CN105363867B - 大容积厚壁高压储氢钢内胆的加工工艺 - Google Patents

大容积厚壁高压储氢钢内胆的加工工艺 Download PDF

Info

Publication number
CN105363867B
CN105363867B CN201510619874.XA CN201510619874A CN105363867B CN 105363867 B CN105363867 B CN 105363867B CN 201510619874 A CN201510619874 A CN 201510619874A CN 105363867 B CN105363867 B CN 105363867B
Authority
CN
China
Prior art keywords
spinning
steel pipe
section
closing
seamless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510619874.XA
Other languages
English (en)
Other versions
CN105363867A (zh
Inventor
邹建立
王红霞
王五开
张强
刘玉红
李强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shijiazhuang Enric Gas Equipment Co Ltd
Original Assignee
Shijiazhuang Enric Gas Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shijiazhuang Enric Gas Equipment Co Ltd filed Critical Shijiazhuang Enric Gas Equipment Co Ltd
Priority to CN201510619874.XA priority Critical patent/CN105363867B/zh
Publication of CN105363867A publication Critical patent/CN105363867A/zh
Application granted granted Critical
Publication of CN105363867B publication Critical patent/CN105363867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种大容积厚壁高压储氢钢内胆的加工工艺,选用无缝钢管经两端旋压缩口而成,所述旋压工艺包括以下步骤:步骤一、将无缝钢管坯料的收口段加热到1000~1180℃;步骤二、旋压封头和聚料头:对所述收口段进行补热,用旋压机主轴卡爪夹紧无缝钢管坯料外壁,并以180~220r/min的转速旋转,同时将旋轮的工作面靠近无缝钢管坯料收口段外壁对其进行6~7道次半球形旋压;步骤三、聚料头增厚:继续补热使收口段温度保持在950~1180℃,旋轮臂带动旋轮按照圆弧轨迹以0.10~0.14rad/s的速度进行5~6道次旋压,每道次步进量与收口段壁厚的比值为0.74~0.52:1,形成壁厚增加的封头和聚料头;步骤四、将旋轮臂旋转12~14°,然后模座沿无缝钢管坯料轴线方向的进给、同时旋轮臂带动旋轮摆动旋压,经2~3道次形成椭球形瓶肩圆滑外延一直段瓶颈的结构。

Description

大容积厚壁高压储氢钢内胆的加工工艺
技术领域
本发明属于大容量高压储气设备的领域,具体涉及一种大容量高压储氢钢内胆的加工工艺,容积达到500L以上。
背景技术
随着新能源技术的发展,特别是氢能源技术的突破,用于储运氢气的大容积容器的需求量随之增加。由于氢气的液化温度较低(-252.8℃),因此实现储存与运输,最简单、实用和经济的方法是提高氢气的储运压力。其中,大容量全缠绕高压储氢容器可用于高压、大容积储氢。由于金属材料性能的限制,大容量储氢内胆的研制受到限制,直径小、管壁厚、容积难以突破,是这类容器的特点。
现阶段,储氢容器的结构一般采用碳纤维缠绕铝合金内胆,但是其容积较小,一般在120L以下,承压能力在20~35MPa,不适用大规模储氢、运输使用。提高容器的储氢能力,一方面可以通过提高储氢容器的容积,另一方面可以增大储氢容器的承压能力。而上述两个方面的提高,不是仅仅增大容器容积、增加壁厚即可解决,受旋压工艺、储氢容器的密封性能等诸多制约因素。
钢内胆全缠绕高压储氢容器的承压因钢质内胆为全缠绕且承压超高,所以钢质内胆设计壁厚较厚、大于20mm;内胆两端设计成碟形瓶肩外形、瓶颈壁厚为钢内胆壁厚的1.5~2.5倍;因工作压力大,瓶颈内螺纹剪切应力大,螺纹长,所以瓶颈的直边长度一般不小于100mm的特点,相比常规高压气瓶产品,旋压难度非常大,致使旋压出现许多质量问题,如旋中钢管前后窜动造成旋压未成形;旋后内孔大不能满足设计工艺机加工要求;旋压时冲击震动较大易损伤设备等。该项目能否成功的关键是:瓶颈内胆的端部旋压收口尺寸和碟形瓶肩外形。
发明内容
本发明要解决的技术问题是提供一种大容量高压储氢钢内胆的旋压工艺,其通过控制旋压的工艺参数,实现对大容积、厚壁、长端口的钢内胆旋压。
为解决上述技术问题,本发明采用的技术方案是:
一种大容积厚壁高压储氢钢内胆的加工工艺,选用无缝钢管坯料经两端旋压缩口而成,所述钢内胆设计水容积不小于500L、厚度不小于15mm,旋压工艺包括以下步骤:
步骤一、将无缝钢管坯料的收口段加热到1000~1180℃;
步骤二、旋压封头和聚料头:对所述收口段进行补热,用旋压机主轴卡爪夹紧无缝钢管坯料外壁,并以180~220r/min的转速旋转,同时将旋轮的工作面靠近无缝钢管坯料收口段外壁、对其进行7~8道次半球形旋压;每道次中,模座沿无缝钢管坯料轴向进给后,旋轮臂带动旋轮按照圆弧轨迹从无缝钢管坯料轴线垂直位置起始、以0.10~0.14rad/s的速度摆动设计角度,再按照相同的轨迹以0.25~0.35rad/s的转速回位;其中,第1~3道次旋轮臂摆动的角度为45~55°,其后各道次中,旋轮臂摆动的角度依次增加4~8°,最后一次摆动的角度为60~82°,形成半球形封头圆滑外延一聚料头的结构;
步骤三、聚料头增厚:继续补热使收口段温度保持在950~1180℃,旋轮臂带动旋轮按照圆弧轨迹以0.10~0.14rad/s的速度进行5~6道次旋压,每道次步进量与收口段壁厚的比值为0.74~0.52:1,聚料头的壁厚逐次增加为无缝钢管坯料壁厚的1.3~2.5倍;
步骤四、将旋轮臂首先摆动0.1~0.5rad,然后模座沿无缝钢管坯料轴线方向的进给、同时旋轮臂带动旋轮摆动旋压,经2~3道次形成椭球形瓶肩圆滑外延一直段瓶颈的结构;按照相同旋压工艺完成无缝钢管坯料两端头的缩口成型。
优选的,所述加工工艺还包括以下步骤:
步骤五、将步骤四中的瓶颈平头、磨削去除瓶肩内外壁上可能出现的褶皱、抛丸处理,形成旋压气瓶;
步骤六、将旋压气瓶加热至935~965℃,保温时间60~100min后出炉淬火,完成淬火后立即进行回火处理,回火加热温度为620~690℃,保温时间40~80min,出炉后在空气中自然冷却;
步骤七、对瓶颈内、外壁分别加工螺纹,然后进行二次抛丸处理。
所述大容积厚壁高压储氢钢内胆的容积大于500L、壁厚大于20mm,该类钢内胆的旋压,内壁褶皱是需要解决的技术问题,而且为了承载较高的压力,要求瓶颈内螺纹剪切应力大,因此需要螺纹长,瓶颈直径大于80mm、长度大于100mm,这都对旋压提出了很高的要求。上述技术方案中,经过多道次、步进量及进给速度的控制,首先形成了聚料头,然后经过5~6道次的壁厚增加及瓶颈延长的处理,形成了大容积厚壁的高压钢内胆。
采用上述技术方案产生的有益效果在于:(1)采用本发明的成功旋压了一种大容积、壁厚的钢内胆,经过检测表明:内、外壁未发现明显脱碳层;(2)瓶颈较大的长径比一方面加长了瓶颈内部螺纹长度,使端塞与瓶颈的配合能够承受高于87.5MPa的高压,另一方面可保证缠绕层在容器封头缠绕时根部缠绕层的有效堆积,达到设计要求,长瓶颈和厚颈壁同时保证对旋压工艺提供了挑战,本发明通过首先形成聚料头,利用聚料头凝固快,降温也较快,变形抗力大增,后续的高温金属在旋轮作用下流动成形时聚料头就像一堵墙,挡住了后续金属向前的流动,使不断流动的金属只能在聚料头和瓶体之间聚集增厚并形成直边段。
附图说明
图1是本发明的剖视结构示意图;
图2~图5分别是步骤二、步骤三、步骤四和步骤五的端部旋压的剖视结构示意图;
图6是本发明中钢内胆水压爆破试验后的图片;
图7是本发明的钢内胆端口解剖的图片;
其中,2-1、瓶身,2-2、瓶肩,2-2A、封头,2-3、瓶颈,2-3A、聚料头。
具体实施方式
本实施例中以直径为600mm、长度为3200mm的无缝钢管坯料的旋压为例,详细介绍钢内胆的加工工艺,将上述无缝钢管坯料经两端旋压缩口而成,其加工工艺包括以下步骤:
步骤一、将无缝钢管坯料的收口段加热到1000~1180℃;收口段的长度约为400~700mm。
为了降低金属变形抗力,降低旋压冲击力,有效保护设备,整个旋压过程中需对加热变形区域进行补热,降低旋压变形区域的降温速度,并对终旋温度做出规定,一般不低于900℃。
步骤二、旋压封头2-2A和聚料头2-3A:对所述收口段进行补热,用旋压机主轴卡爪夹紧无缝钢管坯料外壁,并以180~220r/min的转速旋转,同时将旋轮的工作面靠近无缝钢管坯料收口段外壁对其进行7~8道次半球形旋压;每道次中,模座沿无缝钢管坯料轴向进给后,旋轮臂带动旋轮按照圆弧轨迹从与无缝钢管坯料轴线垂直位置、以0.10~0.14rad/s的速度摆动设计角度,再按照相同的轨迹以0.25~0.35rad/s的转速回位;其中,第1~3道次旋轮臂摆动的角度为45~55°,即旋轮臂从0°摆动45~55°,其后各道次中,旋轮臂摆动的角度依次增加4~8°,最后一次摆动的角度为60~82°,形成半球形封头圆滑外延一聚料头的结构,参见图2。
通过7~8道次旋压形成聚料头2-3A,聚料头的作用就是在旋压气瓶端部直边部分时,由于聚料头在钢管变形区的最前端,凝固快,降温也较快,变形抗力大增,后续的高温金属在旋轮作用下流动成形时聚料头就像一堵墙,挡住了后续金属向前的流动,使不断流动的金属只能在聚料头和瓶体之间聚集增厚并形成直边段。每道次步进量与收口段壁厚的比值为3.91~0.22:1;每道次步进量呈递减趋势,首次步进量较大,末次步进量较小。模座旋压时的进给速度为200~500mm/min,返回进给速度为1000~3000mm/min。
步骤三、聚料头2-3A增厚:继续补热使收口段温度保持在950~1180℃,旋轮臂带动旋轮按照圆弧轨迹以0.10~0.14rad/s的速度进行5~6道次旋压,每道次步进量与收口段壁厚的比值为0.74~0.52:1,形成壁厚增加的封头和聚料头。模座旋压时的进给速度为200~500mm/min,返回进给速度为1000~3000mm/min,参见图3。
每道次步进量与收口段实际壁厚的比值为0.74~0.52:1。每道次步进量呈递减趋势,首次步进量远小于第一个过程即步骤二的首次步进量。末次步进量与第一个过程的步进量相同。
步骤四、将旋轮臂旋转0.1~0.5rad,然后模座沿无缝钢管坯料轴线方向的进给、同时旋轮臂带动旋轮摆动旋压,经2~3道次形成椭球形瓶肩瓶肩2-2圆滑外延一直段瓶颈2-3的结构,按照相同旋压工艺完成无缝钢管坯料两端头的缩口成型。本发明的钢内胆外需要缠绕固化纤维复合材料层,因此,采用椭球形瓶肩有利于缠绕层的挂料;形成瓶身2-1与瓶肩2-2之间圆弧过渡,过渡圆弧α的弧度为0.1~0.5rad,参见图4。
步骤五、将步骤四中钢内胆两端平头、磨削去除瓶肩部内外可能出现的褶皱,对加工好的钢内胆内、外进行抛丸处理;对加工好的瓶体内、外进行抛丸处理,消除机加工过程产生的应力集中部位;
步骤六、将钢内胆加热至950℃,保温时间80min后出炉淬火,完成淬火后立即进行回火处理,回火加热温度为650℃,保温时间40min,出炉后在空气中自然冷却。所用的淬火液是质量浓度为7~15%的NaOH溶液,经过热处理的钢内胆为索式体状态。本实施例采用型号为4130X的优质铬钼钢,按照上述方法进行热处理,取试样进行拉伸试验,试验条件:原始标距50mm,宽度38mm,厚度25mm;试验结果:拉伸强度750~760MPa,屈服强度625MPa,断后伸长率42~45%,硬度为234~239HB。
步骤七、对瓶颈端面、内外螺纹进行精密加工,然后进行二次抛丸处理。
在旋压合格的容器端部进行取样,经粗加工后,进行100%磁粉及超声检测、金相检测。检测结果均满足参照标准的质量要求。其中,金相检测结果表明:钢质内胆显微组织为回火索式体,内、外壁未发现明显脱碳层100×,晶粒度400×为8~9级。将钢质内胆端部进行解剖检测(依照的标准GB/T226钢的低倍组织及缺陷酸蚀试验法),其附图参见图7,从解剖试样可以看出没有内部的成形缺陷,壁厚过渡均匀,旋压后未发现疏松、缩孔、气泡、裂纹、白点和夹杂等缺陷。瓶身2-1壁厚为20.7mm、瓶颈2-3的壁厚为36.6mm。
将本实施例制备的钢内胆进行水压爆破试验,爆破后的照片参见图6,结果表明:
破口长度925mm、宽度535mm,破口位置:纵向,钢内胆的筒体部位破裂,破口特征为剪切口,实际爆破压力为75.22MPa,屈服压力为69.34MPa,容积变形率12.1%,总升压时间3987s。以上结果表明:旋压成型的瓶肩和瓶颈未出现缺陷,强度符合要求。

Claims (7)

1.一种大容积厚壁高压储氢钢内胆的加工工艺,选用无缝钢管坯料经两端旋压缩口而成,所述钢内胆设计水容积不小于500L、厚度大于20mm,瓶颈内径不小于50mm、长度不小于80mm、壁厚是旋压气瓶的瓶身(2-1)壁厚的1.5~2.5倍,其特征在于旋压工艺包括以下步骤:
步骤一、将无缝钢管坯料的收口段加热到1000~1180℃;
步骤二、旋压封头和聚料头:对所述收口段进行补热,用旋压机主轴卡爪夹紧无缝钢管坯料外壁,并以180~220r/min的转速旋转,同时将旋轮的工作面靠近无缝钢管坯料收口段外壁、对其进行7~8道次半球形旋压;每道次中,模座沿无缝钢管坯料轴向进给后,旋轮臂带动旋轮按照圆弧轨迹从无缝钢管坯料轴线垂直位置起始、以0.10~0.14rad/s的速度摆动设计角度,再按照相同的轨迹以0.25~0.35rad/s的转速回位;其中,第1~3道次旋轮臂摆动的角度为45~55°,其后各道次中,旋轮臂摆动的角度依次增加4~8°,最后一次摆动的角度为60~82°,形成半球形封头圆滑外延一聚料头的结构;
步骤三、聚料头增厚:继续补热使收口段温度保持在950~1180℃,旋轮臂带动旋轮按照圆弧轨迹以0.10~0.14rad/s的速度进行5~6道次旋压,每道次步进量与收口段壁厚的比值为0.74~0.52:1,聚料头的壁厚逐次增加为无缝钢管坯料壁厚的1.3~2.5倍;
步骤四、将旋轮臂首先摆动0.1~0.5rad,然后模座沿无缝钢管坯料轴线方向进给、同时旋轮臂带动旋轮摆动旋压,经2~3道次形成椭球形瓶肩(2-2)圆滑外延一直段瓶颈(2-3)的结构;按照相同旋压工艺完成无缝钢管坯料两端头的缩口成型。
2.根据权利要求1所述的大容积厚壁高压储氢钢内胆的加工工艺,其特征在于步骤二中每道次步进量与收口段壁厚的比值为3.91~0.22:1。
3.根据权利要求1所述的大容积厚壁高压储氢钢内胆的加工工艺,其特征在于步骤二和步骤三,旋压过程中模座的正向进给速度为200~500mm/min,返回速度为1000~3000mm/min。
4.根据权利要求1所述的大容积厚壁高压储氢钢内胆的加工工艺,其特征在于收口段的长度为400~700mm,终旋温度不低于900℃。
5.根据权利要求1所述的大容积厚壁高压储氢钢内胆的加工工艺,其特征在于步骤四中,旋轮臂的摆动速度为0.10~0.14rad/s、模座的进给速度为200~500mm/min。
6.根据权利要求1所述的大容积厚壁高压储氢钢内胆的加工工艺,其特征在于所述加工工艺还包括以下步骤:
步骤五、将步骤四中的瓶颈(2-3)平头、磨削去除瓶肩(2-2)内外壁上出现的褶皱、抛丸处理,形成旋压气瓶;
步骤六、将旋压气瓶加热至935~965℃,保温时间60~100min后出炉淬火,完成淬火后立即进行回火处理,回火加热温度为620~690℃,保温时间40~80min,出炉后在空气中自然冷却;
步骤七、对瓶颈(2-3)内、外壁分别加工螺纹,然后进行二次抛丸处理。
7.根据权利要求6所述的大容积厚壁高压储氢钢内胆的加工工艺,其特征在于瓶身(2-1)与瓶肩(2-2)之间圆弧过渡,过渡圆弧(α)的弧度为0.1~0.5。
CN201510619874.XA 2015-09-25 2015-09-25 大容积厚壁高压储氢钢内胆的加工工艺 Active CN105363867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510619874.XA CN105363867B (zh) 2015-09-25 2015-09-25 大容积厚壁高压储氢钢内胆的加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510619874.XA CN105363867B (zh) 2015-09-25 2015-09-25 大容积厚壁高压储氢钢内胆的加工工艺

Publications (2)

Publication Number Publication Date
CN105363867A CN105363867A (zh) 2016-03-02
CN105363867B true CN105363867B (zh) 2018-01-05

Family

ID=55366776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510619874.XA Active CN105363867B (zh) 2015-09-25 2015-09-25 大容积厚壁高压储氢钢内胆的加工工艺

Country Status (1)

Country Link
CN (1) CN105363867B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351835B (zh) * 2018-11-13 2020-12-25 航天特种材料及工艺技术研究所 带环向加强筋曲母线薄壁壳体的整体旋压成形方法
CN113798381B (zh) * 2021-09-03 2024-04-09 中材科技(苏州)有限公司 一种高压氢气瓶铝内胆的旋压成型装置及其成型方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19860570C1 (de) * 1998-12-22 2000-10-05 Sms Demag Ag Verfahren zur Erzeugung von runden Knüppeln
JP2005103603A (ja) * 2003-09-30 2005-04-21 Kobe Steel Ltd 内面溝付管の製造装置及び内面溝付管の製造方法
CN101187441B (zh) * 2007-12-28 2010-04-21 石家庄安瑞科气体机械有限公司 一种超高压氢气瓶的制作方法
CN102000746B (zh) * 2010-09-21 2012-11-07 国营江北机械厂 无缝气瓶正向旋轮热旋压收口方法

Also Published As

Publication number Publication date
CN105363867A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN105605415B (zh) 大容积全缠绕高压储氢容器的加工工艺
CN107553074B (zh) 高温加热炉用uns n08810铁镍基合金大口径无缝管材的制造方法
CN102489952B (zh) 一种钛合金厚壁耐压筒体的制造方法
CN109622659A (zh) 一种大口径tc4钛合金厚壁无缝管材的制造方法
CN111889598B (zh) Tc4钛合金锻材及其制备方法
CN101722262B (zh) 一种利用径向锻造技术生产中大口径合金钢无缝管材的新方法
CN105619085A (zh) 直径914mm大容积钢质无缝气瓶生产工艺
CN105363867B (zh) 大容积厚壁高压储氢钢内胆的加工工艺
CN110614338B (zh) Gh4169合金钢圆棒的锻造方法
CN105935711A (zh) 一种不锈钢盘管的制备工艺
CN104174798A (zh) 核电主管道管坯道短流程锻造方法
CN111187966B (zh) 一种超级奥氏体不锈钢钢管的生产工艺
CN103753146A (zh) 一种高压锅炉用镍基合金管生产工艺
CN104451381A (zh) 大口径Gr3低温用无缝钢管及生产方法
CN103801907A (zh) 油缸缸筒的加工方法
CN101850364B (zh) 一种轧制黄铜管的三辊行星轧制方法
WO2007100042A1 (ja) 高Cr継目無管の製造方法
CN106282867B (zh) Ta2薄壁钛合金无缝钢管及其制备方法
CN113798381A (zh) 一种高压氢气瓶铝内胆的旋压成型装置及其成型方法
CN110170529B (zh) 一种高合金耐热不锈钢毛管的热穿孔方法
CN111187933A (zh) 一种uns n06617小口径管材的制造方法
CN111118410A (zh) 40mm~60mm厚壁大口径高钢级管线管及其制造方法
CN105546228A (zh) 一种船舶用无缝钢管及其制备方法
CN105234170B (zh) 一种大规格易切削钢轧制方法
CN102703666B (zh) 低碳合金钢球化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant