CN105367758B - 一种二茂铁基共轭微孔聚合物的制备方法 - Google Patents

一种二茂铁基共轭微孔聚合物的制备方法 Download PDF

Info

Publication number
CN105367758B
CN105367758B CN201510949189.3A CN201510949189A CN105367758B CN 105367758 B CN105367758 B CN 105367758B CN 201510949189 A CN201510949189 A CN 201510949189A CN 105367758 B CN105367758 B CN 105367758B
Authority
CN
China
Prior art keywords
conjugate
ferrocenyl
preparation
methanol
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510949189.3A
Other languages
English (en)
Other versions
CN105367758A (zh
Inventor
刘清泉
李�根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Science and Technology
Original Assignee
Hunan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Science and Technology filed Critical Hunan University of Science and Technology
Priority to CN201510949189.3A priority Critical patent/CN105367758B/zh
Publication of CN105367758A publication Critical patent/CN105367758A/zh
Application granted granted Critical
Publication of CN105367758B publication Critical patent/CN105367758B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/121Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from organic halides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/152Side-groups comprising metal complexes
    • C08G2261/1529Side-groups comprising metal complexes of Fe, Co or Ni
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种二茂铁基共轭微孔高分子材料的制备方法:包括步骤(1)在容器中依次加入构筑单元一5‑15%,构筑单元二10–20%、催化剂0.1–0.5%、分散介质75–85%,惰性气体保护下超声分散30min,填充惰性气体,冷冻,抽气,解冻并循环三次,然后在2h内缓慢升温至65℃,恒温反应72h;(2)反应结束后,过滤,用氯仿,蒸馏水,甲醇,丙酮洗涤四次;(3)用甲醇索氏提取48hr,将产物在70℃真空干燥24hr。本发明采用一步法制备二茂铁基共轭微孔聚合物高分子材料,该材料具有高BET表面积和孔体积、良好的化学稳定性和热稳定性,在吸附,污水处理,催化,分离气体,存储气体,荧光传感方面有潜在的应用价值。

Description

一种二茂铁基共轭微孔聚合物的制备方法
技术领域
本发明属于高分子材料制备领域,具体涉及一种制备二茂铁基共轭微孔聚合物高分子材料的方法。
背景技术
多孔材料具有高比表面积,大的孔体积,好的热稳定性,且在吸附,污水处理,催化,分离气体,存储气体,荧光传感方面有潜在的应用。近年来,科学家已制备了各种有机或无机多孔材料,并且一些已实现工业化。
中国专利104817461 A公布了一种制备树枝状共轭微孔聚合物薄膜,作为荧光探针用于检测TNT气体,Fe3+和苯气体,灵敏度高,重复性好,实用性强。中国专利104817461 A公布了一种制备含氮三齿配体有机聚合物材料,它是一类很好的吸附材料与催化剂负载材料,尤其在贵金属负载上有很好的前景。美国专利2015299380-A1 公开了一种制备可溶性共轭微孔聚合物的制备方法,其微孔体积大于0.1 cm3/g,Brunauer-Emmett-Teller (BET)表面积为500m2/g,它在催化,光催化,超级电容器,光电器件,电极材料,气体分离储存等方面有潜在的应用。
美国专利2014066533-A1公开了一种制备共轭微孔大分子聚合物,它可以掺杂金属元素如钴,锌,铜,铝,铬等。
二茂铁是由Fe2+ 与两个π键配位体环戊二烯离子(C5H5-)形成的夹心化合物,具有良好的稳定性。含二茂铁的聚合物拥有一些单纯金属或有机高分子所不具备的特性,如氧化还原活性,很好的热稳定性,催化性能等优点。目前,尚未有二茂铁基共轭微孔材料的报道。
发明内容
本发明的目的是提供一种制备二茂铁基共轭微孔聚合物的方法,采用零价钯催化直接合成二茂铁基共轭微孔聚合物材料。
本发明采用的技术方案:一种二茂铁基共轭微孔高分子材料的制备方法,包括如下步骤:
(1)在容器中依次加入构筑单元一、构筑单元二、催化剂、分散介质,其中,构筑单元一5-15%,构筑单元二10–20%、催化剂0.1–0.5%、分散介质75–85%,在惰性气体保护下,超声分散30min,填充惰性气体,冷冻,抽气,解冻并循环三次,然后在2h内缓慢升温至65℃,恒温反应72h;
(2)反应结束后,过滤,并用氯仿,蒸馏水,甲醇,丙酮洗涤四次;
(3)用甲醇索氏提取48hr,然后将产物在70℃真空干燥24hr。
所述的构筑单元一为1, 1´-二溴二茂铁。
所述的构筑单元二为1,3,6,8-四乙炔芘、1,3,6,8-四溴芘、1,3,5-三乙炔基苯、四(4-溴苯基)甲烷的一种。
所述的催化剂为四(三苯基膦)钯(0)、碘化亚铜、双(1,5-环辛二烯)合镍(0)、2,2´-联吡啶中的两种。
所述的分散介质为四氢呋喃、二噁烷、N,N-二甲基甲酰胺,均三甲苯、三乙胺、1,5-环辛二烯和二乙胺中的两种或三种。
本发明使采用一步法制备二茂铁基共轭微孔聚合物高分子材料,该材料具有高BET表面积和孔体积、良好的化学稳定性和热稳定性,在吸附,污水处理,催化,分离气体,存储气体,荧光传感方面有潜在的应用价值。
具体实施方式
下面结合具体实验实例对本发明作进一步的描述。
实施例1:
在带有氩气导管、磁性搅拌和冷凝管的100mL的三颈瓶中,加入0.298g 1,3,6,8-四乙炔芘,0.488g 1,1’-二溴二茂铁,25mg四(三苯基膦)钯(0),25mg碘化亚铜,1.5ml N,N-二甲基甲酰胺和1.5ml三乙胺。超声分散30min后,填充氮气,液氮冷冻10min,真空泵抽气30min,解冻2h,循环三次。在2h内缓慢升温至65℃,恒温72h。反应结束后,冷却至室温,过滤,并用氯仿,蒸馏水,甲醇,丙酮依次洗涤三次。用甲醇索氏提取48h。产物在70摄氏度真空干燥箱中干燥24h。产物的比表面积为585m2/g,孔体积为1.2cm3/g。
实施例2:
在带有氩气导管、磁性搅拌和冷凝管的100mL的三颈瓶中,加入0.57g2,2´-联吡啶,1g双(1,5-环辛二烯)合镍(0),0.45ml 1,5-环辛二烯,0.488g 1,1’-二溴二茂铁,0.517g1,3,6,8-四溴芘,36ml四氢呋喃和24mlN,N-二甲基甲酰胺。超声分散30min后,填充氮气,液氮冷冻10min,真空泵抽气30min,解冻2h,循环三次。在2h内缓慢升温至65℃,恒温72h。反应结束后,冷却至室温,过滤,并用氯仿,蒸馏水,甲醇,丙酮依次洗涤三次。用甲醇索氏提取48h。产物在70摄氏度真空干燥箱中干燥24h。产物的比表面积为625m2/g,孔体积为1.35cm3/g。
实施例3:
在带有氩气导管、磁性搅拌和冷凝管的100mL的三颈瓶中,加入0.57g2,2´-联吡啶,1g双(1,5-环辛二烯)合镍(0),0.45ml 1,5-环辛二烯,0.488g 1,1’-二溴二茂铁,0.636g 四(4-溴苯基)甲烷,10ml 均三甲苯,26ml二噁烷和24mlN,N-二甲基甲酰胺。超声分散30min后,填充氮气,液氮冷冻10min,真空泵抽气30min,解冻2h,循环三次。在2h内缓慢升温至65℃,恒温72h。反应结束后,冷却至室温,过滤,并用氯仿,蒸馏水,甲醇,丙酮依次洗涤三次。用甲醇索氏提取48h。产物在70摄氏度真空干燥箱中干燥24h。产物的比表面积为515m2/g,孔体积为1.05cm3/g。
实施例4:
在带有氩气导管、磁性搅拌和冷凝管的100mL的三颈瓶中,加入0.488g 1,1’-二溴二茂铁,0.120g 1,3,5-三乙炔基苯,25mg四(三苯基膦)钯(0),25mg碘化亚铜,1.5ml N,N-二甲基甲酰胺和1.5ml二乙胺。超声分散30min后,填充氮气,液氮冷冻10min,真空泵抽气30min,解冻2h,循环三次。在2h内缓慢升温至65℃,恒温72h。反应结束后,冷却至室温,过滤,并用氯仿,蒸馏水,甲醇,丙酮依次洗涤三次。用甲醇索氏提取48h。产物在70摄氏度真空干燥箱中干燥24h。产物的比表面积为607m2/g,孔体积为1.44cm3/g。
上述实例仅是本发明的较佳实施例子,而并非用以限定本发明,任何熟悉本专业的技术人员在不脱离本发明的技术方案范围内,可利用上述揭示的技术内容做出些许更改或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改,仍属于本发明技术方案的范围。

Claims (3)

1.一种二茂铁基共轭微孔高分子材料的制备方法,其特征在于,包括如下步骤:
在容器中依次加入1, 1´-二溴二茂铁、1, 3, 6, 8-四乙炔芘、催化剂、分散介质,其中,1, 1´-二溴二茂铁5-15%,1, 3, 6, 8-四乙炔芘10–20%、催化剂0.1–0.5%、分散介质75–85%,在惰性气体保护下,超声分散30min,填充惰性气体,冷冻,抽气,解冻并循环三次,然后在2h内缓慢升温至65℃,恒温反应72h;
反应结束后,过滤,并用氯仿,蒸馏水,甲醇,丙酮洗涤四次;
用甲醇索氏提取48h,然后将产物在70℃真空干燥24hr, 获得二茂铁基共轭微孔高分子材料。
2.根据权利要求1所述的二茂铁基共轭微孔高分子材料的制备方法,其特征在于,所述的催化剂为四(三苯基膦)钯(0)、碘化亚铜。
3.根据权利要求1所述的二茂铁基共轭微孔高分子材料的制备方法,其特征在于,所述的分散介质为四氢呋喃、二噁烷、N,N-二甲基甲酰胺、均三甲苯、三乙胺和二乙胺中的两种或三种。
CN201510949189.3A 2015-12-18 2015-12-18 一种二茂铁基共轭微孔聚合物的制备方法 Active CN105367758B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510949189.3A CN105367758B (zh) 2015-12-18 2015-12-18 一种二茂铁基共轭微孔聚合物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510949189.3A CN105367758B (zh) 2015-12-18 2015-12-18 一种二茂铁基共轭微孔聚合物的制备方法

Publications (2)

Publication Number Publication Date
CN105367758A CN105367758A (zh) 2016-03-02
CN105367758B true CN105367758B (zh) 2017-11-28

Family

ID=55370431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510949189.3A Active CN105367758B (zh) 2015-12-18 2015-12-18 一种二茂铁基共轭微孔聚合物的制备方法

Country Status (1)

Country Link
CN (1) CN105367758B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105646853B (zh) * 2016-03-31 2017-07-18 湖南科技大学 磁性微孔二茂铁桥联聚咔唑的制备方法
CN105968348A (zh) * 2016-05-27 2016-09-28 湖南科技大学 卟啉基磁性多孔共轭高分子材料的制备方法
CN112079995B (zh) * 2020-08-21 2022-01-11 东华大学 一种过渡金属修饰吡啶氮基共轭微孔聚合物复合光催化剂
CN112662236A (zh) * 2020-12-21 2021-04-16 江苏赛尔密封科技股份有限公司 一种耐高温低蠕变密封板及其制备工艺

Also Published As

Publication number Publication date
CN105367758A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN105367758B (zh) 一种二茂铁基共轭微孔聚合物的制备方法
Choi et al. Supercapacitors of nanocrystalline metal–organic frameworks
Farha et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit?
Ahmed et al. Nitrogen-doped porous carbons from ionic liquids@ MOF: remarkable adsorbents for both aqueous and nonaqueous media
Vinodh et al. A review on porous carbon electrode material derived from hypercross-linked polymers for supercapacitor applications
Xiao et al. The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives
Liu et al. Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor
Liang et al. Popcorn-derived porous carbon for energy storage and CO2 capture
Li et al. Porous azo‐bridged porphyrin–phthalocyanine network with high iodine capture capability
Aslam et al. Dispersion of nickel nanoparticles in the cages of metal-organic framework: an efficient sorbent for adsorptive removal of thiophene
Langmi et al. Hydrogen storage in metal-organic frameworks: a review
Jiang et al. From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake
Zu et al. Improving hydrothermal stability and catalytic activity of metal–organic frameworks by graphite oxide incorporation
Fu et al. Iron nanoclusters as template/activator for the synthesis of nitrogen doped porous carbon and its CO2 adsorption application
Qian et al. A method for creating microporous carbon materials with excellent CO2‐adsorption capacity and selectivity
Chaikittisilp et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes
Xia et al. Nanoporous polyporphyrin as adsorbent for hydrogen storage
Huang et al. Highly efficient magnetic nitrogen-doped porous carbon prepared by one-step carbonization strategy for Hg2+ removal from water
Yang et al. Ligand charge separation to build highly stable quasi-isomer of MOF-74-Zn
Feng et al. Polar Ketone-Functionalized Metal–Organic Framework Showing a High CO2 Adsorption Performance
Shen et al. Cerium-based metal–organic framework nanocrystals interconnected by carbon nanotubes for boosting electrochemical capacitor performance
Guo et al. Rapid and efficient removal of Pb (II) from aqueous solutions using biomass-derived activated carbon with humic acid in-situ modification
Shi et al. Nitrogen doped hierarchically porous carbon derived from glucosamine hydrochloride for CO2 adsorption
Zhao et al. Thionyl chloride-catalyzed preparation of microporous organic polymers through aldol condensation
Mohamed et al. Ultrastable porous organic polymers containing thianthrene and pyrene units as organic electrode materials for supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant