CN105374009A - Remote sensing image splicing method and apparatus - Google Patents
Remote sensing image splicing method and apparatus Download PDFInfo
- Publication number
- CN105374009A CN105374009A CN201410568949.1A CN201410568949A CN105374009A CN 105374009 A CN105374009 A CN 105374009A CN 201410568949 A CN201410568949 A CN 201410568949A CN 105374009 A CN105374009 A CN 105374009A
- Authority
- CN
- China
- Prior art keywords
- ccd
- point
- model
- picture point
- ground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000004364 calculation method Methods 0.000 claims abstract description 107
- 238000003384 imaging method Methods 0.000 claims abstract description 69
- 238000012545 processing Methods 0.000 claims abstract description 11
- 238000001444 catalytic combustion detection Methods 0.000 claims description 127
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 32
- 239000011159 matrix material Substances 0.000 claims description 20
- 241000667869 Psix Species 0.000 claims description 11
- 238000012952 Resampling Methods 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 9
- 238000009499 grossing Methods 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 5
- 244000062793 Sorghum vulgare Species 0.000 claims 2
- 235000019713 millet Nutrition 0.000 claims 2
- 238000005070 sampling Methods 0.000 abstract 1
- 230000009466 transformation Effects 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011545 laboratory measurement Methods 0.000 description 1
Landscapes
- Image Processing (AREA)
Abstract
本发明公开了一种遥感影像拼接方法及装置,其中,该方法包括:根据各片CCD的成像参数建立各片CCD上像点与地面点之间的第一正算模型和第一反算模型,以及根据各片CCD的成像参数生成虚拟CCD的成像参数,根据虚拟CCD的成像参数建立虚拟CCD上像点与地面点之间的第二正算模型和第二反算模型;根据第一正算模型、第一反算模型、第二正算模型以及第二反算模型,建立各片CCD上像点与虚拟CCD上像点之间第三正算模型和第三反算模型;读取各片CCD的影像数据,根据第三正算模型和第三反算模型确定虚拟CCD上每个像点对应的CCD及在该CCD上的像点坐标;对所确定的每个像点进行重采样处理,得到拼接后的影像。通过本发明,提高了遥感影像拼接的质量。
The invention discloses a remote sensing image mosaic method and device, wherein the method includes: establishing a first forward calculation model and a first inverse calculation model between image points on each CCD and ground points according to the imaging parameters of each CCD , and generate the imaging parameters of the virtual CCD according to the imaging parameters of each slice of CCD, and establish the second positive calculation model and the second inverse calculation model between the image point on the virtual CCD and the ground point according to the imaging parameters of the virtual CCD; Calculation model, the first reverse calculation model, the second positive calculation model and the second reverse calculation model, establish the third normal calculation model and the third reverse calculation model between the image points on each CCD and the virtual CCD image points; read The image data of each piece of CCD, according to the 3rd forward calculation model and the 3rd inverse calculation model, determine the CCD corresponding to each image point on the virtual CCD and the image point coordinates on the CCD; Sampling processing to obtain the spliced image. Through the invention, the quality of remote sensing image mosaic is improved.
Description
技术领域technical field
本发明涉及图像处理领域,具体而言,涉及一种遥感影像拼接方法及装置。The invention relates to the field of image processing, in particular to a remote sensing image splicing method and device.
背景技术Background technique
随着光学遥感卫星观测分辨率的不断提升,受单片CCD像元个数的限制,单片线阵CCD的幅宽已无法满足观测需求。为了提高对地观测的效率,保证获取一定幅宽的影像,采用多片CCD通过光学拼接或视场拼接实现较大幅宽是星载高分辨率光学相机发展的重要趋势。With the continuous improvement of the observation resolution of optical remote sensing satellites, due to the limitation of the number of pixels of a single CCD, the width of a single linear array CCD can no longer meet the observation requirements. In order to improve the efficiency of earth observation and ensure the acquisition of images with a certain width, it is an important trend in the development of spaceborne high-resolution optical cameras to use multiple CCDs to achieve a larger width through optical splicing or field of view splicing.
相关技术中,拼接技术是基于连接点构建像方变换模型,实现相邻CCD重叠区影像的配准。相关技术中像方拼接技术至少存在以下不足:In related technologies, the splicing technology is to construct an image square transformation model based on connection points, so as to realize the registration of images in overlapping areas of adjacent CCDs. There are at least the following deficiencies in the image square splicing technology in the related art:
第一,拼接算法均依赖于片间的连接点信息,若相邻CCD影像的水平重叠区缺乏纹理特征,该类算法就存在应用的局限性。First, stitching algorithms all rely on the connection point information between slices. If the horizontal overlapping area of adjacent CCD images lacks texture features, this type of algorithm has application limitations.
第二,该类算法缺乏严密的理论基础作为指导,也无法消除或减弱由于传感器几何变形等引起的图像内部畸变问题,无法从根本上改善虚拟扫描景产品的几何质量。Second, this type of algorithm lacks a rigorous theoretical basis as a guide, and cannot eliminate or reduce the internal image distortion caused by the geometric deformation of the sensor, etc., and cannot fundamentally improve the geometric quality of the virtual scanning scene product.
第三,对于原始影像上水平重叠区域内地形起伏剧烈的情况,无法保证拼接处理的精度。Third, the accuracy of the stitching process cannot be guaranteed for severe terrain fluctuations in the horizontal overlapping area on the original image.
发明内容Contents of the invention
针对相关技术中影像拼接质量不高的问题,本发明提供了一种遥感影像拼接方法及装置,以至少解决上述问题。Aiming at the problem of low image stitching quality in the related art, the present invention provides a remote sensing image stitching method and device to at least solve the above problems.
根据本发明的一个方面,提供了一种遥感影像拼接方法,包括:According to one aspect of the present invention, a remote sensing image stitching method is provided, including:
根据各片CCD的成像参数建立所述各片CCD上像点与地面点之间的第一正算模型和第一反算模型,以及根据所述各片CCD的成像参数生成虚拟CCD的成像参数,根据所述虚拟CCD的成像参数建立所述虚拟CCD上像点与地面点之间的第二正算模型和第二反算模型;According to the imaging parameters of each sheet of CCD, the first forward calculation model and the first inverse calculation model between the image point and the ground point on the each sheet of CCD are established, and the imaging parameters of virtual CCD are generated according to the imaging parameters of each sheet of CCD. , establishing a second forward calculation model and a second inverse calculation model between the image point on the virtual CCD and the ground point according to the imaging parameters of the virtual CCD;
根据所述第一正算模型、所述第一反算模型、所述第二正算模型以及所述第二反算模型,建立所述各片CCD上像点与所述虚拟CCD上像点之间第三正算模型和第三反算模型;According to the first forward calculation model, the first inverse calculation model, the second forward calculation model and the second inverse calculation model, set up image points on each sheet of CCD and image points on the virtual CCD between the third forward model and the third inverse model;
读取所述各片CCD的影像数据,根据所述第三正算模型和所述第三反算模型确定所述虚拟CCD上每个像点对应的CCD及在该CCD上的像点坐标;Read the image data of each of the CCDs, determine the CCD corresponding to each image point on the virtual CCD and the image point coordinates on the CCD according to the third forward model and the third inverse model;
对所确定的每个像点进行重采样处理,得到拼接后的影像。Resampling is performed on each determined image point to obtain a spliced image.
根据本发明的另一方面,提供了一种影像拼接装置,包括:According to another aspect of the present invention, an image stitching device is provided, including:
第一建立模块,用于根据各片CCD的成像参数建立所述各片CCD上像点与地面点之间的第一正算模型和第一反算模型,以及根据所述各片CCD的成像参数生成虚拟CCD的成像参数,根据所述虚拟CCD的成像参数建立所述虚拟CCD上像点与地面点之间的第二正算模型和第二反算模型;The first building module is used to establish the first forward calculation model and the first inverse calculation model between the image point on the each piece of CCD and the ground point according to the imaging parameters of each piece of CCD, and according to the imaging parameters of each piece of CCD The parameters generate the imaging parameters of the virtual CCD, and set up the second forward calculation model and the second inverse calculation model between the image point and the ground point on the virtual CCD according to the imaging parameters of the virtual CCD;
第二建立模块,用于根据所述第一正算模型、所述第一反算模型、所述第二正算模型以及所述第二反算模型,建立所述各片CCD上像点与所述虚拟CCD上像点之间第三正算模型和第三反算模型;The second building module is used to establish the relationship between the image points on each sheet of CCD according to the first forward calculation model, the first reverse calculation model, the second forward calculation model and the second reverse calculation model. The third forward calculation model and the third inverse calculation model between the image points on the virtual CCD;
确定模块,用于读取所述各片CCD的影像数据,根据所述第三正算模型和所述第三反算模型确定所述虚拟CCD上每个像点对应的CCD及在该CCD上的像点坐标;A determining module, configured to read the image data of each of the CCDs, and determine the CCD corresponding to each image point on the virtual CCD and the CCD on the CCD according to the third forward model and the third inverse model. The image point coordinates;
处理模块,用于对所确定的每个像点进行重采样处理,得到拼接后的影像。The processing module is configured to perform resampling processing on each determined image point to obtain a spliced image.
通过本发明,建立虚拟扫描景与原始影像的像点坐标换算关系,进而实现对成像数据的无缝内视场拼接处理,提高了影像拼接质量。Through the present invention, the image point coordinate conversion relationship between the virtual scanning scene and the original image is established, and then the seamless inner field of view splicing processing of the imaging data is realized, and the image splicing quality is improved.
附图说明Description of drawings
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings described here are used to provide a further understanding of the present invention and constitute a part of the application. The schematic embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations to the present invention. In the attached picture:
图1是根据本发明实施例的遥感影像拼接方法的流程图;Fig. 1 is a flowchart of a remote sensing image mosaic method according to an embodiment of the present invention;
图2是根据本发明实施例的遥感影像拼接装置的结构框图;以及Fig. 2 is a structural block diagram of a remote sensing image stitching device according to an embodiment of the present invention; and
图3是根据本发明实施例的一个可选实施方式的流程示意图。Fig. 3 is a schematic flowchart of an optional implementation manner according to an embodiment of the present invention.
具体实施方式detailed description
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。Hereinafter, the present invention will be described in detail with reference to the drawings and examples. It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other.
本发明实施例提供了一种遥感影像拼接方法。An embodiment of the present invention provides a remote sensing image stitching method.
图1是根据本发明实施例的遥感影像拼接方法的流程图,如图1所示,该方法包括步骤101至步骤104。FIG. 1 is a flowchart of a remote sensing image stitching method according to an embodiment of the present invention. As shown in FIG. 1 , the method includes steps 101 to 104 .
步骤101,根据各片CCD的成像参数建立各片CCD上像点与地面点之间的第一正算模型和第一反算模型,以及根据各片CCD的成像参数生成虚拟CCD的成像参数,根据虚拟CCD的成像参数建立虚拟CCD上像点与地面点之间的第二正算模型和第二反算模型;Step 101, establishing the first forward calculation model and the first inverse calculation model between the image point and the ground point on each piece of CCD according to the imaging parameters of each piece of CCD, and generating the imaging parameters of virtual CCD according to the imaging parameters of each piece of CCD, Establishing a second forward calculation model and a second inverse calculation model between the image point on the virtual CCD and the ground point according to the imaging parameters of the virtual CCD;
步骤102,根据上述第一正算模型、第一反算模型、第二正算模型以及第二反算模型,建立各片CCD上像点与虚拟CCD上像点之间第三正算模型和第三反算模型;Step 102, according to the above-mentioned first forward calculation model, the first reverse calculation model, the second forward calculation model and the second reverse calculation model, establish the third forward calculation model and The third inverse model;
步骤103,读取各片CCD的影像数据,根据上述第三正算模型和第三反算模型确定虚拟CCD上每个像点对应的CCD及在该CCD上的像点坐标;Step 103, read the image data of each CCD, determine the CCD corresponding to each image point on the virtual CCD and the image point coordinates on the CCD according to the above-mentioned third forward model and the third inverse model;
步骤104,对所确定的每个像点进行重采样处理,得到拼接后的影像。Step 104, performing resampling processing on each determined image point to obtain a spliced image.
在本发明实施例的一个可选实施方式中,对于各片CCD和虚拟CCD可以采用相同的方法确定正算模型和反算模型,上述步骤101中,可以根据各自的成像参数建立各自的正算模型和反算模型,具体包括:In an optional implementation of the embodiment of the present invention, the same method can be used to determine the forward calculation model and the reverse calculation model for each piece of CCD and virtual CCD. In the above step 101, respective forward calculation models can be established according to their respective imaging parameters. Models and inverse models, including:
根据各个像点的成像参数建立CCD上各个像点与地面点之间的正算模型;Establish a positive calculation model between each image point on the CCD and the ground point according to the imaging parameters of each image point;
根据各个像点的正算模型计算控制点对参数,根据控制点对参数建立CCD上各个像点和地面点之间的仿射变换模型,并通过多次迭代计算建立CCD上各个像点和地面点之间的反算模型。Calculate the control point pair parameters according to the forward calculation model of each image point, establish the affine transformation model between each image point on the CCD and the ground point according to the control point pair parameters, and establish the relationship between each image point on the CCD and the ground point through multiple iterative calculations. Inverse model between points.
可选地,对于每个像点,根据各个像点的成像参数建立CCD上各个像点与地面点之间的正算模型,包括:Optionally, for each image point, a positive calculation model between each image point on the CCD and the ground point is established according to the imaging parameters of each image point, including:
获取像点拍摄时刻下卫星在协议地心坐标系中的位置[XS,YS,ZS];Obtain the position [X S , Y S , Z S ] of the satellite in the agreed geocentric coordinate system at the time when the image point is shot;
获取图像对应的相机像点主光轴单位矢量与卫星本体坐标系X轴的夹角psiX、Y轴的夹角psiY;Obtain the angle psiX between the main optical axis unit vector of the camera image point corresponding to the image and the X-axis of the satellite body coordinate system, and the angle psiY between the Y-axis;
获取卫星本体坐标系相对于相机的安装矩阵M0;Obtain the installation matrix M 0 of the satellite body coordinate system relative to the camera;
获取该像点拍摄时刻下卫星至轨道坐标系旋转矩阵M1;Obtain the satellite-to-orbit coordinate system rotation matrix M 1 at the shooting moment of the image point;
获取像点拍摄时刻下轨道至J2000.0坐标系旋转矩阵M2;Obtain the rotation matrix M 2 from the lower orbit to the J2000.0 coordinate system at the moment of image point shooting;
获取像点拍摄时刻下J2000.0至WGS84坐标系旋转矩阵M3;Obtain the J2000.0 to WGS84 coordinate system rotation matrix M 3 at the moment of image point shooting;
确定像点与地面点之间的正算模型为:The positive calculation model to determine the relationship between the image point and the ground point is:
需要注意的是,上述获取各个参数的步骤之间没有先后顺序,可以根据实际情况进行调整。It should be noted that there is no sequence between the above steps of obtaining each parameter, and it can be adjusted according to the actual situation.
可选地,根据各个像点的正算模型计算控制点对参数,根据控制点对参数建立CCD上各个像点和地面点之间的仿射变换模型,并通过多次迭代计算建立CCD上各个像点和地面点之间的反算模型,包括:Optionally, calculate the control point pair parameters according to the forward calculation model of each image point, establish the affine transformation model between each image point on the CCD and the ground point according to the control point pair parameters, and establish each image point on the CCD through multiple iterative calculations. Inverse calculation model between image points and ground points, including:
在图像中心点坐标周围预定半径内选取四个角点,分别利用严格成像模型计算四个角点对应的地面点经纬度;Select four corner points within a predetermined radius around the coordinates of the center point of the image, and use the strict imaging model to calculate the latitude and longitude of the ground points corresponding to the four corner points;
根据由四个角点及其对应的地面点经纬度建立像点与地面点之间的仿射变换模型Model1;Establish the affine transformation model Model1 between the image point and the ground point based on the four corner points and their corresponding ground point latitude and longitude;
根据仿射变换模型Model1计算地面点(lat,lon)对应的像点(i1,j1);Calculate the image point (i1, j1) corresponding to the ground point (lat, lon) according to the affine transformation model Model1;
在像点(i1,j1)周围所述预定半径内选取四个角点,分别计算四个角点对应的地面点经纬度,由该四个角点及其对应的地面点经纬度建立像点与地面点之间的仿射变换模型Model2;Select four corner points within the predetermined radius around the image point (i1, j1), respectively calculate the latitude and longitude of the ground point corresponding to the four corner points, and establish the relationship between the image point and the ground by the four corner points and the corresponding ground point latitude and longitude Affine transformation model Model2 between points;
根据仿射变换模型Model2计算地面点(lat,lon)对应的像点(i2,j2);Calculate the image point (i2, j2) corresponding to the ground point (lat, lon) according to the affine transformation model Model2;
确定像点(i2,j2)与像点(i1,j1)之间的距离L,并判断距离L是否大于预设阈值;Determine the distance L between the image point (i2, j2) and the image point (i1, j1), and determine whether the distance L is greater than a preset threshold;
若距离L大于所述预设阈值,继续在(i2,j2)点附近选择仿射变换模型继续迭代计算,直到距离L小于或等于所述预设阈值;若距离L小于所述预设阈值,则确定地面点(lat,lon)为像点(i1,j1)对应的地面点。If the distance L is greater than the preset threshold, continue to select the affine transformation model near the point (i2, j2) to continue iterative calculation until the distance L is less than or equal to the preset threshold; if the distance L is less than the preset threshold, Then determine the ground point (lat, lon) as the ground point corresponding to the image point (i1, j1).
在本发明实施例的一个可选实施方式中,对于每个像点,上述步骤102,根据上述第一正算模型、第一反算模型、第二正算模型以及第二反算模型,建立各片CCD上像点与虚拟CCD上像点之间第三正算模型和第三反算模型,包括:In an optional implementation manner of the embodiment of the present invention, for each image point, the above-mentioned step 102 establishes The third forward calculation model and the third inverse calculation model between the image points on each CCD and the virtual CCD, including:
一、正算模型1. Normal model
根据CCD的第一正算模型计算CCD上像点(i,j)处的地面点(lat,lon),根据虚拟CCD的第二反算模型计算地面点(lat,lon)对应虚拟CCD的像点(i1,j1),得到像点(i,j)第三正算模型;以及Calculate the ground point (lat, lon) at the image point (i, j) on the CCD according to the first forward calculation model of the CCD, and calculate the image corresponding to the virtual CCD at the ground point (lat, lon) according to the second inverse calculation model of the virtual CCD Point (i1, j1), get the third positive model of image point (i, j); and
二、反算模型2. Inverse calculation model
A,根据虚拟CCD的第二正算模型计算虚拟CCD上像点(i1,j1)对应的地面点(lat,lon);A, calculate the ground point (lat, lon) corresponding to the image point (i1, j1) on the virtual CCD according to the second positive calculation model of the virtual CCD;
B,根据CCDM的第一反算模型计算地面点(lat,lon)对应的CCD像点(i2,j2),其中M为预设的片号标识;B, calculate the CCD image point (i2, j2) corresponding to the ground point (lat, lon) according to the first inverse calculation model of CCDM, wherein M is a preset piece number identification;
C,根据i2的值判断地面点(lat,lon)是否在CCDM上,其中,C, judge whether the ground point (lat, lon) is on the CCDM according to the value of i2, where,
若i2小于overlap/2,则认为地面点(lat,lon)在CCDM左边,将片M设置为M-1,将片号标识M设置为M-1,返回A,其中overlap为相邻两片CCD之间的重叠像点;If i2 is less than overlap/2, it is considered that the ground point (lat, lon) is on the left of CCDM, set the slice M to M-1, set the slice number identifier M to M-1, and return A, where overlap is two adjacent slices Overlapping image points between CCDs;
若i2大于CCDM的宽度减去overlap/2的差值,则地面点(lat,lon)在该片CCD右边,将片号标识M设置为M+1,返回A;If i2 is greater than the width of CCDM minus the difference of overlap/2, then the ground point (lat, lon) is on the right side of the CCD, set the piece number identification M to M+1, and return A;
若i2在(overlap/2,CCDM的宽度与overlap/2的差值)之间,则地面点(lat,lon)在CCDM中,虚拟CCD上像点(i1,j1)对应的CCDM的像点(i2,j2),得到像点(i1,j1)的第三反算模型。If i2 is between (overlap/2, the difference between the width of CCDM and overlap/2), then the ground point (lat, lon) is in CCDM, and the image point of CCDM corresponding to the image point (i1, j1) on the virtual CCD (i2, j2), to obtain the third inverse model of the image point (i1, j1).
在本发明实施例的一个可选实施方式中,上述步骤101中根据各片CCD的成像参数生成虚拟CCD的成像参数,包括:对各片CCD的成像参数进行平滑和拟合处理,得到虚拟CCD的成像参数。可选地,对各片CCD的内方位参数,通过最小二乘法进行线性拟合,建立虚拟CCD的内方位元素。In an optional implementation of the embodiment of the present invention, in the above step 101, generating the imaging parameters of the virtual CCD according to the imaging parameters of each piece of CCD includes: smoothing and fitting the imaging parameters of each piece of CCD to obtain the virtual CCD imaging parameters. Optionally, linear fitting is performed on the internal orientation parameters of each CCD by the least square method to establish internal orientation elements of the virtual CCD.
本发明实施例还提供了一种遥感影像拼接装置。The embodiment of the present invention also provides a remote sensing image splicing device.
图2是根据本发明实施力度的遥感影像拼接装置的结构框图,如图2所示,该装置包括:Fig. 2 is a structural block diagram of a remote sensing image stitching device according to the implementation strength of the present invention. As shown in Fig. 2, the device includes:
第一建立模块201,用于根据各片CCD的成像参数建立各片CCD上像点与地面点之间的第一正算模型和第一反算模型,以及根据各片CCD的成像参数生成虚拟CCD的成像参数,根据虚拟CCD的成像参数建立虚拟CCD上像点与地面点之间的第二正算模型和第二反算模型;The first building module 201 is used to establish the first forward calculation model and the first inverse calculation model between the image point and the ground point on each piece of CCD according to the imaging parameters of each piece of CCD, and generate a virtual model according to the imaging parameters of each piece of CCD. The imaging parameters of the CCD, according to the imaging parameters of the virtual CCD, the second positive calculation model and the second inverse calculation model between the image point on the virtual CCD and the ground point are established;
第二建立模块202,与第一建立模块201相连接,用于根据上述第一正算模型、第一反算模型、第二正算模型以及第二反算模型,建立各片CCD上像点与虚拟CCD上像点之间第三正算模型和第三反算模型;The second building module 202 is connected with the first building module 201, and is used to set up image points on each sheet of CCD according to the above-mentioned first positive calculation model, the first inverse calculation model, the second positive calculation model and the second inverse calculation model The third forward calculation model and the third inverse calculation model between the image point on the virtual CCD;
确定模块203,与第二建立模块202相连接,用于读取各片CCD的影像数据,根据第三正算模型和第三反算模型确定所述虚拟CCD上每个像点对应的CCD及在该CCD上的像点坐标;Determining module 203, connected with the second building module 202, is used to read the image data of each slice CCD, determines the CCD corresponding to each image point on the described virtual CCD according to the 3rd forward model and the 3rd inverse model and Image point coordinates on the CCD;
处理模块204,与确定模块203相连接,用于对所确定的每个像点进行重采样处理,得到拼接后的影像。The processing module 204 is connected with the determining module 203, and is configured to perform resampling processing on each determined image point to obtain a spliced image.
可选地,第一建立模块201,用于根据各片CCD的成像参数或虚拟CCD的成像参数建立正算模型和反算模型;第一建立模块201,包括:Optionally, the first building module 201 is used to set up a forward calculation model and an inverse calculation model according to the imaging parameters of each slice of CCD or the imaging parameters of the virtual CCD; the first building module 201 includes:
正算模型确定单元,用于根据各个像点的成像参数建立CCD上各个像点与地面点之间的正算模型;A positive calculation model determination unit is used to establish a positive calculation model between each image point on the CCD and the ground point according to the imaging parameters of each image point;
反算模型确定单元,用于根据各个像点的正算模型计算控制点对参数,根据控制点对参数建立CCD上各个像点和地面点之间的仿射变换模型,并通过多次迭代计算建立CCD上各个像点和地面点之间的反算模型。The inverse calculation model determination unit is used to calculate the control point pair parameters according to the forward calculation model of each image point, establish the affine transformation model between each image point on the CCD and the ground point according to the control point pair parameters, and calculate through multiple iterations Establish the inverse calculation model between each image point on the CCD and the ground point.
可选地,正算模型确定单元,具体用于Optionally, the positive calculation model determines the unit, specifically for
获取像点拍摄时刻下卫星在协议地心坐标系中的位置[XS,YS,ZS];Obtain the position [X S , Y S , Z S ] of the satellite in the agreed geocentric coordinate system at the time when the image point is shot;
获取图像对应的相机像点主光轴单位矢量与卫星本体坐标系X轴的夹角psiX、Y轴的夹角psiY;Obtain the angle psiX between the main optical axis unit vector of the camera image point corresponding to the image and the X-axis of the satellite body coordinate system, and the angle psiY between the Y-axis;
获取卫星本体坐标系相对于相机的安装矩阵M0;Obtain the installation matrix M 0 of the satellite body coordinate system relative to the camera;
获取该像点拍摄时刻下卫星至轨道坐标系旋转矩阵M1;Obtain the satellite-to-orbit coordinate system rotation matrix M 1 at the shooting moment of the image point;
获取像点拍摄时刻下轨道至J2000.0坐标系旋转矩阵M2;Obtain the rotation matrix M 2 from the lower orbit to the J2000.0 coordinate system at the moment of image point shooting;
获取像点拍摄时刻下J2000.0至WGS84坐标系旋转矩阵M3;Obtain the J2000.0 to WGS84 coordinate system rotation matrix M 3 at the moment of image point shooting;
确定像点与地面点之间的正算模型为:The positive calculation model to determine the relationship between the image point and the ground point is:
可选地,上述反算模型确定单元,具体用于:Optionally, the above inverse calculation model determination unit is specifically used for:
在图像中心点坐标周围预定半径内选取四个角点,分别利用严格成像模型计算四个角点对应的地面点经纬度;Select four corner points within a predetermined radius around the coordinates of the center point of the image, and use the strict imaging model to calculate the latitude and longitude of the ground points corresponding to the four corner points;
根据由四个角点及其对应的地面点经纬度建立像点与地面点之间的仿射变换模型Model1;Establish the affine transformation model Model1 between the image point and the ground point based on the four corner points and their corresponding ground point latitude and longitude;
根据仿射变换模型Model1计算地面点(lat,lon)对应的像点(i1,j1);Calculate the image point (i1, j1) corresponding to the ground point (lat, lon) according to the affine transformation model Model1;
在像点(i1,j1)周围所述预定半径内选取四个角点,分别计算四个角点对应的地面点经纬度,由该四个角点及其对应的地面点经纬度建立像点与地面点之间的仿射变换模型Model2;Select four corner points within the predetermined radius around the image point (i1, j1), respectively calculate the latitude and longitude of the ground point corresponding to the four corner points, and establish the relationship between the image point and the ground by the four corner points and the corresponding ground point latitude and longitude Affine transformation model Model2 between points;
根据仿射变换模型Model2计算地面点(lat,lon)对应的像点(i2,j2);Calculate the image point (i2, j2) corresponding to the ground point (lat, lon) according to the affine transformation model Model2;
确定像点(i2,j2)与像点(i1,j1)之间的距离L,并判断距离L是否大于预设阈值;Determine the distance L between the image point (i2, j2) and the image point (i1, j1), and determine whether the distance L is greater than a preset threshold;
若距离L大于所述预设阈值,继续在(i2,j2)点附近选择仿射变换模型继续迭代计算,直到距离L小于或等于所述预设阈值;若距离L小于所述预设阈值,则确定地面点(lat,lon)为像点(i1,j1)对应的地面点。If the distance L is greater than the preset threshold, continue to select the affine transformation model near the point (i2, j2) to continue iterative calculation until the distance L is less than or equal to the preset threshold; if the distance L is less than the preset threshold, Then determine the ground point (lat, lon) as the ground point corresponding to the image point (i1, j1).
可选地,上述第二建立模块202,具体用于Optionally, the above-mentioned second building module 202 is specifically used for
根据CCD的第一正算模型计算CCD上像点(i,j)处的地面点(lat,lon),根据虚拟CCD的第二反算模型计算地面点(lat,lon)对应虚拟CCD的像点(i1,j1),得到像点(i,j)第三正算模型;以及Calculate the ground point (lat, lon) at the image point (i, j) on the CCD according to the first forward calculation model of the CCD, and calculate the image corresponding to the virtual CCD at the ground point (lat, lon) according to the second inverse calculation model of the virtual CCD Point (i1, j1), get the third positive model of image point (i, j); and
A,根据虚拟CCD的第二正算模型计算虚拟CCD上像点(i1,j1)对应的地面点(lat,lon);A, calculate the ground point (lat, lon) corresponding to the image point (i1, j1) on the virtual CCD according to the second positive calculation model of the virtual CCD;
B,根据CCDM的第一反算模型计算地面点(lat,lon)对应的CCD像点(i2,j2),其中M为预设的片号标识;B, calculate the CCD image point (i2, j2) corresponding to the ground point (lat, lon) according to the first inverse calculation model of CCDM, wherein M is a preset piece number identification;
C,根据i2的值判断地面点(lat,lon)是否在CCDM上,其中,C, judge whether the ground point (lat, lon) is on the CCDM according to the value of i2, where,
若i2小于overlap/2,则认为地面点(lat,lon)在CCDM左边,将片M设置为M-1,将片号标识M设置为M-1,返回A,其中overlap为相邻两片CCD之间的重叠像点;If i2 is less than overlap/2, it is considered that the ground point (lat, lon) is on the left of CCDM, set the slice M to M-1, set the slice number identifier M to M-1, and return A, where overlap is two adjacent slices Overlapping image points between CCDs;
若i2大于CCDM的宽度减去overlap/2的差值,则地面点(lat,lon)在该片CCD右边,将片号标识M设置为M+1,返回A;If i2 is greater than the width of CCDM minus the difference of overlap/2, then the ground point (lat, lon) is on the right side of the CCD, set the piece number identification M to M+1, and return A;
若i2在(overlap/2,CCDM的宽度与overlap/2的差值)之间,则地面点(lat,lon)在CCDM中,虚拟CCD上像点(i1,j1)对应的CCDM的像点(i2,j2),得到像点(i1,j1)的第三反算模型。If i2 is between (overlap/2, the difference between the width of CCDM and overlap/2), then the ground point (lat, lon) is in CCDM, and the image point of CCDM corresponding to the image point (i1, j1) on the virtual CCD (i2, j2), to obtain the third inverse model of the image point (i1, j1).
与上述方法相同的部分,在此不再赘述。The parts that are the same as those of the above method will not be repeated here.
下面结合图3本发明实施例的一个可选实施方式进行详细描述。An optional implementation manner of the embodiment of the present invention will be described in detail below with reference to FIG. 3 .
图3是根据本发明实施例的一个可选实施方式的流程示意图,结合图3所示,该可选实施方式可以包括以下几个过程:Fig. 3 is a schematic flow chart of an optional implementation manner according to an embodiment of the present invention. In combination with what is shown in Fig. 3, this optional implementation manner may include the following processes:
1.获取各像点处内方位元素、轨道、姿态、行时等辅助数据,建立各像点和地面点之间的正算模型,各像点处的严格成像模型。具体包括以下步骤:1. Obtain auxiliary data such as orientation elements, orbits, attitudes, and travel times at each image point, and establish a positive calculation model between each image point and ground point, and a strict imaging model at each image point. Specifically include the following steps:
(1)从卫星下传的原始数据中解析待检校影像成像时间范围内的轨道、姿态、行时等数据;(1) Analyze the orbit, attitude, travel time and other data within the imaging time range of the image to be checked from the original data downloaded by the satellite;
(2)对任一像点Pointsi{sample,line,lat,lon,height},根据像点的图像坐标(sample,line),获取其对应的摄影时间scanTime;(2) For any image point Pointsi{sample, line, lat, lon, height}, according to the image coordinates (sample, line) of the image point, obtain its corresponding photography time scanTime;
像点对应的摄影时间可以从卫星下传的辅助数据中直接解析,第line行辅助数据对应的成像时间即为该像点对应的摄影时间。The imaging time corresponding to the image point can be directly analyzed from the auxiliary data downloaded from the satellite, and the imaging time corresponding to the auxiliary data in the line line is the imaging time corresponding to the image point.
(3)利用拉格朗日插值算法插值计算摄影时间scanTime的卫星轨道位置(PX,PY,PZ,VX,VY,VZ);卫星按照一定频次下传轨道数据,因此,摄影时间scanTime对应的卫星轨道位置需要利用摄影时刻前后几组的轨道数据进行插值计算。本发明采用拉格朗日插值算法,利用摄影时间前后三组轨道数据计算摄影时间的卫星轨道位置。(3) Use the Lagrange interpolation algorithm to interpolate and calculate the satellite orbit position (PX, PY, PZ, VX, VY, VZ) of the photography time scanTime; satellites download orbit data according to a certain frequency, therefore, the satellite corresponding to the photography time scanTime The orbital position needs to be interpolated using several sets of orbital data before and after the shooting time. The invention adopts the Lagrangian interpolation algorithm, and uses three sets of orbit data before and after the photographing time to calculate the satellite orbit position at the photographing time.
a)从第一组轨道数据开始,判断该组轨道数据的生成时间、下一组轨道数据的生成时间与scanTime之间的关系,若scanTime大于第i组轨道数据的生成时间,同时小于第i+1组轨道数据的生成时间,则记录i为距离摄影时间最近的轨道数据序号。a) Starting from the first group of orbital data, judge the relationship between the generation time of this group of orbital data, the generation time of the next group of orbital data and scanTime, if scanTime is greater than the generation time of the i-th group of orbital data, and less than the i-th +1 generation time of track data, then record i is the sequence number of the track data closest to the shooting time.
b)利用第i-1,i,i+1组轨道数据,基于拉格朗日算法计算摄影时刻的轨道位置以及速度。拉格朗日插值算法表述如下:b) Using the i-1, i, and i+1 groups of orbit data, calculate the orbit position and velocity at the time of photography based on the Lagrangian algorithm. The Lagrangian interpolation algorithm is expressed as follows:
对于已知y=f(x)的函数表(xi,f(xi))(i=0,1,…,n),对于在[xo,xn]范围内任一x,有:For the function table (xi,f(xi))(i=0,1,…,n) of known y=f(x), for any x in the range of [xo,xn], there are:
(4)利用拉格朗日算法插值计算摄影时间scanTime相机相对于轨道坐标系的三轴姿态角(Roll,Pitch,Yaw);(4) Use the Lagrange algorithm to interpolate to calculate the three-axis attitude angle (Roll, Pitch, Yaw) of the scanTime camera relative to the orbital coordinate system;
(5)根据相机实验室测量数据,读取像点像点对的图像坐标(sample,line)对应的第sample个CCD探元的光轴指向角(psiX,psiY)。(5) According to the camera laboratory measurement data, read the optical axis pointing angle (psiX, psiY) of the first sample CCD detector corresponding to the image coordinates (sample, line) of the image point pair.
(6)建立像点处的严格成像模型,针对任一像点,利用其内方位、轨道、姿态、行时等数据构建遥感影像的严格几何成像模型Model(6) Establish a strict imaging model at the image point, and use its internal orientation, orbit, attitude, travel time and other data to construct a strict geometric imaging model Model of remote sensing images for any image point
线阵推扫相机的严格成像几何模型如下所述。The strict imaging geometry model of the linear push-broom camera is described below.
其中:in:
[XS,YS,ZS]为该时刻下卫星在协议地心坐标系中的位置,即像点处轨道位置(PX,PY,PZ);[X S , Y S , Z S ] is the position of the satellite in the agreed geocentric coordinate system at this moment, that is, the orbital position at the image point (PX, PY, PZ);
[XG,YG,ZG]为该像元对应的地面目标点在协议地心坐标系中的坐标。[X G , Y G , Z G ] are the coordinates of the ground target point corresponding to the pixel in the agreed geocentric coordinate system.
psiX、psiY分别为图像对应的相机像元主光轴单位矢量与卫星本体坐标系X轴、Y轴的夹角;psiX and psiY are the angles between the main optical axis unit vector of the camera pixel corresponding to the image and the X-axis and Y-axis of the satellite body coordinate system;
u为比例因子。u is a scaling factor.
M0为卫星本体坐标系相对于相机的安装矩阵,在卫星发射前由地面测量获取;M 0 is the installation matrix of the satellite body coordinate system relative to the camera, which is obtained by ground measurement before the satellite is launched;
M1为该时刻下卫星至轨道坐标系旋转矩阵,由星上测量的姿态角构成。M 1 is the rotation matrix from the satellite to the orbit coordinate system at this moment, which is composed of the attitude angle measured on the satellite.
M2为该时刻下轨道至J2000.0坐标系旋转矩阵,由升交点赤经、轨道倾角、幅角等构成。M 2 is the rotation matrix from the lower orbit to the J2000.0 coordinate system at this moment, which is composed of right ascension of ascending node, orbital inclination, argument, etc.
M3为该时刻下J2000.0至WGS84坐标系旋转矩阵,需进行岁差改正、章动改正、格林尼治恒星时改正和极移改正。M 3 is the rotation matrix of the J2000.0 to WGS84 coordinate system at this moment, which needs to be corrected for precession, nutation, Greenwich mean sidereal time and pole shift.
2.由严格成像模型计算控制点对参数,建立像点和地面点之间的仿射变换模型,并通过多次迭代计算的方式,建立反算模型。2. Calculate the control point pair parameters from the strict imaging model, establish the affine transformation model between the image point and the ground point, and establish the inverse calculation model through multiple iterative calculations.
(1)在图像中心点坐标周围5*5半径内选取四个角点,分别利用严格成像模型计算四个角点对应的地面点经纬度,由四个角点及其对应的地面点经纬度建立像点与地面坐标之间的仿射变换模型Model1;(1) Select four corner points within a radius of 5*5 around the coordinates of the image center point, use the strict imaging model to calculate the latitude and longitude of the ground points corresponding to the four corner points, and build an image from the four corner points and their corresponding ground point latitude and longitude Affine transformation model Model1 between points and ground coordinates;
(2)利用仿射变换模型Model1计算地面点坐标(lat,lon)对应的像点坐标(i1,j1);(2) Use the affine transformation model Model1 to calculate the image point coordinates (i1, j1) corresponding to the ground point coordinates (lat, lon);
(3)在像点(i1,j1)周围5*5半径内选取四个角点,分别计算四个角点对应的地面点经纬度,由该四个角点及其对应的地面点经纬度建立像点与地面坐标之间的仿射变换模型Model2;(3) Select four corner points within a radius of 5*5 around the image point (i1, j1), calculate the latitude and longitude of the ground point corresponding to the four corner points, and build an image from the four corner points and their corresponding ground point latitude and longitude Affine transformation model Model2 between points and ground coordinates;
(4)利用仿射变换模型Model2计算地面点坐标(lat,lon)对应的像点坐标(i2,j2);(4) Use the affine transformation model Model2 to calculate the image point coordinates (i2, j2) corresponding to the ground point coordinates (lat, lon);
(5)计算(i2,j2)与(i1,j1)之间的距离L。若L大于设定的阈值,则继续在(i2,j2)点附近选择仿射变换模型继续迭代计算;若L的值小于阈值,则结束迭代计算,步骤(4)计算得到的地面点坐标为像点对应坐标。(5) Calculate the distance L between (i2, j2) and (i1, j1). If L is greater than the set threshold, continue to select the affine transformation model near the (i2, j2) point to continue iterative calculation; if the value of L is less than the threshold, then end the iterative calculation, and the coordinates of the ground point calculated in step (4) are The corresponding coordinates of the image point.
3.由输入的实际相机各片CCD的内方位参数,以及实际的轨道、姿态、行时数据,进行平滑和拟合计算,建立理想CCD的成像参数。3. Perform smoothing and fitting calculations based on the input internal orientation parameters of each CCD of the actual camera, as well as the actual orbit, attitude, and travel time data, and establish the imaging parameters of the ideal CCD.
该组参数的特点是各项参数呈现平滑的线性或者低次多项式特点,各参数建立目标如下:The characteristic of this group of parameters is that each parameter presents smooth linear or low-order polynomial characteristics. The establishment goals of each parameter are as follows:
(1)虚拟CCD内方位元素:由相机各CCD的检校后真实内方位参数,通过最小二乘法进行线性拟合,建立理想的无畸变内方位元素;(1) Virtual CCD internal orientation elements: the real internal orientation parameters of each CCD of the camera are calibrated, and the least square method is used for linear fitting to establish an ideal undistorted internal orientation element;
(2)虚拟成像行时序列:将成像的起始、结束时间按照成像次数等分,以保证各行图像之间积分间隔相等;(2) Time series of virtual imaging lines: the start and end times of imaging are equally divided according to the number of imaging times to ensure that the integration intervals between each line of images are equal;
(3)虚拟成像轨道:对下传的GPS测量数据(位置和速度)进行平滑处理,拟合成一根直线或者低阶多项式曲线;(3) Virtual imaging track: smoothing the downlinked GPS measurement data (position and velocity) and fitting them into a straight line or low-order polynomial curve;
(4)虚拟成像姿态:对下传或计算出的姿态角数据进行平滑处理,拟合成一根直线或者低阶多项式曲线;(4) Virtual imaging attitude: smooth the downloaded or calculated attitude angle data, and fit it into a straight line or a low-order polynomial curve;
4.根据相机各片CCD的正反算模型和虚拟扫描的CCD的正反算模型,通过相同地面坐标进行映射,建立相机各片CCD上像点与虚拟CCD上像点直接的正反算求解模型。4. According to the front and back calculation model of each CCD of the camera and the front and back calculation model of the virtual scanning CCD, the same ground coordinates are used for mapping, and the direct forward and reverse calculation solution of the image points on each CCD of the camera and the image points on the virtual CCD is established Model.
正算模型:设N代表CCD的片号标识,对于某片CCDN上的某一像点(i,j),i代表行号,j代表列号。其对应的虚拟CCD像点坐标(i1,j1)计算流程如下:Forward calculation model: Let N represent the chip number of CCD. For a certain pixel (i, j) on a certain CCDN, i represents the row number and j represents the column number. The calculation process of the corresponding virtual CCD image point coordinates (i1, j1) is as follows:
a)由该片CCD的像点与地面点正算模型计算像点(i,j)处的地面坐标(lat,lon);a) Calculate the ground coordinates (lat, lon) at the image point (i, j) from the image point of the CCD and the ground point forward calculation model;
b)由虚拟CCD的像点与地面点反算模型计算地面坐标(lat,lon)对应虚拟CCD的像点坐标(i1,j1)。b) Calculate the image point coordinates (i1, j1) of the virtual CCD corresponding to the ground coordinates (lat, lon) from the image points of the virtual CCD and the inverse calculation model of the ground points.
反算模型:设N代表CCD的片号标识,对于虚拟CCD像点坐标(i1,j1),其对应的CCD标识以及该片CCD上的像点坐标(i,j)计算流程如下:Inverse calculation model: let N represent the chip number mark of CCD, for the virtual CCD image point coordinates (i1, j1), its corresponding CCD mark and the image point coordinates (i, j) on the CCD are calculated as follows:
a)由虚拟CCD的像点与地面点正算模型计算虚拟CCD的像点坐标(i1,j1)对应的地面点坐标(lat,lon);a) calculate the ground point coordinates (lat, lon) corresponding to the image point coordinates (i1, j1) of the virtual CCD by the image point of the virtual CCD and the ground point forward calculation model;
b)假设CCD片号ccdID为N/2:b) Suppose the CCD chip number ccdID is N/2:
c)由该片CCD的像点与地面点反算模型计算地面点坐标(lat,lon)对应的CCD像点坐标(i2,j2);c) Calculate the CCD image point coordinates (i2, j2) corresponding to the ground point coordinates (lat, lon) from the image points of the CCD and the ground point inversion model;
d)根据i2的值判断该地物点是否在该片CCD上;d) judging whether the feature point is on the CCD according to the value of i2;
e)若i2小于overlap/2(overlap为相邻两片CCD之间的重叠像元),则认为该地物点在该片CCD左边,将ccdID重设为ccdID-1,重复a);e) If i2 is less than overlap/2 (overlap is the overlapping pixel between two adjacent CCDs), then it is considered that the feature point is on the left side of the CCD, reset ccdID to ccdID-1, and repeat a);
f)若i2大于(该片CCD宽度-overlap/2),则认为该地物点在该片CCD右边,将ccdID重设为ccdID+1,重复a);f) If i2 is greater than (the width of the CCD-overlap/2), it is considered that the feature point is on the right side of the CCD, reset the ccdID to ccdID+1, and repeat a);
g)若i2在(overlap/2,(该片CCD宽度-overlap/2))之间,则认为该地物点在该片CCD里面,虚拟像点坐标(i1,j1)对应的该片CCD上的像点坐标为(i2,j2)。g) If i2 is between (overlap/2, (the width of the CCD-overlap/2)), it is considered that the feature point is in the CCD, and the virtual image point coordinates (i1, j1) correspond to the CCD The coordinates of the image point on are (i2, j2).
5.根据相机各CCD和虚拟CCD像点之间的映射关系,对虚拟扫面景影像每一个像点进行灰度重采样,得到拼接后的影像。具体的,读取各片CCD获取的原始影像数据,针对虚拟CCD每一个像元,求取其对应原始CCD的片号以及像点坐标,逐像元重采样处理(多线程),输出重采样后的虚拟拼接图像。5. According to the mapping relationship between each CCD of the camera and the virtual CCD image points, grayscale resampling is performed on each image point of the virtual scanning scene image to obtain the spliced image. Specifically, read the original image data obtained by each piece of CCD, and for each pixel of the virtual CCD, obtain the piece number and pixel coordinates of its corresponding original CCD, perform resampling processing (multithreading) pixel by pixel, and output resampling After the virtual stitching image.
从以上的描述中,可以看出,本发明实现了如下技术效果:利用CCD的片间摄影几何约束关系,基于物方空间的连续性,建立虚拟扫描景与原始影像的像点坐标换算关系,进而实现对成像数据的无缝内视场拼接处理;同时利用最小二乘法拟合得到理想CCD内方位参数,有效改善了图像内部的几何畸变。突破了传统拼接方法的局限性,为制作高质量的虚拟扫描景产品提供较为严密和理想的技术方案。From the above description, it can be seen that the present invention achieves the following technical effects: using the inter-film photographic geometric constraint relationship of the CCD, based on the continuity of the object space, the image point coordinate conversion relationship between the virtual scanning scene and the original image is established, Furthermore, the seamless inner field of view splicing processing of the imaging data is realized; at the same time, the ideal CCD inner orientation parameters are obtained by fitting the least square method, which effectively improves the geometric distortion inside the image. It breaks through the limitations of traditional splicing methods, and provides a more rigorous and ideal technical solution for producing high-quality virtual scanning scene products.
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。Obviously, those skilled in the art should understand that each module or each step of the above-mentioned present invention can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed in a network formed by multiple computing devices Alternatively, they may be implemented in program code executable by a computing device so that they may be stored in a storage device to be executed by a computing device, and in some cases in an order different from that shown here The steps shown or described are carried out, or they are separately fabricated into individual integrated circuit modules, or multiple modules or steps among them are fabricated into a single integrated circuit module for implementation. As such, the present invention is not limited to any specific combination of hardware and software.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410568949.1A CN105374009A (en) | 2014-10-22 | 2014-10-22 | Remote sensing image splicing method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410568949.1A CN105374009A (en) | 2014-10-22 | 2014-10-22 | Remote sensing image splicing method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105374009A true CN105374009A (en) | 2016-03-02 |
Family
ID=55376182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410568949.1A Pending CN105374009A (en) | 2014-10-22 | 2014-10-22 | Remote sensing image splicing method and apparatus |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105374009A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106895851A (en) * | 2016-12-21 | 2017-06-27 | 中国资源卫星应用中心 | A kind of sensor calibration method that many CCD polyphasers of Optical remote satellite are uniformly processed |
CN108242047A (en) * | 2017-12-23 | 2018-07-03 | 北京卫星信息工程研究所 | Optical satellite remote sensing image data bearing calibration based on CCD |
CN112816184A (en) * | 2020-12-17 | 2021-05-18 | 航天恒星科技有限公司 | Uncontrolled calibration method and device for optical remote sensing satellite |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070014488A1 (en) * | 2004-07-09 | 2007-01-18 | Ching-Chien Chen | Automatically and accurately conflating road vector data, street maps, and orthoimagery |
CN103679711A (en) * | 2013-11-29 | 2014-03-26 | 航天恒星科技有限公司 | Method for calibrating in-orbit exterior orientation parameters of push-broom optical cameras of remote sensing satellite linear arrays |
CN103914808A (en) * | 2014-03-14 | 2014-07-09 | 国家测绘地理信息局卫星测绘应用中心 | Method for splicing ZY3 satellite three-line-scanner image and multispectral image |
US20140233809A1 (en) * | 2011-05-13 | 2014-08-21 | Beijing Electric Power Economic Research Institute | Method and Device for Processing Geological Information |
-
2014
- 2014-10-22 CN CN201410568949.1A patent/CN105374009A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070014488A1 (en) * | 2004-07-09 | 2007-01-18 | Ching-Chien Chen | Automatically and accurately conflating road vector data, street maps, and orthoimagery |
US20140233809A1 (en) * | 2011-05-13 | 2014-08-21 | Beijing Electric Power Economic Research Institute | Method and Device for Processing Geological Information |
CN103679711A (en) * | 2013-11-29 | 2014-03-26 | 航天恒星科技有限公司 | Method for calibrating in-orbit exterior orientation parameters of push-broom optical cameras of remote sensing satellite linear arrays |
CN103914808A (en) * | 2014-03-14 | 2014-07-09 | 国家测绘地理信息局卫星测绘应用中心 | Method for splicing ZY3 satellite three-line-scanner image and multispectral image |
Non-Patent Citations (4)
Title |
---|
刘斌 等: "资源三号卫星传感器校正产品定位精度验证与分析", 《国土资源遥感》 * |
唐新明 等: "资源三号测绘卫星三线阵成像几何模型构建与精度初步验证", 《测绘学报》 * |
张过 等: "虚拟CCD线阵星载光学传感器内视场拼接", 《中国图像图形学报》 * |
潘红播 等: "资源三号测绘卫星传感器校正产品几何模型", 《测绘学报》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106895851A (en) * | 2016-12-21 | 2017-06-27 | 中国资源卫星应用中心 | A kind of sensor calibration method that many CCD polyphasers of Optical remote satellite are uniformly processed |
CN106895851B (en) * | 2016-12-21 | 2019-08-13 | 中国资源卫星应用中心 | A kind of sensor calibration method that the more CCD polyphasers of Optical remote satellite are uniformly processed |
CN108242047A (en) * | 2017-12-23 | 2018-07-03 | 北京卫星信息工程研究所 | Optical satellite remote sensing image data bearing calibration based on CCD |
CN112816184A (en) * | 2020-12-17 | 2021-05-18 | 航天恒星科技有限公司 | Uncontrolled calibration method and device for optical remote sensing satellite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105627991B (en) | A kind of unmanned plane image real time panoramic joining method and system | |
CN103759670B (en) | A kind of object dimensional information getting method based on numeral up short | |
CN105091906B (en) | High-resolution optical, which pushes away, sweeps the weight imaging sensor bearing calibration of satellite stable state and system | |
CN107504981B (en) | Satellite attitude error correction method and device based on laser height measurement data | |
CN105513018B (en) | Spaceborne sweeping imaging geometry bearing calibration and device | |
CN113793270B (en) | A geometric correction method for aerial images based on UAV attitude information | |
CN106780321B (en) | CBERS-02 satellite HR sensor image overall tight orientation and correction splicing method | |
CN102410831B (en) | Design and positioning method of multi-stripe scan imaging model | |
CN107144293A (en) | A kind of geometric calibration method of video satellite area array cameras | |
US20090141043A1 (en) | Image mosaicing apparatus for mitigating curling effect | |
CN103400345A (en) | Method for lowering TDI-CCD (time delay integration-charge coupled device) camera image ambiguity | |
CN103697864B (en) | A Narrow Field Dual Camera Image Stitching Method Based on Large Virtual Camera | |
CN102519433B (en) | Method for inverting geometric calibrating parameter of satellite-borne linear array sensor by using RPC (Remote Position Control) | |
CN103323028B (en) | One locates conforming satellite multispectral image method for registering based on object space | |
CN103871075B (en) | A kind of large oval remote sensing satellite earth background relative motion method of estimation | |
CN102519436B (en) | Chang'e-1 (CE-1) stereo camera and laser altimeter data combined adjustment method | |
CN106709944B (en) | Satellite remote sensing image registration method | |
CN104864853B (en) | A kind of high-resolution three line scanner satellite along the attitude flutter of rail direction detection method | |
CN100523726C (en) | Linear array push-broom type image optimum scanning line search method based on object space projection geometrical constraint | |
CN103822644A (en) | Camera calibration method of three-dimensional laser imaging system | |
CN111561936A (en) | Precise processing method and system for rotating large-breadth optical satellite | |
CN104700367A (en) | Geometric correction method of on-board hyperspectral push-broom imaging data | |
CN105374009A (en) | Remote sensing image splicing method and apparatus | |
CN102147249B (en) | Method for precisely correcting satellite-borne optical linear array image based on linear characteristic | |
CN103778610A (en) | Geometric pretreatment method for vertical rail swing images of satellite-borne linear array sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160302 |
|
WD01 | Invention patent application deemed withdrawn after publication |