闭屏蔽门,移走线探测器,将飞行时间装置置于正对偏转束位置;打开屏蔽门放出中子束,微调飞行时间装置位置,使用手持式中子示踪仪监测偏转束,确保镉缝位于偏转束束斑区,透过镉缝的中子束照射到飞行时间装置闪烁体探测器的中心区。
进一步地,如上所述的中子单色器高次谐波的测量方法,所述步骤(4)、(5)的具体过程如下:
启动飞行时间装置测量加过滤器前后中子飞行时间谱,获得飞行时间谱后进行后续数据处理,先是起始时间偏移修正,继而将飞行时间谱转换为波长分布谱,最后根据闪烁体探测器的探测效率随波长变化曲线修正探测效率,获得测量结果;加过滤器前,初级中子λ及高次谐波中子λ/2、λ/3……λ/n的积分强度分别为I1、I2、I3......In;加过滤器后,变为I′1、I′2、I′3......In′;则初级中子λ及高次谐波中子λ/2、λ/3……λ/n的透过率分别为I′1/I1、I′2/I2、I′3/I3…...I′n/In
进一步地,如上所述的中子单色器高次谐波的测量方法,所述步骤(6)、(7)的具体过程如下:
使用开放软件NOP,输入偏转单色器的偏转晶面米勒指数(nh,nk,nl)、德拜温度、中子波长λ/n、嵌镶分布半高宽β′及晶体厚度,n为正整数,h、k、l为互质整数,计算出初级中子及高次谐波中子反射率k1、k2、k3…...kn,用kn表征(nh,nk,nl)晶面反射波长λ/n中子的反射率,则品质因子可表达为
飞行时间方法非常适用于中子能量/波长分布的测量与分析,通过飞行时间谱测量可同时获得并区分初级中子λ及高次谐波中子λ/2、λ/3……λ/n的积分强度,非常快速和直观,并极大地减小了测量误差,尤其是出射束方向飞行时间法测量误差可以忽略。
附图说明
图1为现有技术中晶体反射法示意图。
图2为本发明出射束方向飞行时间法的装置示意图。
图3为本发明出射束方向飞行时间法的流程图。
图4为本发明偏转束方向飞行时间法的装置示意图。
图5为本发明偏转束方向飞行时间法的流程图。
图6为偏转束方向飞行时间法测量结果示意图。
图7Be过滤器过滤石墨单色器高次谐波飞行时间法测量结果示意图。
附图标记:反应堆1,中子传输孔道2,中子单色器3,镉缝4,斩波器5,飞行管6,探测器7,飞行时间装置8,中子束过滤器9,偏转单色器10,旋转台11。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
若中子单色器出射束方向空间可以安放TOF(time of flight)飞行时间装置则采用如图2所示装置,图3为本发明出射束方向飞行时间法的流程图。
若中子单色器出射束方向空间安放不下TOF装置则采用如图4所示装置,图5为本发明偏转束方向飞行时间法的流程图。获得如图6所示结果。新方法能快速、直观、准确地获得测量结果。
实施例
中子单色器是石墨单色器,反射晶面(002),嵌镶分布半高宽0.3°;中子束过滤器是Be过滤器。如图2和图4所示,中子传输孔道是冷中子导管,中子石墨单色器置于导管出口位置,Bragg反射角2θ约为90°。如图4所示,由于出射束方向安装了中子反射谱仪,出射束方向没有安放TOF装置的空间,因此需将束流偏转使用偏转束方向飞行时间法测量Be过滤器过滤石墨单色器高次谐波的过滤性能。偏转单色器为偏转石墨单色器,偏转晶面(002)。使用X射线衍射仪测量偏转石墨单色器的摇动曲线,获得嵌镶分布半高宽0.93°
将偏转石墨单色器平板垂直放置固定于旋转台中心,并一起置于出射束方向。旋转台旋转中心基本位于出射束中心线上,转动旋转台将偏转石墨单色器平板平面调至与待测石墨单色器平板平面基本平行(如图4所示,偏转束基本与中子单色器入射束平行)。将一维位敏中子线探测器置于正对偏转束位置(线探测器灵敏区宽度大于束斑宽度)。打开位于待测中子束过滤器前中子飞行路径上的屏蔽门放出中子束,转动旋转台在初始位置附近步进扫描(步长0.1°),微调线探测器位置,确保偏转束照射到线探测器中心区,记录每个角度下线探测器积分计数率。将旋转台旋转至线探测器积分计数率最大的角度。关闭屏蔽门,移走线探测器,将TOF装置置于正对偏转束位置。打开屏蔽门放出中子束,微调TOF装置位置,使用手持式中子示踪仪监测偏转束,确保镉缝位于偏转束束斑区,透过镉缝的中子束照射到TOF装置闪烁体探测器的中心区。
启动TOF装置测量加过滤器前后中子飞行时间谱,获得飞行时间谱后进行后续数据处理,先是起始时间偏移修正,继而将飞行时间谱转换为波长分布谱,最后根据闪烁体探测器的探测效率随波长变化曲线修正探测效率,获得图7所示测量结果。由于冷中子导管出口位置中子能谱限制(四级波长中子强度非常低,四级以上波长中子强度为0),不加Be过滤器也只测出了石墨单色器的初级、次级及三级信号(如图7所示)。加过滤器前,初级中子及高次谐波中子λ/2、λ/3的积分强度分别为I1=467.8、I2=590.4、I3=37.7;加过滤器后,变为I′1=258.0、I′2=5.4、I′3=0;则初级中子λ及高次谐波中子λ/2、λ/3的透过率分别为I′1/I1=55.15%、I′2/I2=0.91%、I′3/I3=0。
使用NOP等开放软件,输入偏转单色器的偏转晶面米勒指数、德拜温度、中子波长、嵌镶分布半高宽及晶体厚度等参数,计算出初级中子及高次谐波中子反射率k1=1.429、k2=0.546、k3=0.210。可以用kn表征(nh,nk,nl)晶面反射波长λn中子的反射率,则品质因子可表达为
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (5)

1.一种中子束过滤器过滤性能测量装置,其特征在于:
所述测量装置包括反应堆,中子传输孔道,中子单色器,飞行时间装置,偏转单色器,旋转台,待测中子束过滤器;
所述中子传输孔道的一端安装在反应堆出口,所述中子传输孔道的另一端放置中子单色器;偏转单色器的平板垂直放置固定于旋转台的中心,并一起置于中子单色器的出射束方向,旋转台的旋转中心位于所述出射束的中心线上;所述飞行时间装置位于正对偏转单色器的偏转束位置;
待测中子束过滤器位于中子单色器与偏转单色器之间并垂直所述出射束;
偏转单色器的材质与中子单色器相同,厚度大于或等于中子单色器;偏转单色器的偏转晶面与中子单色器的反射晶面的米勒指数(hkl)相同;偏转单色器的嵌镶分布半高宽为β′,中子单色器的嵌镶分布半高宽为β,β′≥3β;使用X射线衍射仪测量偏转单色器的摇动曲线,获得所述嵌镶分布半高宽β′。
2.如权利要求1所述的中子束过滤器过滤性能测量装置,其特征在于:
所述飞行时间装置包括顺序排列的镉缝,斩波器,飞行管,探测器。
3.如权利要求2所述的中子束过滤器过滤性能测量装置,其特征在于:
所述中子传输孔道是冷中子导管或真空腔,所述探测器是闪烁体探测器。
4.一种使用权利要求1-3中任意一项装置的中子束过滤器过滤性能测量方法,其特征在于:
所述方法包括以下步骤:
(1)选择偏转单色器;
(2)调出偏转束;
(3)飞行时间装置对中;
(4)测量飞行时间谱;启动飞行时间装置测量加过滤器前后中子飞行时间谱,获得飞行时间谱后进行后续数据处理,先是起始时间偏移修正,继而将飞行时间谱转换为波长分布谱,最后根据闪烁体探测器的探测效率随波长变化曲线修正探测效率,获得测量结果;
(5)计算透过率;加过滤器前,初级中子λ及高次谐波中子λ/2、λ/3......λ/n的积分强度分别为I1、I2、I3......In;加过滤器后,变为I′1、I′2、I′3......I′n;则初级中子λ及高次谐波中子λ/2、λ/3......λ/n的透过率分别为I′1/I1、I′2/I2、I′3/I3......I′n/In
(6)计算偏转单色器的反射率;使用开放软件NOP,输入偏转单色器的偏转晶面米勒指数(nh,nk,nl)、德拜温度、中子波长λ/n、嵌镶分布半高宽β′及晶体厚度,n为正整数,h、k、l为互质整数,计算出初级中子及高次谐波中子反射率k1、k2、k3......kn,用kn表征(nh,nk,nl)晶面反射波长λ/n中子的反射率;
(7)计算品质因子,品质因子表达为
5.如权利要求4所述的中子束过滤器过滤性能测量方法,其特征在于:
所述步骤(2)和步骤(3)的具体过程如下:
转动旋转台将偏转单色器平板平面调至与中子单色器平板平面平行;将一维中子线探测器置于正对偏转束位置,打开位于待测中子束过滤器前中子飞行路径上的屏蔽门放出中子束,转动旋转台在初始位置附近步进扫描,微调线探测器位置,确保偏转束照射到线探测器中心区,记录每个角度下线探测器积分计数率;将旋转台旋转至线探测器积分计数率最大的角度;关闭屏蔽门,移走线探测器,将飞行时间装置置于正对偏转束位置;打开屏蔽门放出中子束,微调飞行时间装置位置,使用手持式中子示踪仪监测偏转束,确保镉缝位于偏转束束斑区,透过镉缝的中子束照射到飞行时间装置闪烁体探测器的中心区。
CN201510760920.8A 2015-11-10 2015-11-10 中子束过滤器过滤性能测量装置及方法 Active CN105388169B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510760920.8A CN105388169B (zh) 2015-11-10 2015-11-10 中子束过滤器过滤性能测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510760920.8A CN105388169B (zh) 2015-11-10 2015-11-10 中子束过滤器过滤性能测量装置及方法

Publications (2)

Publication Number Publication Date
CN105388169A CN105388169A (zh) 2016-03-09
CN105388169B true CN105388169B (zh) 2018-11-30

Family

ID=55420698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510760920.8A Active CN105388169B (zh) 2015-11-10 2015-11-10 中子束过滤器过滤性能测量装置及方法

Country Status (1)

Country Link
CN (1) CN105388169B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226339A (zh) * 2016-09-20 2016-12-14 清华大学 中子产生设备,中子成像设备以及成像方法
CN111290011B (zh) * 2020-02-06 2021-09-10 中国工程物理研究院激光聚变研究中心 用于射线探测的标定方法、装置、设备及存储介质
CN113916918B (zh) * 2021-11-03 2022-11-25 中国原子能科学研究院 用于放射性样品的中子照相的检测系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201945692U (zh) * 2011-03-17 2011-08-24 中国科学院化学研究所 一种中子反射谱仪单色器的调节装置
EP2433162A2 (en) * 2009-05-22 2012-03-28 Schlumberger Technology B.V. Optimization of neutron-gamma tools for inelastic gamma-ray logging
CN204231100U (zh) * 2014-11-06 2015-03-25 北京奥普科星技术有限公司 一种机械式选择性过滤脉冲中子束流装置
CN104813436A (zh) * 2012-06-01 2015-07-29 拉皮斯坎系统股份有限公司 用于材料辨别的飞行时间中子探询的方法和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091701B (zh) * 2011-10-28 2015-09-30 中国原子能科学研究院 多用途冷中子束流品质测量用飞行时间设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2433162A2 (en) * 2009-05-22 2012-03-28 Schlumberger Technology B.V. Optimization of neutron-gamma tools for inelastic gamma-ray logging
CN201945692U (zh) * 2011-03-17 2011-08-24 中国科学院化学研究所 一种中子反射谱仪单色器的调节装置
CN104813436A (zh) * 2012-06-01 2015-07-29 拉皮斯坎系统股份有限公司 用于材料辨别的飞行时间中子探询的方法和系统
CN204231100U (zh) * 2014-11-06 2015-03-25 北京奥普科星技术有限公司 一种机械式选择性过滤脉冲中子束流装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种起飞角连续可变的中子单色器屏蔽装置;高建波等;《中国机械工程》;20100215;第21卷(第3期);357-368 *
用于标定小角中子散射谱仪机械速度选择器的中子飞行时间装置设计;余周香等;《第十七届全国核电子学与核探测技术学术年会》;20141231;275-279 *

Also Published As

Publication number Publication date
CN105388169A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
Szlachetko et al. Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray microscopy beamline ID21 (ESRF)
Malzer et al. A laboratory spectrometer for high throughput X-ray emission spectroscopy in catalysis research
CN105388169B (zh) 中子束过滤器过滤性能测量装置及方法
US2967934A (en) Apparatus for measuring the thickness of a deposit
US3936638A (en) Radiology
Steuwer et al. Using pulsed neutron transmission for crystalline phase imaging and analysis
US10627354B2 (en) Substitution site measuring equipment and substitution site measuring method
Graczyk et al. Scanning electron diffraction attachment with electron energy filtering
RU137951U1 (ru) Устройство для рентгеновского микроанализа
Hayakawa et al. Fluorescence x‐ray absorption fine structure measurements using a synchrotron radiation x‐ray microprobe
Reinhardt et al. Reference-free quantification of particle-like surface contaminations by grazing incidence X-ray fluorescence analysis
JP2005515474A (ja) X線回折法
Kahraman et al. Observable consequences of self-irradiation damage in a MIMAS-type MOX nuclear fuel as analyzed by x-ray diffraction, electron microprobe analysis, and Raman imaging. A possible methodological approach
Boin et al. Monte Carlo simulations for the analysis of texture and strain measured with Bragg edge neutron transmission
Chen et al. Development of a high-energy-resolution EDXRD system with a CdTe detector for security inspection
CN105445780B (zh) 一种中子单色器高次谐波的测量装置及方法
US7949097B2 (en) Methods and apparatus for the identification of materials using photons scattered from the nuclear “PYGMY resonance”
CN108535300A (zh) 一种内置式中子元素分析装置
JPH06249804A (ja) 蛍光x線分析装置
De Canditiis et al. Full-volume characterization of an AGATA segmented HPGe gamma-ray detector using a^ 152 Eu 152 E u source
Larsson et al. X-ray microbeam spectroscopy with the use of capillary optics
Ganenko et al. Linearly polarized photon beam at MAX-lab
Lehmann et al. Edge enhancement investigations by means of experiments and simulations
US5661304A (en) Multi-purpose noninterceptive charged particle beam diagnostic device using diffraction radiation and method for its use
Bourdillon et al. High-resolution energy-dispersive diffraction using synchrotron radiation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant