CN105374919B - 发光装置以及采用该发光装置的显示装置 - Google Patents

发光装置以及采用该发光装置的显示装置 Download PDF

Info

Publication number
CN105374919B
CN105374919B CN201410426400.9A CN201410426400A CN105374919B CN 105374919 B CN105374919 B CN 105374919B CN 201410426400 A CN201410426400 A CN 201410426400A CN 105374919 B CN105374919 B CN 105374919B
Authority
CN
China
Prior art keywords
layer
light
semiconductor layer
emitting device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410426400.9A
Other languages
English (en)
Other versions
CN105374919A (zh
Inventor
任梦昕
李群庆
张立辉
陈墨
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN201410426400.9A priority Critical patent/CN105374919B/zh
Priority to TW103131828A priority patent/TWI594454B/zh
Priority to US14/791,245 priority patent/US9581854B2/en
Publication of CN105374919A publication Critical patent/CN105374919A/zh
Application granted granted Critical
Publication of CN105374919B publication Critical patent/CN105374919B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material

Abstract

本发明涉及一种发光装置,其包括:一第一电极、一第一半导体层、一活性层、一第二半导体层以及一第二电极;所述第一半导体层、活性层以及第二半导体层层叠设置;其中,所述第二电极为一设置于该第二半导体层表面的金属超材料层,所述金属超材料层为一连续的金属层,且该连续的金属层定义多个周期设置的开口从而形成多个周期设置的超材料单元;且所述金属超材料层与所述活性层之间的距离小于等于100纳米,该金属超材料层通过等离子体激元场共振实现对活性层发出的光的纳米级起偏,使该发光装置直接发出偏振光。采用该发光装置的显示装置无需专门偏振元件,结构简单。

Description

发光装置以及采用该发光装置的显示装置
技术领域
本发明涉及一种发光装置以及采用该发光装置的显示装置,尤其涉及一种超材料等离子激元集成发光装置以及采用该发光装置的显示装置。
背景技术
当前液晶显示器已被人们广泛使用。液晶显示器采用的原理为使用电调制层,如液晶分子,实现入射偏振光偏振的改变,使得最终透过检偏器的光强度发生变化。
为了产生偏振光,目前广泛采用的方法是使用薄膜偏振片对于光源(灯管或LED)发光进行起偏。由于一般光源发光都是非偏振光,这意味着经过偏振片要损失至少一半的光强,这不仅降低显示亮度并且浪费电能。为了消除偏振片对于光强的衰减,也有人提出利用液晶所具有的选择反射特性,利用一层附加的液晶层实现对于光源发射光的左旋或右旋起偏。
然而,以上两种方法均是采用偏振元件基于远场对于光源发出的光进行偏振态的控制。
发明内容
有鉴于此,确有必要提供一种可以直接发射偏振光的发光装置以及采用该发光装置的显示装置。
一种发光装置,其包括:一第一电极、一第一半导体层、一活性层、一第二半导体层以及一第二电极;所述第一半导体层、活性层以及第二半导体层层叠设置,所述第一电极与该第一半导体层电连接,且所述第二电极与该第二半导体层电连接;其中,所述第二电极为一设置于该第二半导体层表面的金属超材料层,所述金属超材料层为一连续的金属层,且该连续的金属层定义多个周期设置的开口从而形成多个周期设置的超材料单元;且所述金属超材料层与所述活性层之间的距离小于等于100纳米,该金属超材料层通过等离子体激元场共振实现对活性层发出的光的纳米级起偏,使该发光装置直接发出偏振光。
一种发光装置,其包括:一第一电极、一第一半导体层、一活性层、一第二半导体层以及一第二电极;所述第一半导体层、活性层以及第二半导体层层叠设置,所述第一电极与该第一半导体层电连接,且所述第二电极与该第二半导体层电连接;其中,进一步包括一设置于所述第一半导体层、活性层以及第二半导体层共面的侧面的金属超材料层,且该金属超材料层与所述第一电极和第二电极绝缘设置,该金属超材料层通过等离子体激元场共振实现对活性层发出的光的纳米级起偏,使该发光装置直接发出偏振光。
一种显示装置,其包括一发光装置、一导光板以及一液晶面板,其中,所述发光装置为上述发光装置。
与现有技术相比较,本发明提供的发光装置通过超材料的等离子激元场在纳米尺度内实现对于电磁波性质的操控,可以实现对于发光装置发出的光的纳米尺度偏振起偏,从而直接发射偏振光。进一步,采用该发光装置的显示装置无需专门偏振元件,结构简单。
附图说明
图1为本发明第一实施例提供的发光装置的结构示意图。
图2为图1所示的发光装置沿线II-II的剖面示意图。
图3为本发明第一实施例提供的超材料单元的结构示意图。
图4为本发明第一实施例提供的发光装置的超材料单元的扫描电镜照片。
图5为本发明第一实施例提供的发光装置从正面照射激发从背面发光的工作示意图。
图6为本发明第一实施例提供的发光装置从正面照射激发时,背面发射光的偏振测试结果。
图7为本发明第一实施例提供的发光装置从背面照射激发从正面发光的工作示意图。
图8为本发明第一实施例提供的发光装置从背面照射激发时,正面发射光的偏振测试结果。
图9为本发明比较例将发光材料层直接设置于绝缘透明基底表面的发光装置的结构示意图。
图10为本发明比较例将发光材料层直接设置于绝缘透明基底表面的发光装置的偏振测试结果。
图11为本发明第一实施例提供的发光装置的光透射、反射以及吸收测试结果。
图12为本发明第一实施例提供的显示装置的结构示意图。
图13为本发明第二实施例提供的发光装置的结构示意图。
图14为本发明第三实施例提供的发光装置的结构示意图。
图15为本发明第三实施例提供的发光装置的超材料单元的扫描电镜照片。
图16为本发明第四实施例提供的发光装置的结构示意图。
图17为本发明第五实施例提供的发光装置的结构示意图。
图18为本发明第六实施例提供的发光装置的结构示意图。
图19为本发明第七实施例提供的发光装置的结构示意图。
图20为本发明第八实施例提供的发光装置的结构示意图。
主要元件符号说明
显示装置 10
发光装置 100, 200, 300, 400, 500, 600, 700, 800
绝缘透明基底 110
超材料层 120, 570
超材料单元 122
开口 124
发光材料层 130
聚合物 132
量子点 134
入射光 140
发射光 150
导光板 160
液晶面板 170
反射层 180, 580
第一电极 510
第一半导体层 520
活性层 530
第二半导体层 540
第二电极 550
衬底 560
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例,对本发明提供的发光装置以及采用该发光装置的显示装置作进一步的详细说明。本发明第一至第四实施例提供的发光装置为光泵浦发光装置,其通过外部光激发该发光装置发光。本发明第五至第八实施例提供的发光装置为电泵浦发光装置,其通过电能激发该发光装置发光。采用该发光装置的显示装置为液晶显示器。
请参阅图1-2,本发明第一实施例提供一种发光装置100,该发光装置100包括一绝缘透明基底110、一超材料(Metamaterial)层120以及一发光材料层130。所述绝缘透明基底110、超材料层120以及发光材料层130依次层叠设置。
具体地,所述超材料层120设置于该绝缘透明基底110的一表面。所述发光材料层130设置于该超材料层120远离该绝缘透明基底110的表面且将该超材料层120覆盖。可以理解,该发光装置100还可包括一透明保护层(图未示)覆盖于该发光材料层130远离该超材料层120的表面。
所述绝缘透明基底110为一曲面型或平面型的结构。该绝缘透明基底110主要起支撑的作用。该绝缘透明基底110可以由硬性材料或柔性材料形成。具体地,所述硬性材料可选择为氧化硅、氮化硅、蓝宝石、陶瓷、玻璃、石英、金刚石或塑料等。所述柔性材料可选择为聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯(PE)、聚酰亚胺(PI)或聚对苯二甲酸乙二醇酯(PET)等聚酯材料,或聚醚砜(PES)、纤维素酯、聚氯乙烯(PVC)、苯并环丁烯(BCB)或丙烯酸树脂等材料。形成所述绝缘透明基底110的材料并不限于上述列举的材料,只要能使绝缘透明基底110起到支撑作用且透明的材料即可。所述绝缘透明基底110的形状、尺寸和厚度可以根据实际需要选择。本实施例中,所述绝缘透明基底110为一厚度为200微米的二氧化硅层。
所述超材料层120指一些具有人工设计的结构并呈现出天然材料所不具备的超常物理性质,例如:负折射率、负磁导率、负介电常数的复合材料层。所述超材料层120的性质主要决定于材料本身以及材料中的人工微结构。所述超材料层120包括多个周期设置的超材料单元122。每个超材料单元122可以为一设置于所述绝缘透明基底110表面的凸起,也可以为一由该超材料层120定义的开口。当每个超材料单元122为一设置于所述绝缘透明基底110表面的凸起时,所述超材料层120的多个凸起间隔设置使得该超材料层120可以透光。可以理解,当所述超材料单元120为多个周期性设置的凸起,所述发光材料层130厚度均匀时,所述发光材料层130远离该绝缘透明基底110的表面为起伏状。该超材料单元122的图形可以为图3所示的图形,或图3所示的图形旋转或镜射后的图形。
参见表1,根据所述超材料单元122有无手性对称性、是否各向同性以及产生偏振光的种类,本发明将该超材料单元122分为四类。所述超材料单元122的厚度h为30纳米~100纳米,周期为300纳米~500纳米,线宽为30纳米~40纳米。优选地,所述超材料单元122的尺度小于等于所述发光材料层130发出光的光波波长。本实施例中,所述超材料单元122的尺度小于等于100纳米,即,所述超材料单元122在各个方向的尺寸均小于等于100纳米。所述超材料层120的材料为金属以产生表面等离子体激元,如金、银、铜、铁、铝、镍等或其合金。所述超材料层120通过聚焦离子束刻蚀或电子束曝光等技术加工金层制备。本实施例中,先在所述绝缘透明基底110表面沉积一层金膜,再通过聚焦离子束刻蚀制备周期性分布的长条形开口作为超材料单元122,从而得到该超材料层120。所述超材料层120的厚度为50纳米,所述超材料单元122的周期为250纳米,长度约为90.38纳米,宽度约为26.53纳米。所述长条形结构超材料单元122属于第4类,产生的偏振光为线偏光。
表1
类别 手性对称性 各向同性 偏振光种类
1 圆偏光
2 椭偏光
3 非偏光
4 线偏光
所述发光材料层130采用光激发发光的发光材料制备,如半导体量子点、染料分子以及荧光粉中的一种或多种。所述半导体量子点可以为硫化铅(PbS)量子点、硒化镉(CdSe)量子点或砷化镓(GaAs)量子点等。所述半导体量子点的直径为50纳米~200纳米。所述染料分子可以为若丹明6G。所述发光材料层130设置于所述超材料层120远离所述绝缘透明基底110的表面,且部分延伸至所述超材料层120的开口中并与所述绝缘透明基底110的表面接触。即所述发光材料层130部分设置于所述超材料层120的表面,部分设置于该绝缘透明基底110通过该多个开口暴露的表面。所述发光材料层130远离所述绝缘透明基底110的表面可以为一平面或曲面。所述发光材料层130的厚度H为50纳米~500纳米,优选为100纳米~200纳米。所述发光材料层130可以通过旋涂、喷涂、印刷、沉积等方法制备。本实施例中,所述发光材料层130包括一聚合物132以及多个分散于该聚合物132中的硒化镉量子点134。所述发光材料层130为厚度100纳米。所述发光材料层130的制备方法为先将硒化镉量子点134均匀分散于聚合物132,如光刻胶,中形成一混合液,然后将该混合液通过旋涂的方法涂覆于所述超材料层120表面。
本发明定义该发光装置100位于所述发光材料层130的一侧为正面,而位于所述绝缘透明基底110的一侧为背面。请参阅图5-8,为本发明第一实施例提供的发光装置100的偏振度测试结果。由图5-6可见,当入射光140从该发光装置100正面照射激发时,该发光装置100背面的发射光150的线偏振度为95%。由图7-8可见,当入射光140从该发光装置100背面照射激发时,该发光装置100正面的发射光150的线偏振度为10%。由此可见,当发射光150透过所述超材料层120时的线偏振度远大于该发射光150不透过所述超材料层120时的线偏振度。
可以理解,通常光源距离大于一个波长即可看为远场光源,而在1/10波长范围左右可以看为近场。对于可见光而言,波长范围在770纳米~390纳米之间,因此,当光源距离小于等于100纳米时可以看作近场。所述超材料层120可看作为电磁场能量的纳米谐振腔,改变其临近空间位置的局域光子态密度,由费米黄金定则可知,这种局域光子态密度将对于放置于近场范围内的发光物质的辐射速率发生调控,往往表现为加速,即增强发光。对于如图1的超材料层120的设计,其对于y偏振态可形成等离子激元共振,而x偏振态则不能,进而加速临近量子点对于y偏振光的发射速率,即发光倾向为y偏振。由于菲涅耳定则及电磁场边界条件决定,在该超材料层120背侧,即发光经过该超材料层120的方向,发光偏振度要高。
进一步参见图9-10,本发明比较例中,将发光材料层130直接设置于绝缘透明基底110表面得到一发光装置,当入射光140从该发光装置正面照射激发时,该发光装置背面的发射光150为非线偏振光。由此可见,该发光装置100的发射光150的偏振特性由所述超材料层120导致。
进一步参见图11,为本发明第一实施例提供的发光装置100的远场平面波光源的透射、反射以及吸收测试结果。根据图11的光透射曲线,可见Ty/Tx约等于5,其中Ty表示y偏振光的透射率,Tx表示x偏振光的透射率。由于该发射光150的y偏振光透过5份,而x偏振光透过1份,由此可以计算该透射光的线偏振度为(Imax-Imin)/(Imax+Imin)= (5-1)/(5+1)~67%。即,本发明的超材料对远场光源的偏振度为67%,而对近场光源的偏振度为95%。由此可见,该发光装置100的发射光150的偏振特性并非简单的由于透射造成,而是由于所述超材料层120对于光子态密度调控进而使得发射光150表现为线偏振光。
该发光装置100具有以下优点:一,通过金属超材料层120的等离子体激元场可增强发光材料层130的发射效率,可提高光源亮度;二、利用金属超材料层120的等离子体激元场共振的偏振特性实现对发光材料层130发出的光的纳米级起偏,即该发光装置100直接发出偏振光。
请参阅图12,本发明第一实施例进一步提供一种采用该发光装置100的显示装置10。具体地,该显示装置10包括层叠设置的发光装置100、导光板160以及液晶面板170。所述导光板160和液晶面板170层叠设置于该发光装置100的绝缘透明基底110一侧。所述导光板160和液晶面板170为现有的导光板和液晶面板,可以根据需要选择。所述发光装置100作为该显示装置10的光源。由于该发光装置100可以直接发射偏振光,采用该发光装置100的显示装置10无需专门偏振元件,结构简单。可以理解,该显示装置10也可以采用第二至第四实施例所示的发光装置200,300,400。
请参阅图13,本发明第二实施例提供一种发光装置200,该发光装置200包括一绝缘透明基底110、一超材料层120、一发光材料层130以及一反射层180。所述绝缘透明基底110、超材料层120、发光材料层130以及反射层180依次层叠设置。
本发明第二实施例提供的发光装置200与本发明第一实施例提供的发光装置100的结构基本相同,其区别在于,进一步包括一反射层180设置于该发光材料层130远离所述绝缘透明基底110的表面,且将该发光材料层130覆盖。所述反射层180可以为一金属薄膜,如金膜。可以理解,由于该发光材料层130向正面发射的光经所述反射层180反射后可以透过该超材料层120从背面出射,因此,该发光装置200具有更高的光出射率。
可以理解,本发明第二实施例提供的发光装置200在使用时,入射光可以从背面照射,也可以从侧面照射。优选地,使入射光140同时从该发光装置200的每个侧面照射,使得发射光150从背面出射。
请参阅图14,本发明第三实施例提供一种发光装置300,该发光装置300包括一绝缘透明基底110、一超材料层120、一发光材料层130以及一反射层180。所述绝缘透明基底110、超材料层120、发光材料层130以及反射层180依次层叠设置。
本发明第三实施例提供的发光装置300与本发明第一实施例提供的发光装置100的结构基本相同,其区别在于,所述发光装置300的超材料单元122为多个周期性设置于所述绝缘透明基底110表面的条形凸起,所述发光材料层130厚度均匀,且所述发光材料层130远离该绝缘透明基底110的表面为起伏状。即,该发光材料层130远离该绝缘透明基底110的表面定义多个间隔设置的凹槽和凸起。请参阅图15,所述超材料层120的超材料单元122呈二维阵列设置。本实施例中,所述超材料单元122的厚度为50纳米,周期为300纳米,长度约152纳米,宽约116纳米。
请参阅图16,本发明第四实施例提供一种发光装置400,该发光装置400包括一绝缘透明基底110、一超材料层120、一发光材料层130以及一反射层180。所述绝缘透明基底110、超材料层120、发光材料层130以及反射层180依次层叠设置。
本发明第四实施例提供的发光装置400与本发明第一实施例提供的发光装置100的结构基本相同,其区别在于,所述发光装置400的超材料单元122为多个周期性设置的G形凹槽。本实施例中,所述超材料单元122的厚度为50纳米,周期为400纳米,线宽为40纳米。
请参阅图17,本发明第五实施例提供一种发光装置500,该发光装置500包括一第一电极510、一第一半导体层520、一活性层530、一第二半导体层540以及一第二电极550。
具体地,所述第一电极510、第一半导体层520、活性层530、第二半导体层540以及第二电极550依次层叠设置。所述第一电极510与该第一半导体层520电连接,所述第二电极550与该第二半导体层540电连接。所述第一电极510和第二电极550中的至少一个为上述金属超材料层,且该金属超材料层与所述活性层530之间的距离小于等于100纳米。优选地,该金属超材料层与所述活性层530之间的距离小于等于50纳米。即,所述活性层530构成该金属超材料层的近场光源。可以理解,所述作为电极的金属超材料层应为一连续的金属层,且该连续的金属层定义多个周期设置的开口从而形成多个周期设置的超材料单元。可以理解,所述发光装置500为一垂直结构的发光二极管。所述第一半导体层520、活性层530以及第二半导体层540共同构成一发光结构。所述活性层530为一电激发发光的发光材料层。
所述第一半导体层520、第二半导体层540分别为N型半导体层和P型半导体层两种类型中的一种。具体地,当该第一半导体层520为N型半导体层时,第二半导体层540为P型半导体层;当该第一半导体层520为P型半导体层时,第二半导体层540为N型半导体层。所述N型半导体层起到提供电子的作用,所述P型半导体层起到提供空穴的作用。所述N型半导体层的材料包括N型氮化镓、N型砷化镓及N型磷化铜等材料中的一种或几种。所述P型半导体层的材料包括P型氮化镓、P型砷化镓及P型磷化铜等材料中的一种或几种。所述第一半导体层520的厚度为50纳米至3微米。所述第二半导体层540的厚度为50纳米至3微米。可以理解,当与所述第一半导体层520或第二半导体层540对应的电极为金属超材料层时,该第一半导体层520或第二半导体层540的厚度应小于等于100纳米,从而使得该金属超材料层与所述活性层530之间的距离小于等于100纳米。本实施例中,所述第一半导体层520为厚度0.3微米的N型氮化镓。所述第二半导体层540为厚度100纳米的P型氮化镓。
所述活性层530设置于第一半导体层520和第二半导体层540之间。所述活性层530为包含一层或多层量子阱层的量子阱结构(Quantum Well)。所述活性层530用于提供光子。所述活性层530的材料为氮化镓、氮化铟镓、氮化铟镓铝、砷化稼、砷化铝稼、磷化铟镓、磷化铟砷或砷化铟镓中的一种或几种。所述活性层530的厚度为0.01微米至0.6微米。本实施例中,所述活性层530为两层结构,包括一氮化铟镓层及一氮化镓层,其厚度为0.03微米。
所述第一电极510将所述第一半导体层520覆盖,所述第二电极550将所述第二半导体层540覆盖。所述第一电极510和第二电极550可以为N型电极或P型电极两种类型中的一种。所述第二电极550的类型与第二半导体层540的类型相同。所述第一电极510与第一半导体层520的类型相同。所述第二电极550和第一电极510的厚度为0.01微米至2微米。所述第一电极510、第二电极550的材料可以为金、银、铜、铁、铝、镍及钛中的一种或其任意组合。本实施例中,所述所述第一电极510为两层结构的N型电极,其包括一厚度为15纳米的钛层及一厚度为200纳米的金层。所述第二电极550为如图16所示的金属超材料层,其厚度100纳米。
本实施例的发光装置500工作时,通过所述第一电极510和第二电极550施加电压,所述活性层530受激产生光子。所述光子从所述第二电极550射出。由于所述第二电极550为金属超材料层且离所述活性层530的距离小于等于100纳米,因此,通过该金属超材料层的等离子体激元场可增强所述活性层530的发射效率,提高发光装置500亮度,而且,利用金属超材料层的等离子体激元场共振的偏振特性实现对所述活性层530发出的光的纳米级起偏,即该发光装置500直接发出偏振光。
可以理解,所述第一电极510也可以为金属超材料层,且所述第一电极510与所述活性层530的距离小于等于100纳米。具体地,所述第一半导体层520为厚度100纳米的N型氮化镓。可以理解,此时,本实施例的发光装置500可以从双面直接发射偏振光。
请参阅图18,本发明第六实施例提供一种发光装置600,该发光装置600包括一反射层580、一第一电极510、一第一半导体层520、一活性层530、一第二半导体层540以及一第二电极550。
本发明第六实施例提供的发光装置600与本发明第五实施例提供的发光装置500的结构基本相同,其区别在于,进一步包括一反射层580。具体地,所述反射层580设置于该第一电极510远离活性层530的表面,且将该第一电极510覆盖。可以理解,所述反射层580使得从所述活性层530向所述第一电极510方向传播的光线经反射后从第二电极550一侧出射,从而提高了发光装置600的发射效率。可以理解,从第一电极510反射后从第二电极550出射的光虽然为远场透射,但仍然可以经过第二电极550的金属超材料层进行偏振,并以偏振光出射。
请参阅图19,本发明第七实施例提供一种发光装置600,该发光装置700包括一衬底560、一第一电极510、一第一半导体层520、一活性层530、一第二半导体层540以及一第二电极550。
本发明第七实施例提供的发光装置700与本发明第五实施例提供的发光装置500的结构基本相同,其区别在于,所述发光装置700为一水平结构的发光二极管。具体地,所述第一半导体层520、活性层530、第二半导体层540以及第二电极550依次层叠设置于该衬底560的一表面。所述第一半导体层520的面积大于所述活性层530、第二半导体层540以及第二电极550的面积,从而使得所述第一半导体层520的至少部分表面暴露。所述第一电极510设置于所述第一半导体层520暴露的表面。所述第二电极550为金属超材料层且离所述活性层530的距离小于等于100纳米。
请参阅图20,本发明第八实施例提供一种发光装置800,该发光装置800包括一第一电极510、一第一半导体层520、一活性层530、一第二半导体层540、一第二电极550以及一金属超材料层570。
本发明第八实施例提供的发光装置800与本发明第五实施例提供的发光装置500的结构基本相同,其区别在于,进一步包括一金属超材料层570。具体地,所述金属超材料层570设置于所述第一半导体层520、活性层530以及第二半导体层540的共面的侧面且与所述第一电极510和第二电极550绝缘设置。可以理解,所述金属超材料层570可以设置于所述发光装置800的全部侧面或部分侧面。当所述金属超材料层570设置于所述发光装置800的部分侧面,其他侧面还可以设置反射层。所述第一电极510和第二电极550可以为金属超材料层,也可以为现有的电极结构。优选地,所述第一电极510和第二电极550均为金属反射层,从而使得活性层530发出的光全部从侧面经金属超材料层570出射。可以理解,由于该金属超材料层570设置于侧面,因此,该金属超材料层570的超材料单元可以为一多个间隔设置的凸起,也可以为一由该金属超材料层570定义的开口。本实施例中,所述金属超材料层570为图1所示的结构。
可以理解,由于所述金属超材料层570设置于所述第一半导体层520、活性层530以及第二半导体层540的共面的侧面,直接与活性层530接处,从而可以通过该金属超材料层570的等离子体激元场可增强所述活性层530的发射效率,提高发光装置800亮度。而且,利用金属超材料层570的等离子体激元场共振的偏振特性实现对所述活性层530发出的光的纳米级起偏,即该发光装置800直接发出偏振光。
另外,本领域技术人员还可以在本发明精神内做其他变化,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围内。

Claims (12)

1.一种发光装置,其包括:一第一电极、一第一半导体层、一活性层、一第二半导体层以及一第二电极;所述第一半导体层、活性层以及第二半导体层层叠设置,所述第一电极与该第一半导体层电连接,且所述第二电极与该第二半导体层电连接;其特征在于,所述第一半导体层和第二半导体层分别为N型半导体层和P型半导体层两种类型中的一种,所述第二电极为一设置于该第二半导体层表面的金属超材料层,所述金属超材料层为一连续的金属层,且该连续的金属层定义多个周期设置的开口从而形成多个周期设置的超材料单元;且所述金属超材料层与所述活性层之间的距离小于等于100纳米,该金属超材料层通过等离子体激元场共振实现对活性层发出的光的纳米级起偏,使该发光装置直接发出偏振光。
2.如权利要求1所述的发光装置,其特征在于,所述第一电极将所述第一半导体层覆盖,所述第二电极将所述第二半导体层覆盖,且所述第一电极也为金属超材料层。
3.如权利要求1所述的发光装置,其特征在于,所述第一电极将所述第一半导体层覆盖,所述第二电极将所述第二半导体层覆盖;进一步包括一设置于该第一电极远离所述活性层的表面的反射层,且所述反射层将所述第一电极覆盖。
4.如权利要求1所述的发光装置,其特征在于,所述第一半导体层、活性层、第二半导体层以及第二电极依次层叠设置于一衬底的一表面;所述第一半导体层的面积大于所述活性层、第二半导体层以及第二电极的面积,从而使得所述第一半导体层的至少部分表面暴露;所述第一电极设置于所述第一半导体层暴露的表面。
5.如权利要求1所述的发光装置,其特征在于,所述超材料单元具有手性对称性且各向同性。
6.如权利要求1所述的发光装置,其特征在于,所述超材料单元具有手性对称性且无各向同性。
7.如权利要求1所述的发光装置,其特征在于,所述超材料单元无手性对称性且无各向同性。
8.如权利要求1所述的发光装置,其特征在于,所述超材料单元的厚度为30纳米~100纳米,周期为300纳米~500纳米,线宽为30纳米~40纳米。
9.如权利要求1所述的发光装置,其特征在于,所述金属超材料层的材料为金、银、铜、铁、铝、镍或其合金。
10.如权利要求1所述的发光装置,其特征在于,进一步包括一设置于该发光材料层远离所述绝缘透明基底的表面的反射层。
11.一种发光装置,其包括:一第一电极、一第一半导体层、一活性层、一第二半导体层以及一第二电极;所述第一半导体层、活性层以及第二半导体层层叠设置,所述第一电极与该第一半导体层电连接,且所述第二电极与该第二半导体层电连接;其特征在于,进一步包括一设置于所述第一半导体层、活性层以及第二半导体层共面的侧面的金属超材料层,且该金属超材料层与所述第一电极和第二电极绝缘设置,该金属超材料层通过等离子体激元场共振实现对活性层发出的光的纳米级起偏,使该发光装置直接发出偏振光。
12.一种显示装置,其包括一发光装置、一导光板以及一液晶面板,其特征在于,所述发光装置为如权利要求1至11所述的发光装置中的一种。
CN201410426400.9A 2014-08-26 2014-08-26 发光装置以及采用该发光装置的显示装置 Active CN105374919B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410426400.9A CN105374919B (zh) 2014-08-26 2014-08-26 发光装置以及采用该发光装置的显示装置
TW103131828A TWI594454B (zh) 2014-08-26 2014-09-15 發光裝置以及採用該發光裝置的顯示裝置
US14/791,245 US9581854B2 (en) 2014-08-26 2015-07-02 Light emitting device and display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410426400.9A CN105374919B (zh) 2014-08-26 2014-08-26 发光装置以及采用该发光装置的显示装置

Publications (2)

Publication Number Publication Date
CN105374919A CN105374919A (zh) 2016-03-02
CN105374919B true CN105374919B (zh) 2018-03-02

Family

ID=55376908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410426400.9A Active CN105374919B (zh) 2014-08-26 2014-08-26 发光装置以及采用该发光装置的显示装置

Country Status (3)

Country Link
US (1) US9581854B2 (zh)
CN (1) CN105374919B (zh)
TW (1) TWI594454B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10254228B2 (en) * 2014-12-09 2019-04-09 Konica Minolta, Inc. Detection chip and detection method
CN105044814B (zh) * 2015-08-03 2017-07-04 欧阳征标 一种右旋圆偏振转换的超材料薄膜
US9753185B2 (en) * 2015-08-19 2017-09-05 The United States Of America As Represented By The Secretary Of The Navy Light guide film control for optically tunable metamaterials
CN107561053B (zh) * 2016-07-01 2020-04-28 清华大学 一种单分子检测方法
CN107561051A (zh) * 2016-07-01 2018-01-09 清华大学 一种用于单分子检测的分子载体
CN108072640B (zh) * 2016-11-14 2020-01-07 清华大学 一种单分子检测装置以及单分子检测方法
CN107561052B (zh) * 2016-07-01 2020-04-28 清华大学 一种用于单分子检测的分子载体的制备方法
CN106932954A (zh) 2017-05-12 2017-07-07 京东方科技集团股份有限公司 显示装置及其制作方法
CN109470676A (zh) * 2017-09-08 2019-03-15 清华大学 用于分子检测的分子载体
KR102613049B1 (ko) * 2017-10-10 2023-12-12 삼성전자주식회사 양자점 광변조기 및 이를 포함하는 장치
EP3470912B1 (en) 2017-10-10 2022-02-02 Samsung Electronics Co., Ltd. Quantum dot light modulator and apparatus including the same
EP3477364B1 (en) 2017-10-31 2023-11-22 Samsung Electronics Co., Ltd. Light emission device including output coupler and optical apparatus adopting the same
EP3477363B1 (en) 2017-10-31 2022-04-20 Samsung Electronics Co., Ltd. Optical modulating device and apparatus including the same
KR102555412B1 (ko) * 2018-12-14 2023-07-13 엘지디스플레이 주식회사 발광 소자를 포함하는 디스플레이 장치
CN110095827A (zh) * 2019-05-08 2019-08-06 中山科立特光电科技有限公司 一种产生圆偏振光的微纳结构
CN114761833A (zh) * 2019-12-05 2022-07-15 伟视达电子工贸有限公司 发光装置、用于显示装置的背光单元以及显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921157A (zh) * 2005-08-26 2007-02-28 中国科学院半导体研究所 一种高效率深紫外发光二极管
CN103296483A (zh) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 一种基于表面等离子体激元的吸波材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM373504U (en) * 2005-12-30 2010-02-01 Sumika Technology Inc Liquid crystal display deevice
US8093139B2 (en) * 2008-12-11 2012-01-10 Anteos, Inc. Method for fabrication of aligned nanowire structures in semiconductor materials for electronic, optoelectronic, photonic and plasmonic devices
CN101752472B (zh) * 2008-12-18 2014-01-01 财团法人工业技术研究院 发光装置
CN101572286B (zh) * 2009-05-27 2011-12-21 苏州大学 偏振出光发光二极管
TWI433351B (zh) * 2010-03-24 2014-04-01 Univ Nat Cheng Kung 可受表面電漿子強化之發光二極體

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921157A (zh) * 2005-08-26 2007-02-28 中国科学院半导体研究所 一种高效率深紫外发光二极管
CN103296483A (zh) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 一种基于表面等离子体激元的吸波材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
人工微结构材料调控光的偏振和自旋霍尔效应研究;凌晓辉;《万方数据》;20140122;参见第11-17,19-20页 *

Also Published As

Publication number Publication date
TW201608734A (zh) 2016-03-01
TWI594454B (zh) 2017-08-01
US20160064612A1 (en) 2016-03-03
US9581854B2 (en) 2017-02-28
CN105374919A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN105374918B (zh) 发光装置以及采用该发光装置的显示装置
CN105374919B (zh) 发光装置以及采用该发光装置的显示装置
US6586775B2 (en) Light-emitting device and a display apparatus having a light-emitting device
Saxena et al. A review on the light extraction techniques in organic electroluminescent devices
US11079523B2 (en) Device and method for shielding at least one sub-wavelength-scale object from an incident electromagnetic wave
CN106463593B (zh) 等离子体光照设备中光子发射体的空间定位
WO2012049905A1 (ja) 光学素子、光源および投射型表示装置
WO2012137584A1 (ja) 光学素子、照明装置および投射型表示装置
US8586963B2 (en) Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same
US11322706B2 (en) Quantum dot film, quantum dot light-emitting assembly and display device
KR20080010458A (ko) 전장 발광 광원
Tian et al. Highly enhanced luminescence performance of LEDs via controllable layer‐structured 3D photonic crystals and photonic crystal beads
WO2015081692A1 (zh) 一种导光板、背光源及液晶显示装置
CN109212655A (zh) 背光源及其制造方法、显示装置
WO2013046866A1 (ja) 光素子および該光素子を用いた投射型表示装置
JP2009239217A (ja) 発光ダイオード素子
JP2006351211A (ja) 面発光光源および液晶表示装置
ES2631178T3 (es) Procedimiento para la fabricación de una estructura generadora de ondas de plasmones superficiales
US11262618B1 (en) LED backlight structure and manufacturing method thereof
Lei et al. Preparation of a periodic polystyrene nanosphere array using the dip-drop method with post-deposition etching and its application of improving light extraction efficiency of InGaN/GaN LEDs
Wang et al. To enhance light extraction for organic light-emitting diodes by body modification of substrate
Tu et al. Functional imprinting structures on GaN-based light-emitting diodes for light pattern modulation and light extraction efficiency enhancement
JP2004349221A (ja) 平面発光装置及び透光体の製造方法
CN115295743A (zh) 显示面板及其制备方法
RU2263938C1 (ru) Способ преобразования частоты оптического излучения

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant