CN105368853B - 一种与非小细胞肺癌辅助诊断相关的标志物及其应用 - Google Patents

一种与非小细胞肺癌辅助诊断相关的标志物及其应用 Download PDF

Info

Publication number
CN105368853B
CN105368853B CN201510856207.3A CN201510856207A CN105368853B CN 105368853 B CN105368853 B CN 105368853B CN 201510856207 A CN201510856207 A CN 201510856207A CN 105368853 B CN105368853 B CN 105368853B
Authority
CN
China
Prior art keywords
natd
cell
slug
lung cancer
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510856207.3A
Other languages
English (en)
Other versions
CN105368853A (zh
Inventor
赵�权
魏继武
曾长江
鞠君毅
陈爱萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Shanquanjiang Biotechnology Co Ltd
Original Assignee
Chengdu Shanquanjiang Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Shanquanjiang Biotechnology Co Ltd filed Critical Chengdu Shanquanjiang Biotechnology Co Ltd
Priority to CN201510856207.3A priority Critical patent/CN105368853B/zh
Publication of CN105368853A publication Critical patent/CN105368853A/zh
Application granted granted Critical
Publication of CN105368853B publication Critical patent/CN105368853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明涉及分子生物学和肿瘤药学领域,公开一种与癌细胞或肿瘤辅助诊断相关的标志物,该标志物为NATD或者NATD和Slug的组合。本发明提供了快速简便的非小细胞肺癌标记物的检测方法,可以作为非小细胞肺癌及其他上皮肿瘤早期诊断的辅助手段。此外NATD作为表观遗传修饰酶,可以筛选出该蛋白特异性的抗体或小分子化合物来抑制其活性从而达到治疗非小细胞肺癌及其他上皮肿瘤病人的目的。

Description

一种与非小细胞肺癌辅助诊断相关的标志物及其应用
专利说明
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
发明领域
本发明属于生物技术领域,提供了对非小细胞肺癌进行检测和诊断、预后、以及治疗的新方法。具体地说,本发明涉及N-α-乙酰基转移酶D(NATD)单独或和Slug蛋白联合用作非小细胞肺癌特异性诊断标志物、对患有非小细胞肺癌患者进行预后、以及用作非小细胞肺癌治疗的潜在靶点的应用。
背景技术
世界卫生组织的数据显示全球每年约有800万人死于癌症,其中肺癌死亡人数高居榜首。肺癌是发病率和死亡率增长最快的恶性肿瘤,占全部恶性肿瘤死亡病例的22.7%,且发病率和死亡率仍在继续上升。如不及时采取有效的控制措施,预计到2025年,中国的肺癌患者人数将达到100万,成为世界第一肺癌大国。
肺癌可以分为小细胞肺癌和非小细胞肺癌(non-small cell lung cancer,NSCLC),其中后者占大约80%,是最常见的肺癌。非小细胞肺癌又可以分为三类:鳞癌、腺癌和大细胞癌。肺癌的死亡率高,五年生存率不足15%。一个重要的原因是早期诊断率极低,不足2%,80%以上患者就诊时已在晚期。目前非小细胞肺癌的诊断方法有X-射线检查、CT扫描、支气管镜检、痰细胞学检查以及肺癌生物标志物检测等。现有的广谱肺癌标志物无法确诊肺癌,而其他检查方法都存在早期普查的漏检率较高的缺陷。因此,开发新的特异性的肺癌生物标志物用于早期诊断和治疗成为当务之急。
除了诊断方法上的不足外,癌症病人死亡率居高不下的一个重要原因是癌细胞的远端转移1。事实上,90%以上的肺癌患者都死于原位肿瘤的侵袭和转移。肺癌的转移部位多,转移途径也很多,有淋巴转移、局部直接蔓延、血行转移和局部种植等。癌细胞的转移是许多生理学过程共同作用的结果。其中,上皮向间充质转化(Epithelial-Mesenchymal-Transition,EMT)在癌细胞的远端转移过程中起着非常重要的作用2-3。在肿瘤的转移过 程中,肿瘤细胞利用EMT转化为间充质细胞获得迁移和侵染能力,侵入到附近的血管中,在体内移动,从而到达身体的其他部位并最终形成新的病灶4,5。EMT过程受到Slug、Snail、Zeb1、Zeb2、Twist等多个转录因子的调控,并且这些参与EMT过程的调节因子可以非常明显的影响肿瘤的形成和转移6-10。Slug作为E-box结合转录抑制子家族成员之一,可以通过其N端的SNAG结构域与染色质调节蛋白LSD1结合,两者共同发挥作用来抑制EMT标记分子E-cadherin的表达,进而促进EMT过程11
蛋白质N端α-乙酰化在真核细胞中是一种非常普遍的蛋白修饰方式。在人的细胞中,N端α-乙酰化的蛋白高达80%以上,并且这种修饰方式在进化上是保守的12-14。蛋白N端α-乙酰化是由N-α-乙酰基转移酶(NAT)家族来催化的15。NATD是NAT家族的第四个成员,主要负责组蛋白H4和H2A的N端α-乙酰化16-18。先前关于NATD的研究主要集中在酵母中16,但是其在人类肿瘤发生发展过程中的作用还不清楚。迄今,尚未见有关以NATD作为标志物用于人类癌症的检测和靶点治疗的报道。
发明内容
本发明第一方面涉及N-α-乙酰基转移酶D(NATD)或其片段、单独或和Slug蛋白联合用于检测病人是否患有非小细胞肺癌或对患有非小细胞肺癌患者进行预后的制剂中的应用。通过测定来源于受试者的生物学样品诸如肿瘤组织样品中的NATD和Slug基因表达水平或蛋白水平来实现,可使用获自非癌性组织的正常细胞来作为对照样本。基因水平或/和蛋白表达水平与正常对照水平相比的升高表明该受试者患有非小细胞肺癌或有风险发生非小细胞肺癌。统计结果还发现,NATD在肺癌患者肿瘤组织中的水平与肺癌病人存活率负相关,可用作肺癌预后的指标。因此,本发明者利用实时定量PCR技术或/和免疫组化技术,通过对NATD单独或和Slug联合进行定量及生物活性测量,实现了对对象是否患有非小细胞肺癌的检测以及对患有非小细胞肺癌患者进行预后。
本发明另一方面涉及筛选可抑制N-α-乙酰基转移酶D(NATD)和Slug活性、作用、及表达量的抑制物,可鉴定能抑制非小细胞肺癌侵袭和转移的药物,为非小细胞肺癌的诊断和治疗提供参考依据。
本发明的目的可以通过以下技术方案实现:
一种与癌细胞或肿瘤辅助诊断相关的标志物,该标志物为NATD或者NATD和Slug的组合,所述的NATD为NATD基因或蛋白,所述的Slug为Slug基因或蛋白;该标志物优选为NATD基因、NATD蛋白、NATD基因和Slug基因的组合或者NATD蛋白和Slug蛋白 的组合。该标志物进一步有选为NATD基因和Slug基因的组合或者NATD蛋白和Slug蛋白的组合;更进一步优选为NATD蛋白和Slug蛋白的组合。
上述的标志物在制备癌细胞或肿瘤辅助诊断试剂盒或生物芯片中的应用。
上述标志物的引物或特异性抗体,该引物为所述NATD基因的实时荧光定量PCR引物和所述Slug基因的实时荧光定量PCR引物;所述NATD基因的实时荧光定量PCR引物:正向引物:5’-TACCTCATCGCGTGGGAAAAC-3’;反向引物:5’-GGATCTGTATGAGGAACTTCC-3’;所述Slug基因的实时荧光定量PCR引物:正向引物:ATACCACAACCAGAGATCCTCA;反向引物:GACTCACTCGCCCCAAAGATG;
该特异性抗体为用于检测NATD蛋白的表达水平和生物活性的anti-NATD和anti-N-α-ac-H4,以及Slug蛋白的特异性抗体。
上述标志物的引物或特异性抗体在制备癌细胞或肿瘤辅助诊断试剂盒或生物芯片中的应用。
一种癌细胞或肿瘤辅助诊断试剂盒或生物芯片,该试剂盒或生物芯片中包含用于检测血液或肿瘤组织中NATD基因表达水平或者NATD和Slug基因双表达水平的特异性引物;或者包含用于检测血液或肿瘤组织中的NATD蛋白表达水平或者NATD和Slug蛋白双表达水平的特异性抗体。
上述的癌细胞或肿瘤辅助诊断试剂盒或生物芯片,所述的引物为上述的引物,所述的抗体为上述的抗体。
上述的试剂盒或生物芯片中还包括PCR技术常用的试剂和免疫组化技术常用的试剂。
一种癌细胞或肿瘤侵袭和转移的抑制物,该抑制物为NATD基因或蛋白的活性、作用、及表达量的抑制物;优选的该抑制物为NATD基因、NATD蛋白产物及其乙酰化催化活性的抑制物;进一步优选的该抑制物为包括抗体、化学抑制物、shRNA和miRNA抑制物以及类似物中的至少一种;更进一步优选的该抑制物特异性阻断NATD的乙酰辅酶A结合位点(RRKGLG)。
一种Slug蛋白的活性、作用、及表达量的抑制物,该抑制物为Slug基因、Slug蛋白产物及其生物活性的抑制物。优选的所述的抑制物特异性阻断NATD和其在Slug启动子(promoter)区域中作用位点的结合。优选的所述的抑制物为由载体所表达的缺失乙酰辅酶A结合位点的NATD蛋白。
上述的癌细胞包括非小细胞肺癌及其他类似的上皮癌细胞(Epithelial cellcancer);所述的肿瘤包括非小细胞肺癌及其他上皮细胞肿瘤。优选的所述的上皮细胞肿瘤包括非小细胞肺癌、肝癌、胃癌、结直肠癌、卵巢癌、宫颈癌。尤其是非小细胞肺癌。
本发明涉及分子生物学和肿瘤药学领域。涉及NATD及其靶基因Slug在非小细胞肺癌诊断和治疗中的用途。本发明发现NATD在肺癌病人的肿瘤组织中表达水平显著增高,并且相关统计数据显示NATD与病人的死亡率正相关;在H1299肺癌细胞中NATD被下调后细胞的迁移能力受到抑制,并且导致了多个与上皮向间充质转化(EMT)过程相关的蛋白表达的变化。其中,转录因子Slug作为EMT过程中的一个重要转录因子,其基因表达受到NATD的表观遗传调节。本发明发现NATD可以通过调控Slug基因的表达水平参与EMT过程的调控,进而调控癌细胞的侵袭和转移,并且这种作用是依赖NATD的乙酰化酶活性的。NATD催化Slug启动子上组蛋白H4发生N端α-乙酰化从而提高Slug的表达,使细胞发生EMT转化。本发明表明NATD能作为非小细胞肺癌临床诊断的潜在标志物以及对患有非小细胞肺癌患者进行预后。同时,NATD/Slug可以作为一个潜在的靶点途径为肺癌的治疗提供新的策略。可以通过对NATD乙酰化催化位点的阻断、对NATD与Slug启动子区域的结合位点的阻断、以及对Slug启动子区域组蛋白的调控来抑制NATD和Slug的活性、作用、及表达量,进而抑制非小细胞肺癌的侵袭和转移,为非小细胞肺癌的治疗提供了新的参考依据。
本发明的其它方面和优点可通过参阅以下具体实施方案的描述并结合附图来知晓。
本发明的有益效果
本发明提供了快速简便的非小细胞肺癌标记物的检测方法,可以作为非小细胞肺癌及其他上皮肿瘤早期诊断的辅助手段。此外NATD作为表观遗传修饰酶,可以筛选出该蛋白特异性的抗体或小分子化合物来抑制其活性从而达到治疗非小细胞肺癌及其他上皮肿瘤病人的目的。
附图说明
图1实时定量PCR方法检测NatD基因在29例非小细胞肺癌病人正常组织和肿瘤组织中的mRNA水平
图2anti-NATD特异性抗体的制备及检测
图3anti-N-α-ac-H4特异性抗体的制备及检测
图4免疫组化检测NATD在非小细胞肺癌病人肿瘤组织切片中的蛋白水平
图5NATD表达水平与肺癌病人存活率的负相关关系
图6NATD knockdown的H1299细胞株制备及检测
图7NATD knockdown抑制肺癌细胞的迁移能力
图8生物荧光显像表明NATD knockdown抑制小鼠肺癌的转移和生长
图9免疫组化检测表明NATD knockdown抑制小鼠肺癌的转移
图10免疫荧光实验表明,NATD knockdown导致H1299细胞表面E-cadherin增多,N-cadherin减少。
图11实时定量PCR方法检测结果表明NATD knockdown抑制了H1299细胞的EMT过程
图12NATD knockdown抑制了H1299细胞的EMT过程。
图13NATD序列比对预测NATD催化活性位点为为高度保守的RxxGxG乙酰辅酶A结合基序。
图14体外乙酰化反应的放射性强度测试表明,原核表达的NATD有乙酰基转移酶活性,缺少催化区域核心氨基酸的NATDΔ则没有活性
图15Western-blot证实NATD的体外乙酰化活性,NATDΔ则没有活性。
图16以肺癌细胞中的组蛋白提取物为底物,原核表达的NTAD有乙酰基转移酶活性,缺少催化区域核心氨基酸的NATDΔ则没有活性。
图17实时定量PCR方法检测结果表明NATDΔ过表达的H1299稳定细胞株中Slug的表达受到抑制。
图18ChIP实验结果证明NATD水平的变化影响了Slug启动子区域组蛋白标记的水平。
图19Western-blot证实NATD水平的变化影响了Slug启动子区域组蛋白标记的水平。
图20NATD对EMT进行调控的模型。
具体实施方式
本发明采用Real-time PCR和免疫组化技术对29例非小细胞肺癌病人的肿瘤标本与正常组织中NATD的表达水平进行分析,发现NATD在肺癌病人的肿瘤组织中表达水平显著升高,并且与病人的死亡率正相关。构建NATD knockdown的非小细胞肺癌稳定细胞株,检测到癌细胞的迁移能力受损。免疫组化及Real-time PCR检测表明NATD对EMT过程中关键分子基因表达有调节作用,NATD表达水平的下降可以抑制EMT转换过程。使用突变技术构建了没有催化活性的NATD(简写为NATDΔ),体外乙酰化实验验证了缺失的乙酰辅酶A结合位点对NATD生物活性的必需性。我们发现NATD可以通过调控Slug基因的表达水平参与EMT过程的调控,进而调控癌细胞的侵袭和转移,并且这种作用是依赖NATD的乙酰化酶活性的。NATD催化Slug启动子上组蛋白H4发生N端α-乙酰化从而提高Slug的表达,使细胞发生EMT转化。
本发明具体实施例中所涉及的试剂除特别说明外,均为本领域技术人员公知的常规试 剂。本发明中所述的室温为25±5℃。
[1]NATD基因水平的检测:
为了验证NATD在肺癌病人肿瘤组织中的表达水平,我们收集了29例肺癌病人的RNA和肿瘤组织切片样本,采用Real-time PCR技术在29例非小细胞肺癌组织和相应的正常组织中检测了NATD mRNA表达情况。结果见图1。数据显示为Mean±SD,独立实验重复3次,采用独立样本t检验方法,*P<0.05,**P<0.01。结果显示有69%(20/29)的肺癌病人肿瘤组织中的NATD mRNA的表达水平均高于其正常组织。
具体实施步骤如下:
a)收集病人正常组织和肿瘤组织,切成小块用液氮研磨,加入1ml TrizolReagent溶解。
b)加入200μl氯仿,震荡15秒后,室温静置2-3分钟,12000g,4℃离心15分钟。
c)吸取上层水相,加入500μl异丙醇,室温静置10分钟,12000g,4℃离心10分钟。
d)倒去上清,加入1ml 70%乙醇,7500g,4℃离心5分钟。
e)倒去上清,晾干后加入20μl DEPC水溶解RNA,测定浓度。
f)进行逆转录反应得到相应的cDNA。逆转录的反应体系包括4μl 5×PrimeScriptBuffer、1μl PrimeScript RT Enzyme Mix I、1μl Oligo dT Primer(50μΜ)、1μl Random6mers(100μΜ)(Takara公司)、1μg总RNA,最后用去离子水补足至20μl体系。反转录反应条件为37℃孵育15分钟,85℃反应5秒。
g)使用NATD基因的特定引物进行实时荧光定量PCR来检测NATD基因的表达水平。实时荧光定量PCR反应体系包括10μl FastStart Universal SYBR Green Master(Roche公司)、0.25μl 50μΜ正向引物、0.25μl 50μΜ反向引物、7.5μl去离子水、2μl cDNA模板。仪器使用的是Corbett Roter-Gene 6000荧光定量PCR仪,反应条件是:95℃10分钟进行1个循环→95℃15秒、60℃20秒、72℃20秒进行45个循环。反应结束后使用仪器自带软件分析NATD基因表达水平。
NATD基因实时荧光定量PCR引物:正向引物:5’-TACCTCATCGCGTGGGAAAAC-3’;反向引物:5’-GGATCTGTATGAGGAACTTCC-3’。
内参GAPDH基因实时荧光定量PCR引物:正向引物:5’-GAAGGTGAAGGTCGGAG-3’;反向引物:5’-GAAGATGGTGATGGGATTTC-3’。
[2]anti-NATD和anti-N-α-ac-H4两种特异性抗体的制备和检测:
为了验证NATD蛋白在肺癌病人肿瘤组织中的表达水平和生物活性,我们分别制备了anti-NATD和anti-N-α-ac-H4两种特异性抗体。图2、图3Western blot分别验证了两种抗体的特异性。
具体实施例及步骤如下:
(1)NATD抗体的制备和检测
a)我们首先构建NATD原核表达载体。使用pGEX-6p-1GST表达载体,克隆构建方法见参考文献19。PCR引物如下:
Forward primer:5’-atggggagaaagtcaagcaa
Reverse primer:5’-tcagtggcagcagccaccac
b)挑克隆进行测序,确定正确的pGEX-6p-1-NATD载体。
c)IPTG诱导BL21大肠杆菌表达纯化后得到GST-NATD。
d)使用Prescission酶切除GST标签得到原核NATD。
e)将经原核表达纯化得到的NATD蛋白交给金斯瑞公司进行多克隆抗体的制备。
f)使用该抗体进行Western blot检测原核表达的NATD蛋白。
Western blot具体实施步骤如下:
1)用BSA法测定蛋白质浓度。
2)取相同质量的蛋白量(体积×蛋白质浓度),并加入5×电泳加样缓冲液。
3)100℃煮样5分钟。
4)上样,电泳。90V,大约15-20分钟,样品中的溴酚蓝指示剂到达分离胶后,电压调至120V,电流过程中保持电压恒定。当溴酚蓝指示剂迁移至距前沿1-2cm处即停止电泳,约1-2小时。
15%的分离胶和5%的浓缩胶:
5)电转膜仪转膜(24V 35分钟)。
6)牛奶封闭。5%牛奶(5g奶粉+100mL PBST),室温,摇床上封闭1小时。
7)孵育NATD一抗(1/1000;Millipore,#05-690)及GAPDH内参一抗(1/20000;MBL,#M171-3),4℃,过夜。
8)PBST漂洗,4次,每次10分钟,室温摇床。
9)孵育与一抗相对应种属的二抗(1/50000;Sigma,#A2304),室温摇床2小时。
10)PBST漂洗,4次,每次10分钟,室温摇床。
11)加ECA发光液反应1-2分钟,显影,定影,观察结果(见图2)。上图:NATD蛋白进行Western blot实验,验证NATD抗体。下图:纯化NATD蛋白电泳考马斯亮蓝染色。GAPDH作为内参。结果表明该抗体是NATD特异性的抗体。
(2)N-α-ac-H4抗体的制备和检测
a)合成N-α-ac-H4(1-14)多肽(SGRGKGGKGLGKGG)(由南京金斯瑞生物科技技术有限公司合成)
b)N-α-ac-H4抗体委托金斯瑞公司使用合成的N-α-ac-H4(1-14)多肽为抗原进行制备。
C)Western blot检测来鉴定此抗体(图3),具体实验步骤及条件在以上具体实施例中有详细描述。图3中右图是使用该抗体和免疫前血清分别作为一抗进行Western blot实验检测细胞内的N-α-ac-H4的含量。图3中左图用H4(1-14)肽段和N-α-ac-H4(1-14)肽段进行Western blot实验,结果表明该抗体可以特异性检测H4的N端乙酰化。
[3]非小细胞肺癌肿瘤组织中NATD蛋白免疫组化分析
图4免疫组化检测NATD蛋白在肺癌新鲜组织标本中的表达情况,IgG和匹配的正常组织作为对照。具体实施步骤如下:
a)收集病人的肿瘤组织,福尔马林固定后石蜡包埋,使用切片机得到石蜡切片。
b)石蜡切片脱蜡:脱蜡前应将组织切片在室温中放置60分钟或60℃恒温箱中烘烤20分钟。然后按顺序进行二甲苯I 10分钟→二甲苯II 5分钟,酒精梯度:100%5分钟→90%5分钟→70%5分钟→50%5分钟,PBS洗5分钟,3次。
c)过氧化氢封闭内源性过氧化物酶:3%H2O2(V/V),室温10分钟。PBS洗5分钟,3次。
d)10%(W/V)正常羊血清室温封闭20分钟后加anti-NATD一抗,室温孵育2小时。PBS洗5分钟,3次。
e)加一抗相对应种属的二抗(1/50000;Sigma,#A2304)室温孵育1小时。PBS洗5分钟,3次。
f)DAB显色,终止后用自来水冲洗。苏木精复染。
g)梯度酒精脱水:50%1分钟→70%1分钟→90%1分钟→100%1分钟。二甲苯I和II各5分钟。
h)中性树脂封片,显微镜下观察,棕色程度表示NATD的蛋白水平。免疫组化结果表明有79%(23/29)的病例均检测到NATD的高水平表达,与Q-RT-PCR检测的结果基本一致。
[4]对肺癌病人数据进行统计分析,得出NATD表达水平与肺癌病人存活率成负相关
在证实了NATD在肺癌组织中高表达之后,我们通过Kaplan-Meier plotter数据库查询了NATD表达水平与肺癌病人存活率的关系。我们对数据库中1405例肺癌病人数据进行统计分析(见图5),结果显示NATD的表达水平与肺癌病人的存活率成负相关,可用作肺癌预后的指标。
[5]构建NATD knockdown的非小细胞肺癌稳定细胞株,检测到癌细胞的迁移能力受损
为了探明NATD在肺癌细胞中的作用,我们使用shRNA慢病毒系统构建了NATDknockdown H1299稳定细胞株。检测了NATD表达水平(见图6),然后分别进行了细胞划痕实验和Transwell实验来检测癌细胞的迁移能力(见图7)。结果表明,NATD表达水平下降后导致H1299细胞的迁移能力显著降低。
具体实施实例及步骤如下:
(1)NATD knockdown的非小细胞肺癌细胞H1299稳定细胞株的构建和检测
a)我们使用pLL3.7shRNA慢病毒系统构建NATD knockdown H1299稳定细胞株。H1299从上海细胞生物所购得,在含10%FCS的DMEM培养液(V/V,Invitrogen)中培养。NATD的siRNA靶点序列遵照生产厂家的建议插入到pLL3.7lentiviral质粒的XhoI/HpaI位点(American Type Culture Collection,USA)。详细步骤见参考文献19。shRNA靶点:
NATD shRNA1:GATGAAGAAGGTTATGTTA
NATD shRNA2:GGTTGAATGTCTCCATTGA
b)利用anti-NATD抗体Western blot检测NATD knockdown细胞株(NATD-KD1和NATD-KD2)中NATD蛋白的表达水平(见图6左图)。Western blot具体实验步骤及条件在以上具体实施例中有详细描述。结果表明,NATD-KD1和NATD-KD2H1299细胞中NATD的蛋白水平大大低于Scr对照组,Tubulin作为内参。
c)利用anti-N-α-ac-H4抗体Western blot检测了Scr细胞和NATD-KD细胞中NATD的催化产物N-α-ac-H4的水平(见图6右图),发现在NATD knockdown的H1299细胞中,N-α-ac-H4的水平随着NATD的下调而明显降低。以上数据表明NATD表达水平的下降直接导致了组蛋白H4N端α-乙酰化水平的降低。
(2)细胞划痕实验表明NATD knockdown的肺癌细胞的迁移能力受损
随后我们用细胞划痕实验检测了NATD表达水平被抑制后对H1299细胞迁移能力的影响(图7上)。具体实施步骤如下:
a)先用marker笔在6孔板背后均匀的画横线,间隔约1cm,横穿过孔,每孔至少穿过5条线。
b)在划好线的6孔板中接种约5×105细胞,具体数量因细胞而异,以过夜细胞能够长满为准。
c)第二天细胞铺满后,用白色枪头划直线,每孔划3道直线。
d)用PBS清洗细胞3次,然后加入无血清培养基放入孵箱培养。
e)在0小时,12小时,18小时,24小时不同时间点拍照,参照marker笔画的线拍同一位置的细胞划痕在不同时间点的变化。如图7上图所示,NATD knockdown的肺癌细胞的迁移能力受损。
(3)Transwell实验证实NATD knockdown的肺癌细胞的迁移能力受损
a)实验之前先将24-well Transwell chamber(8μm孔径Corning)和所有细胞培养试剂置于37℃温育。
b)将处于对数生长期的待测细胞用胰酶消化下来,PBS洗涤一次,用无血清培养基重悬细胞,计数,调整细胞浓度为4×105/ml。
c)在24孔板Transwell chamber下室加入700μl含10%FBS的完全培养基,上室加入100μl细胞悬液(4万个细胞),放入孵箱继续培养12小时。
d)取出24孔板,将chamber放入PBS中洗去培养基,注意动作要轻柔不要把细胞冲下来,然后放入含有1ml甲醇的孔中室温固定细胞30分钟。
e)取出chamber,用PBS洗一次,然后放入含有1ml 0.1%结晶紫染液的孔中染色30分钟。
f)染色结束后取出chamber用PBS洗一次,吸去上室液体,然后用棉签小心擦去上室底部膜表面上的细胞。
g)将chamber放入24孔板中置于显微镜下观察迁移到膜下层的细胞数量,统计结果。如图7下图所示,Transwell实验证实NATD knockdown的肺癌细胞的迁移能力受损。
[6]体内接种NATD knockdown的肺癌细胞,检测到肿瘤的侵袭转移能力显著降低
a)为了检测在体内动物模型中NATD对肺癌细胞侵袭迁移能力的影响,我们分别将荧光标记的对照(Scr,scramble)和NATD knockdown(NATD KD)的A549肺癌细胞经静脉注射到SCID小鼠。
b)生物荧光显像监测肿瘤在接种后第1,4,7,14和28天的生长情况(图8)。生物荧光显像仪具体操作遵循厂家的操作手册。实验结果表明,NATD knockdown的A549肺癌细胞的侵袭转移能力明显下降,即使在早期也能检测到(见图8上)。随着肿瘤的生长,继续观察到NATD knockdown的A549肺癌细胞的侵袭转移能力一直明显低于对照。到28天,接种NATDknockdown的A549肺癌细胞的侵袭转移圈和对照相比,下降了3倍(见图8下)。本实施实例结果表明,在体内,抑制NATD的表达水平能显著降低肺癌细胞的侵袭和迁移能力。
[7]NATD对EMT过程中关键分子基因表达的调节
EMT过程对于肿瘤细胞的迁移具有重要的影响。通过免疫荧光(图10)、Q-RT-PCR(图11)和Western blot(图12)对EMT过程中关键分子的基因和蛋白表达水平的检测表明,NATD对于EMT过程具有重要的调节作用。NATD的下调导致了EMT重要转录因子Slug和Twist表达水平的降低,标记蛋白N-cadherin和Vimentin表达的减少以及E-cadherin表达的增多,从而抑制了EMT转化过程,降低了H1299细胞的迁移能力。
具体实施实例及步骤如下:
(1)免疫荧光检测表明NATD表达水平的下降对EMT过程标记蛋白的水平带来了影响
我们通过免疫荧光检测E-cadherin和N-cadherin这两个EMT标记蛋白的变化(图10),详细步骤及条件参见参考文献19。图10上图:免疫荧光实验检测Scr细胞和NATD-KD细胞表面E-cadherin(red)的水平。下图:免疫荧光实验检测Scr细胞和NATD-KD细胞表面N-cadherin(red)的水平。细胞核(blue)用DAPI进行染色。结果发现上皮状态的细胞表面标记分子E-cadherin增多,间充质状态的标记分子N-cadherin减少,说明NATD表达水平的下降对EMT过程标记蛋白的水平带来了影响。
(2)Q-RT-PCR检测表明NATD表达水平的下降可以抑制EMT转换过程
我们进一步选取了几个重要的EMT过程中的相关转录因子和标记蛋白,使用Q-RT-PCR来检验它们mRNA的表达水平。Q-RT-PCR具体步骤在以上实施例中有详细描述。使用如下表所示特异性引物来检测对照Scr细胞和NATD-KD细胞中Slug、Twist、Snail、E-cadherin、N-cadherin和Vimentin的mRNA水平:
Q-RT-PCR引物:
Forward primer Reverse Primer
NATD TGACAGATGACCGAGCCTG CCTTGCTTTCCAACTGCACT
Actin CTGGAACGGTGAAGGTGACA AAGGGACTTCCTGTAACAATGCA
Slug ATACCACAACCAGAGATCCTCA GACTCACTCGCCCCAAAGATG
Twist GCCTAGAGTTGCCGACTTATG TGCGTTTCCTGTTAAGGTAGC
E-cadherin TTGCACCGGTCGACAAAGGAC TGGAGTCCCAGGCGTAGACCAA
N-cadherin AGTGAGCCTGCAGATTTTAAGGTGGATG CACTTGCCACTTTTCCTGGGTCTCTT
Snail AAGATGCACATCCGAAGCC CGCAGGTTGGAGCGGTCAGC
Vimentin CCACCAGGTCCGTGTCCTCGT CGCTGCCCAGGCTGTAGGTG
结果如图11所示。数据用平均值±标准误表示,#P>0.05,**P<0.01。结果表明NATD表达水平的下降导致了多个EMT过程重要分子的变化,转录因子Slug、Twist表达水平降低,标记分子N-cadherin、Vimentin表达下降,E-cadherin表达上升。
(3)Western blot检测表明NATD表达水平的下降可以抑制EMT转换过程
Westwen blot检测Scr细胞和NATD-KD细胞中E-cadherin、N-cadherin、Slug、Vimentin(EMT过程相关的转录因子和标记蛋白)的蛋白水平。GAPDH作为内参(见图12)。
具体实施步骤如下:
a)收集组织培养的癌细胞及对照细胞,用PBS清洗后重新离心收集。
b)加1mL RAPI蛋白裂解液裂解细胞,然后将裂解液移入到1.5mL离心管,冰上裂解30分钟。
c)14000rpm,4℃,10分钟,收集蛋白上清进行Westwen blot或-20℃保存。
d)Westwen blot检测。具体步骤在以上具体实施例中有详细描述。所用特异性抗体来源:E-cadherin(BD),N-cadherin(Sino Biological Inc.),Slug(Abgent),Vimentin(BD),GAPDH(MBL)。
图12结果显示,NATD下调以后导致了E-cadherin的上调,N-cadherin、Vimentin和Slug的下调(见图12)。这些结果表明NATD表达水平的下降可以抑制EMT转换过程。
[8]NATD催化活性位点的确定
为了分析NATD的催化活性位点,我们使用突变技术截去了催化结构域中心的4个氨基酸残基RRKG(见图13),构建了没有催化活性的NATD(简写为NATDΔ)的真核和原核表达载体。体外组蛋白底物乙酰化实验验证了缺失的RRKG对NATD乙酰基转移酶活性的必需性(见图14),并用N-α-ac-H4抗体对体外乙酰化反应的产物进行了验证(图15)。以H1299肺癌细胞中提取的组蛋白为底物进行体外乙酰化反应,证实了NATD对细胞内组蛋白的催化作用(见图16)。这些结果确定了NATD的催化活性位点为高度保守的RxxGxG乙酰辅酶A结合基序。
具体实施实例及步骤如下:
(1)NATD序列比对预测NATD催化活性位点
如图13所示,通过对人、鼠以及其他生物NATD蛋白的氨基酸序列进行比较分析,我们发现了高度保守的RxxGxG乙酰辅酶A结合基序。
(2)NATDΔ突变构建和得到原核表达
a)我们设计了以下PCR引物构建催化结构域部分缺失的NATDΔ,:
Forward primer:5’-ttggaaagcaaggtgctggggaagttcctc-3’,
Reverse primer:5’-gaggaacttccccagcaccttgctttccaa-3’。
b)以在以上具体实施例中所构建的pGEX-6P-1-NATD质粒作为模板使用以上引物进行PCR扩增,体系如下:
按照以下条件PCR扩增:
c)PCR结束后冰浴5分钟,然后置于室温.
d)加入DPN I酶37℃孵育1小时以降解带有甲基化修饰的原始质粒。
e)酶切完毕后转化感受态BL21大肠杆菌,涂平板.
f)表达和纯化,得到原核表达的NATDΔ蛋白。表达和纯化的具体步骤在以上具体实施例中有详细表述。
(3)体外底物乙酰化反应
a)为了验证缺失的RRKG对NATD乙酰基转移酶活性的必需性,我们合成了组蛋白H4(1-31)。
b)在该肽段C端加上生物素标记。
c)用原核表达的NATD、NATDΔ蛋白分别与H4(1-31)-Biotin进行体外乙酰化反应。
体外乙酰化反应体系:
2×Reaction buffer:
100mM Tris-HCl pH8.0
0.2mM EDTA
20%甘油
2mM DTT
各成分在EP管中混匀后置于37℃水浴反应1小时。
d)反应结束后用Streptavidin珠子将H4(1-31)肽段沉降下来。
e)经过洗涤后通过液体闪烁仪测定放射性强度,结果见图14。左图:以H4(1-31)-Biotin多肽为底物,3H乙酰辅酶A为乙酰基供体进行体外乙酰化反应,检测NATD和NATDΔ蛋白的催化活性。右图:原核表达的NATD和NATDΔ蛋白染色图。结果表明原核表达的野生型NATD具有催化活性,而NATDΔ则没有催化活性。
(4)Western blot验证了体外乙酰化反应的产物
我们用anti-N-α-ac-H4特异性抗体Western blot检测了体外乙酰化反应的产物(见图15)。Western blot具体实验步骤在以上实施例中有详细表述。图15上图:Westernblot实验检测体外乙酰化反应的产物。下图:反应底物H4(1-31)-Biotin多肽染色图。结果与之前放射性强度测试的结果一致:原核表达的野生型NATD具有催化活性产生乙酰化组蛋白产物,而NATDΔ则没有催化活性。
(5)酸抽提法提取肺癌细胞中组蛋白作为底物,进行体外乙酰化反应
以H1299肺癌细胞提取的组蛋白为底物进行体外乙酰化反应,证实了NATD对肺癌细胞内组蛋白的催化作用(见图16)。
具体实施步骤如下:
a)收集细胞,用冷的PBS洗涤细胞两次,PBS和其他反应溶液需加入5mM丁酸钠以防止组蛋白被去乙酰化。
b)用TEB(0.5%TritonX 100(V/V),2mM PMSF,0.02%NaN3)(W/V)溶液裂解细胞,浓度约为107cells/ml TEB。
c)冰上裂解细胞10分钟。
d)6500×g,4℃离心10分钟收集细胞核,丢弃上清。
e)用TEB溶液洗涤细胞核,离心。
f)用0.2N HCl重悬细胞核,浓度约为4×107cells/ml HCl,4℃过夜。
g)6500×g,4℃离心10分钟,上清为酸提取的组蛋白,BCA试剂盒测定蛋白浓度,分装后保存于-20℃
h)用提取的肺癌细胞组蛋白与原核表达的NATD和NATDΔ进行体外乙酰化反应。具体反应条件在以上实施例中有详细表述。
i)反应结束后进行SDS-PAGE电泳。
j)待电泳结束后,将胶放入干胶固定液(10%醋酸溶液)中固定10分钟。
k)倒去液体,然后放入到20ml Amplify溶液中,避光静置半小时放大信号。
l)将处理过的胶放在滤纸上,其上盖上一层同位素隔离玻璃纸,放入干胶仪中干胶,干胶条件为80℃2小时。
m)将所得的干燥后的胶放入暗盒中,放入胶片后,置于-80℃冰箱曝光。结果见图16。上图:以酸提取的H1299细胞组蛋白为底物,3H乙酰辅酶A为乙酰基供体进行体外乙酰化反应,检测NATD和NATDΔ蛋白的催化活性。下图:反应底物H1299细胞组蛋白染色图。结果表明,H1299细胞提取的组蛋白可以被原核表达的NATD催化发生N端α-乙酰化,而NATDΔ则没有乙酰化酶活性。
[9]NATD可以通过调节Slug基因的表达水平参与EMT过程的调控
(1)构建NATDΔ过表达的H1299稳定细胞株
为了验证NATD对于EMT过程的调节作用,我们用MSCV逆转录病毒体系构建了缺失催化活性的NATDΔ过表达的H1299稳定细胞株。具体步骤参见参考文献19
(2)实时定量PCR方法检测NATDΔ过表达的肺癌细胞株中Slug的表达
接着,我们用实时定量PCR方法检测了对照Scr细胞和所构建的NATDΔ过表达的H1299稳定细胞株中NATD和Slug的mRNA水平。实时定量PCR的具体步骤和所用Slug引物在以上实施例中有详细描述。结果表明,NATDΔ过表达的H1299稳定细胞株中Slug的表达受到了抑制**P<0.01(图17)。这种NATDΔ过表达对Slug产生的抑制作用与NATD-KD细胞株所得结果一致,说明NATD的催化活性对于其调节Slug的表达是必需的。
(3)ChIP实验检测NATD knockdown对Slug启动子区域组蛋白H4的影响
随后我们进行了ChIP实验检测NATD knockdown H1299细胞中Slug启动子区域组蛋白H4末端一些主要组蛋白标记的水平(图18)。ChIP实验具体步骤在参考文献19中有详细描述。所用组蛋白H4S1p,H4R3me2s和H4K5ac的特异性抗体由Abcam购得,H4R3me2a抗体购自Abcam公司,IgG作为正常对照。沉淀后的DNA用实时定量PCR方法检测,具体步骤在以上实施例中有详细描述。ChIP实验所用Slug启动子区域的引物如下:
ChIP引物
Forward primer Reverse Primer
Slug-pro CTTCCCCCTTCCTTTTTCAA ACGCTCTCTGGGAGCTAGG
图18所示ChIP实验检测Scr细胞和NATD-KD细胞中Slug启动子区域N-α-ac-H4、H4S1p、H4R3me2a、H4R3me2s和H4K5ac标记的水平。数据用平均值±标准误表示,#P>0.05,*P<0.05,**P<0.01。结果发现,NATD和NATDΔ都结合于Slug启动子区域,在NATD knockdown的细胞中Slug启动子上H4S1p的水平显著上调。
(4)Western blot实验验证NATD knockdown对Slug启动子区域组蛋白H4的影响
随后我们用Western blot实验验证了Scr细胞和NATD-KD细胞中N-α-ac-H4、H4S1p、H4R3me2a、H4R3me2s、H4K5ac、H4K8ac和H4K12ac标记的水平。H4作为内参。Westernblot实验具体实验步骤及条件在以上实施例中有详细描述。结果发现,NATD knockdown的细胞中Slug启动子上H4S1p的水平显著上调,该结果与ChIP实验的检测结果一致。由于H4S1p通常被认为与基因表达的抑制相关,此结果表明Slug基因表达受到NATD的表观遗传调控。
综合以上结果,本发明表明NATD可以通过调控Slug基因的表达水平参与EMT过程的调控,进而调控癌细胞的侵袭和转移,并且这种作用是依赖NATD的乙酰化酶活性的。NATD催化Slug启动子上组蛋白H4发生N端α-乙酰化从而提高Slug的表达,使细胞发生EMT转化。
这预示可以通过对NATD乙酰化催化位点的阻断、对NATD与Slug启动子区域的结合位点的阻断、以及对Slug启动子区域组蛋白的调控来抑制NATD和Slug的活性、作用、及表达量,进而抑制非小细胞肺癌的侵袭和转移,为非小细胞肺癌的治疗提供了新的参考依据。
参考文献:
1.Chambers AF,Groom AC,MacDonald IC.Dissemination and growth ofcancer cells in metastatic sites.Nature reviews Cancer 2002;2(8):563-72.
2.Creighton CJ,Chang JC,Rosen JM.Epithelial-mesenchymal transition(EMT)in tumor-initiating cells and its clinical implications in breastcancer.Journal of mammary gland biology and neoplasia 2010;15(2):253-60.
3.Loboda A,Nebozhyn MV,Watters JW,et al.EMT is the dominant programin human colon cancer.BMC medical genomics 2011;4:9.
4.Brabletz T.EMT and MET in metastasis:where are the cancer stemcellsCancer cell 2012;22(6):699-701.
5.Shih JY,Yang PC.The EMT regulator slug and lung carcinogenesis.Carcinogenesis 2011;32(9):1299-304.
6.Tsai JH,Donaher JL,Murphy DA,Chau S,Yang J.Spatiotemporalregulation of epithelial-mesenchymal transition is essential for squamouscell carcinoma metastasis.Cancer cell 2012;22(6):725-36.
7.Burk U,Schubert J,Wellner U,et al.A reciprocal repression betweenZEB1 and members of the miR-200 family promotes EMT and invasion in cancercells.EMBO reports2008;9(6):582-9.
8.Wellner U,Schubert J,Burk UC,et al.The EMT-activator ZEB1 promotestumorigenicity by repressing stemness-inhibiting microRNAs.Nature cellbiology 2009;11(12):1487-95.
9.Vandewalle C,Comijn J,De Craene B,et al.SIP1/ZEB2 induces EMT byrepressing genes of different epithelial cell-cell junctions.Nucleic acidsresearch 2005;33(20):6566-78.
10.Lander R,Nordin K,LaBonne C.The F-box protein Ppa is a commonregulator of core EMT factors Twist,Snail,Slug,and Sip1.The Journal of cellbiology 2011;194(1):17-25.
11.Ferrari-Amorotti G,Fragliasso V,Esteki R,et al.Inhibitinginteractions of lysine demethylase LSD1 with snail/slug blocks cancer cellinvasion.Cancer research2013;73(1):235-45.
12.Driessen HP,de Jong WW,Tesser GI,Bloemendal H.The mechanism of N-terminal acetylation of proteins.CRC critical reviews in biochemistry 1985;18(4):281-325.
13.Jornvall H.Acetylation of Protein N-terminal amino groupsstructural observations on alpha-amino acetylated proteins.Journal oftheoretical biology 1975;55(1):1-12.
14.Persson B,Flinta C,von Heijne G,Jornvall H.Structures of N-terminally acetylated proteins.European journal of biochemistry/FEBS 1985;152(3):523-7.
15.Polevoda B,Sherman F.N-terminal acetyltransferases and sequencerequirements for N-terminal acetylation of eukaryotic proteins.Journal ofmolecular biology 2003;325(4):595-622.
16.Polevoda B,Hoskins J,Sherman F.Properties of Nat4,an N(alpha)-acetyltransferase of Saccharomyces cerevisiae that modifies N termini ofhistones H2A and H4.Molecular and cellular biology 2009;29(11):2913-24.
17.Hole K,Van Damme P,Dalva M,et al.The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD)is conserved from yeast and N-terminallyacetylates histones H2A and H4.PloS one 2011;6(9):e24713.
18.Song OK,Wang X,Waterborg JH,Sternglanz R.An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues ofhistones H4 and H2A.The Journal of biological chemistry 2003;278(40):38109-12.
19.Ju J,Wang Y,Liu R,Zhang Y,Xu Z,Wang Y,Wu Y,Liu M,Cerruti L,Zou F,Ma C,Fang M,Tan R,Jane SM,Zhao Q.Human fetal globin gene expression isregulated by LYAR.,Nucleic Acids Res.2014;42(15):9740-52.

Claims (3)

1.诊断标志物的引物或特异性抗体在制备非小细胞肺癌辅助诊断试剂盒或生物芯片中的应用,其特征在于:该标志物为NATD或者NATD和Slug的组合,所述的NATD为NATD基因或蛋白,所述的Slug为Slug基因或蛋白;
该引物为所述NATD基因的实时荧光定量PCR引物和所述Slug基因的实时荧光定量PCR引物;所述NATD基因的实时荧光定量PCR引物:正向引物:5’-TACCTCATCGCGTGGGAAAAC-3’;反向引物:5’-GGATCTGTATGAGGAACTTCC-3’; 所述Slug基因的实时荧光定量PCR引物:正向引物:ATACCACAACCAGAGATCCTCA;反向引物:GACTCACTCGCCCCAAAGATG;
该特异性抗体为用于检测NATD蛋白的表达水平和生物活性的anti-NATD和anti-N-α-ac-H4,以及Slug蛋白的特异性抗体。
2. NATD基因或蛋白的活性及表达量的抑制物在制备非小细胞肺癌侵袭和转移的抑制物中的应用,其特征在于该抑制物为NATD基因、NATD 蛋白产物及其乙酰化催化活性的抑制物;抑制物为包括抗体、shRNA和 miRNA 抑制物中的至少一种。
3.根据权利要求2所述的应用,其特征在于该抑制物特异性阻断 NATD 的乙酰辅酶A结合位点。
CN201510856207.3A 2015-11-30 2015-11-30 一种与非小细胞肺癌辅助诊断相关的标志物及其应用 Active CN105368853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510856207.3A CN105368853B (zh) 2015-11-30 2015-11-30 一种与非小细胞肺癌辅助诊断相关的标志物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510856207.3A CN105368853B (zh) 2015-11-30 2015-11-30 一种与非小细胞肺癌辅助诊断相关的标志物及其应用

Publications (2)

Publication Number Publication Date
CN105368853A CN105368853A (zh) 2016-03-02
CN105368853B true CN105368853B (zh) 2018-12-25

Family

ID=55371482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510856207.3A Active CN105368853B (zh) 2015-11-30 2015-11-30 一种与非小细胞肺癌辅助诊断相关的标志物及其应用

Country Status (1)

Country Link
CN (1) CN105368853B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406782A (zh) * 2016-05-11 2019-03-01 卢氏实验室公司 一种快速诊断和监控肺癌的免疫层析检测条及其制备方法
US11807908B2 (en) 2016-05-25 2023-11-07 Shanghai Biomedical Laboratory Co., Ltd. Genetic markers used for identifying benign and malignant pulmonary micro-nodules and the application thereof
CN107435062B (zh) * 2016-05-25 2020-10-20 上海伯豪医学检验所有限公司 甄别肺部微小结节良恶性的外周血基因标志物及其用途
CN107827854B (zh) * 2017-11-27 2020-11-06 三峡大学 一种标记恶性肿瘤细胞的生物标志物,制备方法及其用途
CN108660212B (zh) * 2018-05-25 2021-04-27 武汉科技大学 Wdr1基因在制备非小细胞肺癌治疗和检测产品中的应用
CN111388683B (zh) * 2020-04-21 2021-10-15 首都医科大学附属北京胸科医院 Anxa6表达抑制剂在制备治疗肺癌的药物中的应用
CN113075408A (zh) * 2021-03-16 2021-07-06 上海市同仁医院 一种利用组蛋白作为内参的免疫组织化学定量方法
CN115993455A (zh) * 2022-12-29 2023-04-21 南京医科大学康达学院 Rna结合蛋白nova2作为非小细胞肺癌转移标志物的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013119923A1 (en) * 2012-02-09 2013-08-15 The Regents Of The University Of Michigan Different states of cancer stem cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013119923A1 (en) * 2012-02-09 2013-08-15 The Regents Of The University Of Michigan Different states of cancer stem cells

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Liver Patt1 deficiency protects male mice from age-associated but not high-fat diet-induced hepatic steatosis;YangLiu et al.;《Journal of lipid research》;20120109;第53卷;第358-367页 *
Patt1, a novel protein acetyltransferase that is highly expressed in liver and downregulated in hepatocellular carcinoma, enhances apoptosis of hepatoma cells;ZhenLiu et al.;《The International Journal of Biochemistry & Cell Biology》;20090818;第41卷;第2530页,第2532页,第2533页,第2536页 *
Patt1, a novel protein acetyltransferase that is highly expressed in liver and downregulated in hepatocellular carcinoma, enhances apoptosis of hepatoma cells;ZhenLiu et al.;《The International Journal of Biochemistry & Cell Biology》;20090818;第41卷;第2530页,第2532页,第2533页,第2536页右栏第2段 *
Protein N-terminal acetyltransferases in cancer;TV Kalvik et al.;《Oncogene》;20120305;第32卷;第269-276页 *
Slug promotes hepatocellular cancer cell progression by increasing sox2 and nanog expression;Xiulan Zhao et al.;《Oncology reports》;20141022;第33卷(第1期);第2060页,2067页 *
Snail and Slug Mediate Radioresistance and Chemoresistance by Antagonizing p53-Mediated Apoptosis and Acquiring a Stem-Like Phenotype in Ovarian Cancer Cells;Nawneet K. Kurrey et al.;《Stem Cells》;20090618;第27卷;第2060页,第2067页 *
The EMT regulator slug and lung carcinogenesis;Jin-Yuan Shih et al.;《Carcinogenesis》;20110118;第32卷(第9期);第1299-1304页 *
The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4;Kristine Hole et al.;《PloS one》;20110915;第6卷(第9期);第1-11页 *
The molecular basis for histone H4-and H2A-specific amino-terminal acetylation by NatD;Robert S. Magin et al.;《Structure》;20150203;第23卷;第332-341页 *

Also Published As

Publication number Publication date
CN105368853A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN105368853B (zh) 一种与非小细胞肺癌辅助诊断相关的标志物及其应用
Han et al. Fibronectin regulates anoikis resistance via cell aggregate formation
Tang et al. GPR116, an adhesion G-protein–coupled receptor, promotes breast cancer metastasis via the Gαq-p63RhoGEF-Rho GTPase pathway
Simpkins et al. Clinical and functional significance of loss of caveolin‐1 expression in breast cancer‐associated fibroblasts
CN102421919B (zh) 采用Axl作为上皮‑间质转化的生物标志物的方法
Tang et al. Long noncoding RNA DCST1-AS1 promotes cell proliferation and metastasis in triple-negative breast cancer by forming a positive regulatory loop with miR-873-5p and MYC
CN103890587A (zh) 用于治疗和诊断癌症的方法和组合物
Grzegorek et al. Immunohistochemical evaluation of pulmonary lymphangioleiomyomatosis
CN103436627A (zh) 一种恶性乳腺癌干细胞的筛查试剂盒
Yu et al. PSME3 promotes TGFB1 secretion by pancreatic cancer cells to induce pancreatic stellate cell proliferation
Yu et al. ERBB2 gene expression silencing involved in ovarian cancer cell migration and invasion through mediating MAPK1/MAPK3 signaling pathway.
Wang et al. Exosomal CD44 transmits lymph node metastatic capacity between gastric cancer cells via YAP-CPT1A-mediated FAO reprogramming
Chanda et al. Anterior gradient protein-2 is a regulator of cellular adhesion in prostate cancer
Xie et al. Discoidin domain receptor 1 activity drives an aggressive phenotype in bladder cancer
Scholz et al. Tspan-1 is a tetraspanin preferentially expressed by mucinous and endometrioid subtypes of human ovarian carcinomas
Cai et al. Expression of MLN64 influences cellular matrix adhesion of breast cancer cells, the role for focal adhesion kinase
CN109266743B (zh) 一种癌症标志物及其用途
Xu et al. BRCA1 mutation leads to deregulated Ubc9 levels which triggers proliferation and migration of patient-derived high grade serous ovarian cancer and triple negative breast cancer cells
CN103923212A (zh) Ehd2抗体及其在制备乳腺癌免疫组化检测试剂中的应用
CN104138598B (zh) 预防猪鼻支原体感染细胞的方法及制剂
CN110172462A (zh) 一种对肿瘤的发生和发展具有促进作用的基因及其表达产物和应用
Xu et al. Retracted: Suppression of BMX‐ARHGAP fusion gene inhibits epithelial‐mesenchymal transition in gastric cancer cells via RhoA‐mediated blockade of JAK/STAT axis
JP5527573B2 (ja) Mcf7由来細胞
WO2011129427A1 (ja) 癌の診断剤および治療剤
Mittelbronn et al. EGR‐1 is regulated by N‐methyl‐D‐aspartate‐receptor stimulation and associated with patient survival in human high grade astrocytomas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant