CN102410831B - Design and positioning method of multi-stripe scan imaging model - Google Patents

Design and positioning method of multi-stripe scan imaging model Download PDF

Info

Publication number
CN102410831B
CN102410831B CN201010291940.2A CN201010291940A CN102410831B CN 102410831 B CN102410831 B CN 102410831B CN 201010291940 A CN201010291940 A CN 201010291940A CN 102410831 B CN102410831 B CN 102410831B
Authority
CN
China
Prior art keywords
msub
mrow
mtd
mfrac
partiald
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010291940.2A
Other languages
Chinese (zh)
Other versions
CN102410831A (en
Inventor
闫利
邓非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201010291940.2A priority Critical patent/CN102410831B/en
Publication of CN102410831A publication Critical patent/CN102410831A/en
Application granted granted Critical
Publication of CN102410831B publication Critical patent/CN102410831B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)

Abstract

Aiming at the defects of three-linear-array stereoscopic imaging, the invention provides a multi-stripe scan stereoscopic imaging method so as to lower overhigh requirement of high-resolution linear array imaging on satellite stability, and further proposes a corresponding high-precision geometrical positioning theory and method.

Description

Design and positioning method of multi-strip scanning imaging model
Technical Field
The invention relates to an imaging model and a geometric positioning method thereof, which are applied to the field of mapping of space remote sensing satellites.
Background
The development of remote sensing satellite imaging technology and stereo imaging capability thereof enables satellite mapping to become one of the main means for acquiring and continuously updating geospatial information. The three-linear array CCD mapping camera developed internationally and domestically has proved that it has the incomparable advantages of single-linear array and double-linear array CCD mapping cameras, especially under the condition that the present satellite-borne large-area array stereo mapping camera can not be realized, the system has become the mainstream stereo imaging mode of the present mapping satellite. The geometric positioning precision of the multi-linear array stereo imaging strongly depends on the stability and the attitude measurement precision of the satellite platform; meanwhile, the strong correlation of the external orientation elements of each scan line and the complexity of the three-line array stereo imaging also cause application difficulty.
The linear array stereo imaging is different from frame-to-frame imaging, the frame-to-frame imaging obeys central projection, and a strict sensor model is established by adopting a collinear equation; the former is subjected to parallel projection along the rail direction, the transverse rail direction is subjected to central projection, and the exterior orientation elements of all scanning lines change along with time and have strong correlation. In the research of MOMS photogrammetry algorithm, the correlation between exterior orientation elements exists in the beam adjustment of dynamic photographic images, the single-route beam adjustment precision is not good, and a definite solution can not be obtained when the length of a route is less than 4 single baselines (baselines formed by a front-view camera, a front-view camera and a rear-view camera), navigation data (camera coordinates,ω, κ) and performing joint adjustment. The strong correlation between the elements of the exterior orientation causes difficulty in processing the high-resolution linear array stereoscopic image. The general imaging model is independent of the specific sensor imaging, and directly adopts mathematical functions such as polynomial, direct linear transformation, affine transformation model, parallel light projection model, rational polynomial model (RPC model) and the like to describe the geometric relationship between the ground point and the corresponding image point. For example, the linear array push-broom type satellite remote sensing image is processed by using an affine transformation model. The successful launch of IKONOS satellites has prompted a thorough study of the rational function model RPC, a more extensive expression of the sensor imaging model, which is applicable to a variety of sensors including the latest aerospace sensor models.
Disclosure of Invention
The invention mainly provides a design idea of a multi-strip scanning stereo imaging mode aiming at the defects of three-linear-array stereo imaging on the basis of deeply researching a stereo imaging mechanism of a high-resolution mapping satellite, weakens the over-high requirement of the high-resolution linear-array imaging on the satellite stability, and explores a corresponding high-precision geometric positioning theory and method.
The invention aims to provide a design method of a multi-strip scanning imaging model, which is characterized by comprising the following steps: the method comprises the following steps:
the method comprises the steps of obtaining a multi-strip scanning image by arranging three strip push-broom cameras CCD (charge coupled device) with a forward view, an orthographic view and a back view on a satellite, wherein the step of obtaining the multi-strip scanning image comprises the steps of extracting images of all linear array sensors in the same scanning period at 3 times of sampling time intervals for a three-line array image shot by each strip camera, splicing to obtain a complete image, wherein each strip of the three strip push-broom cameras CCD consists of three linear array CCD sensors A, B, C, the three linear array sensors simultaneously image in each imaging period, and one strip image is obtained similar to a small frame camera and continuously covers the ground along with the forward flying motion of the satellite;
the step of designing a rigid imaging model for the multi-strip scanning image comprises the following steps: determining the coordinate of imaging light rays corresponding to the CCD units under a satellite body system according to the size and the focal length of the CCD units, the number of each strip CCD linear array and the positions of the CCD units in the linear arrays, calculating the sight direction of the imaging light rays under an orbit coordinate system according to the pitch angle, the roll angle and the yaw angle of the confirmed satellite, and converting the coordinate of the imaging light rays under the orbit coordinate system into the coordinate of the geocentric coordinate system by simulating to realize the intersection of the scanning imaging light rays of the three strip CCD cameras and the surface of the earth;
the step of positioning the multi-strip scanning image comprises the following steps:
the method comprises the steps of iteratively intersecting imaging light rays and a digital elevation model, gradually determining coordinates of intersection points of the imaging light rays and the ground under a geocentric and geostationary coordinate system, resolving a transformation relation from a sensor coordinate system to a satellite platform coordinate system according to imaging parameters, establishing a mathematical model of intersection of the three CCD cameras behind scanned images, and performing decorrelation processing by adopting a spectrum correction method according to strong correlation among orientation parameters.
In detail, the method for designing a multi-band scanning imaging model according to the first aspect of the present invention is characterized in that:
the method comprises the following steps:
a step of obtaining a multi-strip image by arranging three strip push-broom cameras CCD for forward looking, forward looking and backward looking on a satellite,
a step of designing a rigid imaging model for said multi-band scan image, and
and positioning the multi-strip scanning image.
A second aspect of the present invention is a method for designing a multi-band scanning imaging model, based on the first aspect, the method comprising:
the step of obtaining the multi-band image comprises the following steps:
and extracting the images of the linear array sensors in the same scanning period according to the sampling time interval of 3 times of the three-linear array image shot by each strip camera, and splicing to obtain a complete image.
A third aspect of the present invention is a method for designing a multi-band scanning imaging model, based on the first aspect, characterized in that:
designing a rigid imaging model for the multi-strip scanning image, comprising:
determining the coordinate of the imaging light ray corresponding to the CCD unit in the satellite body system according to the size and the focal length of the CCD unit, the number of each CCD linear array and the position of the CCD unit in the linear array,
calculating the sight line direction of the imaging light under the orbit coordinate system according to the pitch angle, the roll angle and the yaw angle of the satellite,
and (3) realizing the intersection of TSS imaging light rays and the earth surface through simulation, and converting the coordinates of the imaging light rays under the orbit coordinate system into the coordinates under the geocentric and geostationary coordinate system.
A method for designing a multi-band scanning imaging model according to a fourth aspect of the present invention is, based on the first aspect, characterized in that:
positioning the multi-strip scan image, comprising:
the step of determining the coordinates of the intersection point of the imaging light and the ground under the geocentric geostationary coordinate system step by step through iterative intersection of the imaging light and the DEM,
a step of resolving the transformation relation from the sensor coordinate system to the satellite platform coordinate system according to the imaging parameters,
and establishing a mathematical model of the rear intersection of the TSS images, and performing decorrelation processing by adopting a spectrum correction method aiming at the strong correlation between the orientation parameters.
Drawings
Fig. 1 shows the difference between TLS (three-line array) and TSS (three-band) stereoscopic imaging.
Fig. 2 illustrates the TSS front view camera conformation process.
Fig. 3 is a schematic diagram of a CCD line array simulation of a TSS image.
Fig. 4 shows the iterative intersection of imaging rays with the DEM.
Fig. 5 shows the relationship between the local frame coordinate system, the image file coordinate system, and the sensor coordinate system of the TSS image.
Fig. 6 shows the relationship between the local frame coordinate system, the image file coordinate system, and the sensor coordinate system of the TSS image.
Detailed Description
In the invention, three strip sensors are designed, an imaging model of the three strip (TSS) sensors is shown in figure 1, the three strip push-broom cameras with front view, front view and back view are provided, and image strips are obtained by push-broom of each strip sensor through forward flying motion of a satellite. Compared with three-linear array CCD camera imaging, the front view and the back view of TSS imaging are not a CCD linear array any more, but three linear array CCDs, in a scanning period, the front view and the back view of TSS cameras respectively obtain three lines of images (namely a strip), so the TSS imaging has the characteristic of strip center projection, each strip corresponds to a group of external orientation elements in a sampling period, the external orientation elements are in real-time change in different sampling periods, and a certain relation exists between the external orientation elements of each adjacent strip. In the strip push-broom imaging, the value of the exterior orientation element is dynamically changed in the push-broom process, but the number of the required record groups of the exterior orientation element is obviously reduced, so that the determination of the exterior orientation element, the improvement of the image positioning precision, the reduction of the satellite platform stability requirement and the like are facilitated, and the strip push-broom imaging is a remarkable improvement on TLS.
As shown in fig. 2, each strip is composed of 3 line CCD sensors (A, B, C), and in each imaging period, these three line CCD sensors image simultaneously, similar to a small frame camera, acquiring a strip image, and following the forward flight motion of the satellite, completing the continuous coverage to the ground. Due to the adoption of 3 linear array CCD sensors, the same place point A can be imaged on the three linear array sensors, as shown in a1, a2 and a3 in fig. 2, an image needs to be output, therefore, images acquired by the linear array sensor A, B, C in the same scanning period are extracted at time intervals of 3 delta t, and finally, a complete image is obtained by splicing.
The invention designs a TSS three-dimensional imaging mode, and determines the coordinates of the imaging light rays corresponding to the CCD units under a satellite body system according to the size and the focal length of the CCD units, the number of each strip CCD linear array and the positions of the CCD units in the linear arrays.
Using the projection center as the origin of coordinates O1Establishing a satellite system, wherein the connection line of the projection center and the central CCD unit of the front-view camera line array surface is Z1Axial, direction being positive, X1The axis is parallel to the central row CCD linear array direction of the front-view camera, Y1Axis and Z1And X1The axes form a right-hand planar rectangular coordinate system. As shown in fig. 3, the front, front and rear view cameras are arranged in parallel in the focal plane of the TSS. For each CCD unit of the three-view camera, the plane coordinate of the CCD unit on the focal plane can be calculated, and then the corresponding imaging light ray vector is represented by the three-dimensional coordinate in the satellite body coordinate system according to the focal length of the camera.
Assuming that the direction of imaging light rays corresponding to Sample CCD units in the first line on the strip CCD linear array under the satellite system isThe plane coordinates of the CCD unit on the focal plane are then:
a front-view camera:
x=((L-1)/2-sample)×μX
y=(line-(W-1)/2)×μY+f·tan(θf) (1)
a front-view camera:
x=((L-1)/2-sample)×μX
y=(line-(W-1)/2)×μY (2)
a rear view camera:
x=((L-1)/2-sample)×μX
y=(line-(W-1)/2)×μY-f·tan(θb) (3)
the imaging light corresponding to the CCD unit is expressed in the satellite system as:
<math> <mrow> <msubsup> <mover> <mi>u</mi> <mo>&RightArrow;</mo> </mover> <mn>1</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mo>-</mo> <mi>f</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein L is the length of the CCD line array; w is the width of the CCD array, uX、uYThe size of the CCD cell in the x and y directions, respectively, thetaf、θbThe side view angles of the front and rear views, respectively, and f is the focal length of the front view camera.
Definition of TSS sensor orbit coordinate system takes satellite mass center as coordinate origin O2,Z2The direction of the axis is determined by normalization2The axes are determined according to the right-hand rule. The TSS orbital coordinate system and the origin of the main system coincide and the rotational relationship between them is determined by the attitude angles measured by the satellite attitude control system, i.e. pitch angle pitch (t), roll angle (t) and yaw angle yaw (t).
Therefore, after the three attitude angles of the satellite are determined, the sight line direction of the imaging light rays in the orbital coordinate systemCan be calculated by the following formula:
<math> <mrow> <msub> <mover> <mi>u</mi> <mo>&RightArrow;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <msubsup> <mover> <mi>u</mi> <mo>&RightArrow;</mo> </mover> <mn>2</mn> <mo>&prime;</mo> </msubsup> <mrow> <mo>|</mo> <mo>|</mo> <msubsup> <mover> <mi>u</mi> <mo>&RightArrow;</mo> </mover> <mn>2</mn> <mo>&prime;</mo> </msubsup> <mo>|</mo> <mo>|</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mover> <mi>u</mi> <mo>&RightArrow;</mo> </mover> <mn>2</mn> <mo>&prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>M</mi> <mi>p</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>M</mi> <mi>r</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>M</mi> <mi>y</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>u</mi> <mo>&RightArrow;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, Mp、Mr、MyEach is a rotation matrix formed by 3 attitude angles at time t.
If the simulation realizes that the TSS imaging light meets the earth surface, the imaging light must be converted to be under the geocentric-geostationary coordinate system. The geocentric earth-fixed coordinate system used in the TSS image simulation is the WGS84 coordinate system, so the coordinates in the orbital coordinate system can be converted into the geocentric earth-fixed coordinate system by the following formula.
<math> <mrow> <msub> <mover> <mi>u</mi> <mo>&RightArrow;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>X</mi> </msub> </mtd> <mtd> <msub> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>X</mi> </msub> </mtd> <mtd> <mrow> <msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>X</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>Y</mi> </msub> </mtd> <mtd> <msub> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>Y</mi> </msub> </mtd> <mtd> <msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>Y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>Z</mi> </msub> </mtd> <mtd> <msub> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>Z</mi> </msub> </mtd> <mtd> <msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mi>Z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msub> <mover> <mi>u</mi> <mo>&RightArrow;</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,is the sight line vector under the earth-centered-earth fixation; x2、Y2、Z2Is 3 coordinate axes of the orbital coordinate system.
The invention positions a plurality of scanning images, and an imaging light ray corresponding to a CCD unit of the TSS sensor can be positioned by a satellite at any time under the earth-centered earth-fixed systemSum light vectorIs shown, i.e.
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>X</mi> <mo>=</mo> <msub> <mi>X</mi> <mi>P</mi> </msub> <mo>+</mo> <mi>&mu;</mi> <mo>&times;</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mi>X</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>Y</mi> <mo>=</mo> <msub> <mi>Y</mi> <mi>P</mi> </msub> <mo>+</mo> <mi>&mu;</mi> <mo>&times;</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mi>Y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>Z</mi> <mo>=</mo> <msub> <mi>Z</mi> <mi>P</mi> </msub> <mo>+</mo> <mi>&mu;</mi> <mo>&times;</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mi>Z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein,is the position of the satellite at time t; mu is a projection coefficient;the direction of the light ray is in the earth center and earth fixation coordinate system.
In the actual calculation, the accurate position of the ground point is unknown, and the corresponding elevation value cannot be determined, so that iterative calculation is needed to gradually determine the coordinates of the ground point, that is, the imaging light ray and the DEM are iteratively intersected, as shown in fig. 4.
The invention establishes a TSS strict sensor model, and introduces the establishment of the TSS strict sensor model by taking a TSS front-view camera as an example. For the TSS front view camera, it is composed of N-3 CCD line array units, at each imaging instant, the front view camera acquires N images (i.e. one strip), each CCD unit corresponds to a light vector, for example, the imaging light vector corresponding to the CCD unit in the first line, the second sample column on the strip CCD array uses P under the satellite navigation systemPSAnd (4) showing.
A front-view camera: <math> <mrow> <msub> <mi>P</mi> <mi>PS</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>tg</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>Y</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mi>tg</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>X</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mi>L</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mi>sample</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msub> <mi>&mu;</mi> <mi>X</mi> </msub> <mo>/</mo> <mi>f</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mi>line</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>W</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&times;</mo> <msub> <mi>&mu;</mi> <mi>Y</mi> </msub> <mo>/</mo> <mi>f</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
a front-view camera:
<math> <mrow> <msub> <mi>P</mi> <mi>PS</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>tg</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>Y</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mi>tg</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>X</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mi>L</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mi>sample</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msub> <mi>&mu;</mi> <mi>X</mi> </msub> <mo>/</mo> <mi>f</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mi>line</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>W</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&times;</mo> <msub> <mi>&mu;</mi> <mi>Y</mi> </msub> <mo>+</mo> <mi>f</mi> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <mi>f</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
a rear view camera:
<math> <mrow> <msub> <mi>P</mi> <mi>PS</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>tg</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>Y</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mi>tg</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>X</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mi>L</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mi>sample</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <msub> <mi>&mu;</mi> <mi>X</mi> </msub> <mo>/</mo> <mi>f</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mi>line</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>W</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&times;</mo> <msub> <mi>&mu;</mi> <mi>Y</mi> </msub> <mo>-</mo> <mi>f</mi> <mo>&times;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <mi>f</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
where L is the length of the CCD array, W is the width of the CCD array (i.e., the number of scan lines in a swath), and μX、μYThe size of the CCD unit in two directions, respectively, and f is the focal length of the front-view camera.
The line-of-sight vector used for TSS image simulation is defined in the satellite navigation system, i.e. PPSGuide, leadThere is only one rotation transformation between the navigation coordinate system and the satellite platform coordinate system, i.e. the satellite platform is around ZPThe axis is rotated by 90 degrees to obtain a navigation coordinate system, so that the coordinate of the imaging light vector of the TSS image under the platform coordinate system is PP
<math> <mrow> <msub> <mi>P</mi> <mi>P</mi> </msub> <mo>=</mo> <msub> <mi>R</mi> <mi>T</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>P</mi> <mi>PS</mi> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msub> <mi>P</mi> <mi>PS</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
The relation between the geocentric earth-fixed coordinate system of the TSS image and the satellite platform coordinate system can be obtained.
<math> <mrow> <msub> <mi>P</mi> <mi>ECS</mi> </msub> <mo>=</mo> <mi>S</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&lambda;</mi> <mo>&CenterDot;</mo> <msub> <mi>R</mi> <mi>OS</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>R</mi> <mi>PS</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msubsup> <mi>R</mi> <mi>T</mi> <mi>T</mi> </msubsup> <mo>&CenterDot;</mo> <msub> <mi>p</mi> <mi>P</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
R0For an image, a time invariant matrix corresponding to the orbital coordinate system O-X of the central scan lineoYoZoThree axes of (a). ROS(t) is a time-varying quantity corresponding to the orbital coordinate system O at the time of imaging for each swath2-X2Y2Z2Three axes of (a). Essentially, R0Is ROS(t) when t is equal to tcThe time value, both calculated using the position and velocity vectors of the satellites, but R0Calculated using the satellite position and velocity vectors of the central scan line (or strip), and ROS(t) is calculated from the satellite position and velocity of the current scan line (or scan slice).
Assuming that the width W of the CCD line array is 3, i.e. the number of scan lines in the front-view camera strip is 3, the image file coordinate of the ground point a corresponding to the image point a on the TSS image is (x)I,yI) Then the image point is imaged in the nth scan cycle, and the line number of the image point in the current scan band is line, as shown in fig. 5.
n = INT ( ( y I - 1 ) W ) + 1 , lin = mod ( ( y I - 1 ) W ) - - - ( 14 )
Wherein INT represents a rounding operation; the mod function represents a remainder operation and line takes the value (0, 1, …, W-1). The coordinate of the image point p in the local frame coordinate system is pF
<math> <mrow> <msub> <mi>p</mi> <mi>F</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>F</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>F</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mi>F</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>I</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mi>line</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>W</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&times;</mo> <msub> <mi>&mu;</mi> <mi>Y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
As shown in FIG. 5, the origin of the platform coordinate system of the TSS image has only a rotational relationship between the projection center C, i.e., the sensor coordinate system, and the satellite platform coordinate system, and no translational relationship, i.e., CM0. Suppose that the satellite platform is X-wound firstFRotation of the shaftAngle, rewind YFThe axis rotates by an angle omega and finally rotates around ZFRotation of the shaft by a kappa angle to the sensor coordinate system, given a rotation matrix RM
R M = a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 - - - ( 16 )
Then, ignoring the systematic error, i.e. x equals 0, we can:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>F</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>&CenterDot;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo>&CenterDot;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mn>3</mn> </msub> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>x</mi> <mi>F</mi> <mi>c</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>F</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> </mrow> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>&CenterDot;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mn>3</mn> </msub> <mo>&CenterDot;</mo> <mi>tan</mi> <mrow> <mo>(</mo> <msub> <mi>&psi;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mn>3</mn> </msub> </mrow> </mfrac> <mo>+</mo> <msubsup> <mi>y</mi> <mi>F</mi> <mi>c</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
for each CCD detector, pFAnd PPIs known, and therefore least squares adjustment can be used to determine RMAnd cF. The above solution process is referred to as the inner orientation of the TSS image.
TSS image PresenceTherefore, the strict imaging model based on satellite parameters for TSS images is:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>F</mi> </msub> <mo>-</mo> <msubsup> <mi>x</mi> <mi>F</mi> <mi>c</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>F</mi> </msub> <mo>-</mo> <msubsup> <mi>y</mi> <mi>F</mi> <mi>c</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>f</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>&mu;</mi> <mo>&CenterDot;</mo> <msubsup> <mi>R</mi> <mi>M</mi> <mi>T</mi> </msubsup> <mo>&CenterDot;</mo> <msub> <mi>R</mi> <mi>T</mi> </msub> <mo>&CenterDot;</mo> <msubsup> <mi>R</mi> <mi>PS</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msubsup> <mi>R</mi> <mi>OS</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>X</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
order to <math> <mrow> <mi>R</mi> <mo>=</mo> <msubsup> <mi>R</mi> <mi>M</mi> <mi>T</mi> </msubsup> <mo>&CenterDot;</mo> <msub> <mi>R</mi> <mi>T</mi> </msub> <mo>&CenterDot;</mo> <msubsup> <mi>R</mi> <mi>PS</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msubsup> <mi>R</mi> <mi>OS</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> Collinearity-like conditional equations for TSS:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>F</mi> </msub> <mo>-</mo> <msubsup> <mi>x</mi> <mi>F</mi> <mi>c</mi> </msubsup> <mo>=</mo> <mo>-</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mn>11</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>X</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>12</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>13</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>R</mi> <mn>31</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>X</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>32</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>33</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>F</mi> </msub> <mo>-</mo> <msubsup> <mi>y</mi> <mi>F</mi> <mi>c</mi> </msubsup> <mo>=</mo> <mo>-</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mn>21</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>X</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>22</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>23</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>R</mi> <mn>31</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>X</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>32</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>33</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, xF,yFCoordinates of the image point under the TSS local frame type coordinate system; xECS,YECS,ZECSCoordinates of the ground point under the earth center earth fixation system; xS,YS,ZSFor the anteroposterior view images, the sign of the front face f is positive and the plus view image is negative, which are coordinates of the ground point imaging time satellite under the earth center. The TSS image strict imaging model has the following main functions: spatial back-crossing, spatial front-crossing, elementary error equations for zonal relief, computing analog data, digital differential correction, single-slice mapping, etc. of a single slice or multiple slices.
And (3) establishing a constraint condition:
because each TSS uses 3 CCD line sensors, as shown in fig. 6, the ground point a forms a three-dimensional image on the 3 line CCD sensors of the front-view camera, corresponding to the image points a1, a2, a3, although one image is finally output in the front-view direction, we can determine which line CCD sensor the a point is imaged by in the front-view direction according to the row and column number of the image point a corresponding to the ground point a on the front-view image, and can determine the image point a1 (or a2 or a3) corresponding to the ground point a on the other two line sensors in the front-view direction according to the scanning period n in which the a point is located and the line number line in the current scanning strip.
Assuming that the image point a is obtained by the front-view direction line sensor C, that is, the point a corresponds to a3, the imaging time of a1 and the coordinates thereof in the local frame-and-frame coordinate system are calculated by the following formula:
let the column number at point a1 be xI 1The coordinate of the point a1 in the local frame-type coordinate system is pF 1=(xF 1,yF 1,zF 1)TThen xF 1=xI 1=xI
If line<When W is equal to (W/2), Δ y is equal to W-line-1, yI 1=yI+Δy,n1=fix(yI 1/W),line1=mod(yI 1,W),yF 1=line1-(W-1)/2,t1=n1*W-Δy;
Otherwise: Δ y ═ line, yI 1=yI-Δy,n1=fix(yI 1/W),line1=mod(yI 1,W),yF 1=line1-(W-1)/2,t1=n1*W+Δy;
After a1, a2 and a3 are determined by the image point a on the front-view image, the image points a1 ', a 2', a3 'and a 1', a2 'and a 3' formed by the ground point A in the front-back view direction are determined in the same way, when the spatial position of the ground point A is determined, the intersection of three rays of the three-linear array is changed into the intersection of 9 rays, so that the redundant observed value is increased, and the redundant observed value is used as a constraint condition.
The invention designs a space rear intersection and a steady resolving method of the TSS image, selects different orbit and attitude error correction models, corresponds to different directional parameter combinations, takes quadratic term correction as an example, expands according to Taylor series, and takes a small-value primary term to obtain an error equation:
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>Vx</mi> <mi>F</mi> </msub> <mo>=</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>x</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>x</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>F</mi> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>c</mi> <mrow> <mi>x</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>x</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>z</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <mrow> <mo>&PartialD;</mo> <msub> <mi>c</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>r</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>r</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>r</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>p</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>p</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <mrow> <mo>&PartialD;</mo> <msub> <mi>e</mi> <mrow> <mi>p</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>p</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>p</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>p</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <mrow> <mo>&PartialD;</mo> <msub> <mi>e</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>l</mi> <msub> <mi>x</mi> <mi>F</mi> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>Vy</mi> <mi>F</mi> </msub> <mo>=</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>x</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>x</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>y</mi> <mi>F</mi> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>c</mi> <mrow> <mi>x</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>x</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>z</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <mrow> <mo>&PartialD;</mo> <msub> <mi>c</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>dc</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>r</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>r</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>r</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>p</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>p</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <mrow> <mo>&PartialD;</mo> <msub> <mi>e</mi> <mrow> <mi>p</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>p</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>p</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>p</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>e</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <mrow> <mo>&PartialD;</mo> <msub> <mi>e</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <msub> <mi>de</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>l</mi> <msub> <mi>y</mi> <mi>F</mi> </msub> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
in the formula,dcx,0,dcx,1,…,dey,2The coefficients of which are the partial derivatives of the function, are the corrections of the orientation parameters.
For writing convenience, the numerator and denominator of the strict sensor model are represented by the following formula:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msub> <mi>R</mi> <mn>11</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>X</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>12</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>13</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>Y</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msub> <mi>R</mi> <mn>21</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>X</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>22</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>23</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>Z</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msub> <mi>R</mi> <mn>31</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>X</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>32</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>R</mi> <mn>33</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>ECS</mi> </msub> <mo>-</mo> <msub> <mi>Z</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>F</mi> </msub> <mo></mo> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Z</mi> </mfrac> <mo>&CenterDot;</mo> <mo>[</mo> <msub> <mi>R</mi> <mn>11</mn> </msub> <mi>f</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>F</mi> </msub> <mo>-</mo> <msubsup> <mi>x</mi> <mi>F</mi> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mn>31</mn> </msub> <mo>]</mo> </mtd> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>F</mi> </msub> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>=</mo> <mover> <mi>t</mi> <mo>&OverBar;</mo> </mover> <mo>&CenterDot;</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>=</mo> <msup> <mover> <mi>t</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>F</mi> </msub> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Z</mi> </mfrac> <mo>&CenterDot;</mo> <mo>[</mo> <msub> <mi>R</mi> <mn>12</mn> </msub> <mi>f</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>F</mi> </msub> <mo>-</mo> <msubsup> <mi>x</mi> <mi>F</mi> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mn>32</mn> </msub> <mo>]</mo> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>=</mo> <mover> <mi>t</mi> <mo>&OverBar;</mo> </mover> <mo>&CenterDot;</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>=</mo> <msup> <mover> <mi>t</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Z</mi> </mfrac> <mo>&CenterDot;</mo> <mo>[</mo> <msub> <mi>R</mi> <mn>13</mn> </msub> <mi>f</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>F</mi> </msub> <mo>-</mo> <msubsup> <mi>x</mi> <mi>F</mi> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mn>33</mn> </msub> <mo>]</mo> </mtd> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>F</mi> </msub> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>z</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>=</mo> <mover> <mi>t</mi> <mo>&OverBar;</mo> </mover> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>F</mi> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>c</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>z</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>=</mo> <msup> <mover> <mi>t</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Z</mi> </mfrac> <mo>&CenterDot;</mo> <mo>[</mo> <msub> <mi>R</mi> <mn>21</mn> </msub> <mi>f</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>F</mi> </msub> <mo>-</mo> <msubsup> <mi>y</mi> <mi>F</mi> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mn>31</mn> </msub> <mo>]</mo> </mtd> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>y</mi> <mi>F</mi> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>c</mi> <mrow> <mi>x</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>=</mo> <mover> <mi>t</mi> <mo>&OverBar;</mo> </mover> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>y</mi> <mi>F</mi> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>c</mi> <mrow> <mi>x</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>y</mi> <mi>F</mi> </msub> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>=</mo> <msup> <mover> <mi>t</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Z</mi> </mfrac> <mo>&CenterDot;</mo> <mo>[</mo> <msub> <mi>R</mi> <mn>22</mn> </msub> <mi>f</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>F</mi> </msub> <mo>-</mo> <msubsup> <mi>y</mi> <mi>F</mi> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mn>32</mn> </msub> <mo>]</mo> </mtd> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>y</mi> <mi>F</mi> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>c</mi> <mrow> <mi>y</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>=</mo> <mover> <mi>t</mi> <mo>&OverBar;</mo> </mover> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>y</mi> <mi>F</mi> </msub> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>=</mo> <msup> <mover> <mi>t</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>y</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mi>Z</mi> </mfrac> <mo>&CenterDot;</mo> <mo>[</mo> <msub> <mi>R</mi> <mn>23</mn> </msub> <mi>f</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>F</mi> </msub> <mo>-</mo> <msubsup> <mi>y</mi> <mi>F</mi> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mn>33</mn> </msub> <mo>]</mo> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <mrow> <mo>&PartialD;</mo> <msub> <mi>c</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>=</mo> <mover> <mi>t</mi> <mo>&OverBar;</mo> </mover> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>y</mi> <mi>F</mi> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>c</mi> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>z</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mfrac> <mo>=</mo> <msup> <mover> <mi>t</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msup> <mo>&CenterDot;</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>y</mi> </mrow> <mi>F</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>c</mi> </mrow> <mrow> <mi>z</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mfrac> </mtd> </mtr> </mtable> </mfenced> </math>
order to <math> <mrow> <msubsup> <mi>R</mi> <mi>PS</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>M</mi> <mi>y</mi> <mi>T</mi> </msubsup> <mo>&CenterDot;</mo> <msubsup> <mi>M</mi> <mi>r</mi> <mi>T</mi> </msubsup> <mo>&CenterDot;</mo> <msubsup> <mi>M</mi> <mi>p</mi> <mi>T</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> Then
<math> <mrow> <mfrac> <mo>&PartialD;</mo> <mrow> <mo>&PartialD;</mo> <mi>yaw</mi> </mrow> </mfrac> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>3</mn> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>h</mi> <mn>11</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>yaw</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>h</mi> <mn>12</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>yaw</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>13</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>yaw</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>21</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>yaw</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>22</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>yaw</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>23</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>yaw</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>31</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>yaw</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>32</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>yaw</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>33</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>yaw</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msubsup> <mi>R</mi> <mi>OS</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mfrac> <mo>&PartialD;</mo> <mrow> <mo>&PartialD;</mo> <mi>roll</mi> </mrow> </mfrac> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>3</mn> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>h</mi> <mn>11</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>roll</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>h</mi> <mn>12</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>roll</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>13</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>roll</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>21</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>roll</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>22</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>roll</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>23</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>roll</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>31</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>roll</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>32</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>roll</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>33</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>roll</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msubsup> <mi>R</mi> <mi>OS</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mfrac> <mo>&PartialD;</mo> <mrow> <mo>&PartialD;</mo> <mi>pitch</mi> </mrow> </mfrac> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>3</mn> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>h</mi> <mn>11</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>pitch</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>h</mi> <mn>12</mn> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <mi>pitch</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>13</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>pitch</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>21</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>pitch</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>22</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>pitch</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>23</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>pitch</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>31</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>pitch</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>32</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>pitch</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>h</mi> </mrow> <mn>33</mn> </msub> <mrow> <mo>&PartialD;</mo> <mi>pitch</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <msubsup> <mi>R</mi> <mi>OS</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
Writing the coefficient term of the error equation into matrix A, and constant term L ═ Lx,ly]TWherein V=[VxF,VyF]TThe correction of the orientation parameter isThe error equation can be expressed as:
V = A X ^ - L - - - ( 24 )
the error equation has 18 unknown parameters, so at least 9 ground control points are needed to solve the orientation parameters. Of course, if a constant or first-order term error correction model is adopted and 6 or 12 orientation parameters need to be solved, at least 3 or 6 control points are needed to solve the corresponding orientation parameters.
The salient features of the space-borne CCD sensor are represented by a long focal length and a narrow field angle. A large number of experiments show that the imaging geometric relationship causes strong correlation among the orientation parameters of the sensor, so that an approximate linear relationship, namely complex collinearity, exists among column vectors of an error equation coefficient matrix, and at the moment, a normal equation is seriously ill-conditioned and even singular. The invention adopts spectral correction iteration to overcome the correlation method between directional parameters of the TSS image.
The normal equation can be written as:
A T PA X ^ - A T PL = 0 - - - ( 25 )
adding the above formula at the same timeTo obtain
( A T PA + I ) X ^ = A T PL + X ^ - - - ( 26 )
In the formula, I is a unit array; the solution is solved by adopting an iterative method, and the iterative formula is as follows:
X ^ ( k ) = ( A T PA + I ) - 1 ( A T PL + X ^ k - 1 ) - - - ( 27 )
the derivation process of the formula shows that the spectrum correction iterative algorithm can improve the ill-posed property of the normal equation, maintain the numerical stability in the calculation process of the normal equation and does not change the equivalent relation of the equation, thereby ensuring the unbiased property of the estimation result.

Claims (1)

1. A design method of a multi-strip scanning imaging model is characterized by comprising the following steps:
the method comprises the following steps:
the method comprises the steps of obtaining a multi-strip scanning image by arranging three strip push-broom cameras CCD (charge coupled device) with a forward view, an orthographic view and a backward view on a satellite, wherein the step of obtaining the multi-strip scanning image comprises the steps of extracting images of all linear array sensors in the same scanning period at 3 times of sampling time intervals for a three-line array image shot by each strip camera, splicing to obtain a complete image, wherein each strip of the three strip push-broom cameras CCD consists of three linear array CCD sensors (A, B, C), the three linear array sensors simultaneously image in each imaging period, and one strip image is obtained similar to a small-frame camera and continuously covers the ground along with the forward flying motion of the satellite;
the step of designing a rigid imaging model for the multi-strip scanning image comprises the following steps: determining the coordinate of imaging light rays corresponding to the CCD units under a satellite body system according to the size and the focal length of the CCD units, the number of each strip CCD linear array and the positions of the CCD units in the linear arrays, calculating the sight direction of the imaging light rays under an orbit coordinate system according to the pitch angle, the roll angle and the yaw angle of the confirmed satellite, and converting the coordinate of the imaging light rays under the orbit coordinate system into the coordinate of the geocentric coordinate system by simulating to realize the intersection of the scanning imaging light rays of the three strip CCD cameras and the surface of the earth;
the step of positioning the multi-strip scanning image comprises the following steps: the method comprises the steps of iteratively intersecting imaging light rays and a digital elevation model, gradually determining coordinates of intersection points of the imaging light rays and the ground under a geocentric and geostationary coordinate system, resolving a transformation relation from a sensor coordinate system to a satellite platform coordinate system according to imaging parameters, establishing a mathematical model of intersection of the three CCD cameras behind scanned images, and performing decorrelation processing by adopting a spectrum correction method according to strong correlation among orientation parameters.
CN201010291940.2A 2010-09-26 2010-09-26 Design and positioning method of multi-stripe scan imaging model Expired - Fee Related CN102410831B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010291940.2A CN102410831B (en) 2010-09-26 2010-09-26 Design and positioning method of multi-stripe scan imaging model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010291940.2A CN102410831B (en) 2010-09-26 2010-09-26 Design and positioning method of multi-stripe scan imaging model

Publications (2)

Publication Number Publication Date
CN102410831A CN102410831A (en) 2012-04-11
CN102410831B true CN102410831B (en) 2015-06-24

Family

ID=45913047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010291940.2A Expired - Fee Related CN102410831B (en) 2010-09-26 2010-09-26 Design and positioning method of multi-stripe scan imaging model

Country Status (1)

Country Link
CN (1) CN102410831B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891713B (en) * 2012-09-27 2014-12-03 哈尔滨工程大学 Low-orbit microsatellite formation system suitable for medium/high-latitude region coverage
CN103134492B (en) * 2013-02-01 2015-04-29 哈尔滨工业大学 Agile imaging satellite linear scan strip pre-generating method based on point target and satellite three-axis gesture rapid determining method
DE102013209770B4 (en) * 2013-05-27 2015-02-05 Carl Zeiss Industrielle Messtechnik Gmbh Method for determining adjustable parameters of a plurality of coordinate measuring machines, and method and apparatus for generating at least one virtual image of a measuring object
CN106595598B (en) * 2016-12-21 2019-03-19 上海航天控制技术研究所 A kind of first optical remote sensing imaging method in permanent ground of wide visual field
CN106603927B (en) * 2017-01-10 2019-05-28 吉林大学 A kind of spaceborne APS camera numeric field TDI adds multiple line battle array imaging method
CN107421503B (en) * 2017-07-28 2020-04-10 长光卫星技术有限公司 Single-detector three-linear-array three-dimensional mapping imaging method and system
CN108932384A (en) * 2018-07-04 2018-12-04 北京市遥感信息研究所 Based on the maximized imaging satellite regional aim covering method of a covering tape
CN109827526A (en) * 2019-03-13 2019-05-31 中国十七冶集团有限公司 One kind being based on photogrammetric planar smoothness detection method and its flow chart of data processing
CN110986886A (en) * 2019-12-18 2020-04-10 中国科学院长春光学精密机械与物理研究所 Double-camera dynamic rotation scanning three-dimensional imaging simulation device
CN111695013B (en) * 2020-04-24 2023-05-30 中国资源卫星应用中心 Method and device for monitoring satellite orbit and imaging strip resources
CN115014294A (en) * 2022-05-18 2022-09-06 河海大学 River channel agile imaging method for east-west satellite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273936C (en) * 2004-10-21 2006-09-06 武汉大学 Correspond rediation correction method for push-scanning satellite images CCD
CN100498246C (en) * 2003-12-30 2009-06-10 中国科学院上海技术物理研究所 Machine-carried broom pushing type multidimension imaging device
CN101776451A (en) * 2009-01-08 2010-07-14 中国科学院西安光学精密机械研究所 CCD mapping camera capable of self-stabilizing and self-correcting motion distortion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7421151B2 (en) * 2004-05-18 2008-09-02 Orbimage Si Opco Inc. Estimation of coefficients for a rational polynomial camera model

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100498246C (en) * 2003-12-30 2009-06-10 中国科学院上海技术物理研究所 Machine-carried broom pushing type multidimension imaging device
CN1273936C (en) * 2004-10-21 2006-09-06 武汉大学 Correspond rediation correction method for push-scanning satellite images CCD
CN101776451A (en) * 2009-01-08 2010-07-14 中国科学院西安光学精密机械研究所 CCD mapping camera capable of self-stabilizing and self-correcting motion distortion

Also Published As

Publication number Publication date
CN102410831A (en) 2012-04-11

Similar Documents

Publication Publication Date Title
CN102410831B (en) Design and positioning method of multi-stripe scan imaging model
Zhang et al. On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets
Wu et al. Integration of Chang'E-2 imagery and LRO laser altimeter data with a combined block adjustment for precision lunar topographic modeling
CN102168972B (en) RPC-based method for improving and calibrating block adjustment of three-linear array three-dimensional satellite
CN103697864B (en) A kind of narrow visual field double camera image splicing method based on large virtual camera
CN104567819B (en) A kind of star loaded camera full filed drift angle determines and compensation method
CN102636159A (en) In-orbit geometrical self-calibration method for multi-mirror aerospace linear array camera system
Poli A rigorous model for spaceborne linear array sensors
CN102901519B (en) optical push-broom satellite in-orbit stepwise geometric calibration method based on probe element direction angle
CN106885585B (en) Integrated calibration method of satellite-borne photogrammetry system based on light beam adjustment
CN102735216A (en) Adjustment processing method for CCD stereo camera three-line-array image data
Radhadevi et al. In-flight geometric calibration and orientation of ALOS/PRISM imagery with a generic sensor model
US20230102712A1 (en) Method of fully autonomous geometric calibration for linear-array remote sensing satellites
Wang et al. The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite
CN104298887A (en) Relative radiation calibration method of multichip linear CCD (charge coupled device) camera
CN111524196B (en) In-orbit geometric calibration method for sweep large-width optical satellite
CN104807477A (en) Target control point-based satellite CCD array image geometric calibration method
Polyansky et al. Stereo topographic mapping concept for the upcoming Luna-Resurs-1 orbiter mission
Pi et al. Robust camera distortion calibration via unified RPC model for optical remote sensing satellites
Speyerer et al. In-flight geometric calibration of the lunar reconnaissance orbiter camera
Pi et al. On-orbit geometric calibration using a cross-image pair for the linear sensor aboard the agile optical satellite
CN104976991B (en) A kind of acquisition methods for the three-line imagery image space deviation for considering attitude of satellite change
JP5619866B2 (en) Calibration method of alignment error for earth observation system using symmetrical exposure photograph
CN109029379A (en) A kind of high-precision stereo mapping with low base-height ratio method
Radhadevi et al. New era of Cartosat satellites for large scale mapping

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150624

Termination date: 20160926