CN105359237A - 在mems数字可变电容器(dvc)加工期间的应力控制 - Google Patents

在mems数字可变电容器(dvc)加工期间的应力控制 Download PDF

Info

Publication number
CN105359237A
CN105359237A CN201480036181.1A CN201480036181A CN105359237A CN 105359237 A CN105359237 A CN 105359237A CN 201480036181 A CN201480036181 A CN 201480036181A CN 105359237 A CN105359237 A CN 105359237A
Authority
CN
China
Prior art keywords
electrode
movable panel
plate
coupled
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480036181.1A
Other languages
English (en)
Other versions
CN105359237B (zh
Inventor
罗伯托·彼得勒斯·范·卡普恩
理查德·L·奈普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qorvo US Inc
Original Assignee
Cavendish Kinetics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cavendish Kinetics Ltd filed Critical Cavendish Kinetics Ltd
Publication of CN105359237A publication Critical patent/CN105359237A/zh
Application granted granted Critical
Publication of CN105359237B publication Critical patent/CN105359237B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • H01G5/18Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes due to change in inclination, e.g. by flexing, by spiral wrapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)

Abstract

本发明总体上涉及MEMS数字可变电容器(DVC)(900)及其制造方法。MEMS?DVC内的可移动板(938)应具有相同应力水平以确保MEMS?DVC的正确工作。为了获得相同应力水平,可移动板在制造期间与CMOS地电位解耦。可移动板仅在板已经完全形成之后电耦合到CMOS地电位。耦合通过使用形成上拉电极的与将可移动板电耦合到CMOS地电位的层相同的层(948)产生。由于相同的层将可移动板耦合到CMOS地电位并且提供用于MEMS?DVC的上拉电极,因此在同一加工步骤中发生沉积。通过在形成后使可移动板电耦合到CMOS地电位,可移动板的层中的每个中的应力能够是基本相同的。

Description

在MEMS数字可变电容器(DVC)加工期间的应力控制
本发明的背景
技术领域
本发明的实施例总体上涉及微机电系统(MEMS)及其制造方法。
背景技术
如图1中示意性示出的,MEMS数字可变电容器(DVC)器件基于可移动MEMS板,具有在可移动MEMS板之上的控制电极(即上拉电极、拉离电极或PU电极)和在可移动MEMS板下的控制电极(即拉近电极、下拉电极或PD电极)。这些电极被顶部和底部介电层覆盖。另外,可移动MEMS元件之下存在RF电极。可移动板和RF电极之间存在间隙,该间隙由施加到PU或PD电极上的相对于板电极的电压来调节。这些电压产生静电力,其将MEMS元件上拉或下拉至接触以向RF电极提供稳定的最小或最大电容。这样,从可移动板到RF电极的电容能够从当被拉到底部时(见图2)的高电容状态Cmax变化到当被拉到顶部时(见图3)时的低电容状态Cmin
图4示出了MEMSDVC器件的更详细的横截面图。可移动板包括通过多个柱彼此连接的两个层(即底板和顶板)。板和柱的这种组合产生难以弯曲的半刚性板。板通过柔性腿结构被锚固到衬底,所述腿结构允许相对低的工作电压以使DVC器件在Cmin或Cmax状态下工作。
图5示出了CMOS波形控制器,其产生需要施加到MEMSDVC器件的PU和PD电极上的电压Vpu和Vpd。板电位需要以CMOS地电位为基准,使得在PU和PD电极上施加的电压产生使板上移至Cmin位置或下移至Cmax位置所需的静电力。在板电极需要RF浮动的应用中,在板电极和CMOS地电位之间使用高值电阻器Rpalte来实现该基准(见图5)。
图6示出了CMOS波形控制器,其中使用二极管Dplate使板电位以CMOS地电位为基准。在该应用中,板电极通常在RFGND上。还能够使用Rplate和Dplate的结合。
需要可移动板和CMOS地电位之间的这些电连接用于静电致动。然而,这些连接也会在两层板的加工期间产生问题。具体地,在加工期间使可移动板连接到CMOS地电位会在可移动板中产生应力,这会使致动电压Vpu和Vpd变化至超出规格,显著影响晶片产率。
因此,本领域中需要提供一种装置来避免该问题并且获得更受控的致动电压。
发明内容
本发明总体上涉及MEMSDVC及其制造方法。MEMSDVC内的可移动板的顶板和底板应具有相同应力水平以确保MEMSDVC的正确工作。为了获得相同应力水平,可移动板在制造期间与CMOS地电位解耦。可移动板仅在板已经完全形成之后电耦合到CMOS地电位。耦合通过使用形成上拉电极的与将可移动板电耦合到CMOS地电位的层相同的层而产生。由于相同的层将可移动板耦合到CMOS地电位并且还提供用于MEMSDVC的上拉电极,因此在同一加工步骤中发生沉积。通过使可移动板在形成后电耦合到CMOS地电位,可移动板的层中的每个中的应力能够是基本相同的。
在一个实施例中,MEMSDVC包括:被布置在形成于衬底之上的空腔中的可移动板,该可移动板被布置在拉近电极和拉离电极之间并且耦合到可移动板电极,并且拉离电极由导电层形成;耦合到可移动板电极的板式接地电极;和通过导电层耦合到板式接地电极的CMOS地电极。
在另一实施例中,形成MEMSDVC的方法包括:在衬底上沉积第一导电层;图案化第一导电层以形成CMOS地电极、板式接地电极、可移动板电极、拉近电极和RF电极;在衬底以及CMOS地电极、板式接地电极、可移动板电极、拉近电极和RF电极上沉积介电层;穿过介电层形成开口以暴露CMOS地电极、板式接地电极和可移动板电极中的至少一部分;形成在介电层上并且与CMOS地电极、板式接地电极和可移动板电极接触的锚固元件;形成在与可移动板电极接触的锚固元件上并且与其接触的可移动板;并且在可移动板和锚固元件上沉积第二导电层,所述锚固元件形成在CMOS地电极和板式接地电极上并且与其接触。
附图说明
因此以使得本发明的上述特征能够详细理解的方式,可以参照实施例获得以上概述的本发明的更详细描述,所述实施例中的一些在附图中被图示。然而,应注意的是,附图仅图示了本发明的典型实施例,因此不应被认为限制了本发明的范围,这是因为本发明可以承认其他等同有效的实施例。
图1是处于独立状态的MEMSDVC的示意性横截面图。
图2是处于Cmax状态的图1的MEMSDVC的示意性横截面图。
图3是处于Cmin状态的图1的MEMSDVC的示意性横截面图。
图4是根据另一实施例的MEMSDVC的详细的横截面图。
图5是连接到MEMSDVC器件的波形控制器的示意图,其中板电位通过电阻器Rplate以CMOS地电位为基准。
图6是连接到MEMSDVC器件的波形控制器的示意图,其中板电位通过二极管Dplate以CMOS地电位为基准。
图7A到7C是根据一个实施例的产生MEMSDVC的两层半刚性板的示意性横截面图。
图8是根据一个实施例的用于在形成可移动板期间使板电极与CMOS地电位断开的结构的示意图。
图9A到9G是不同制造阶段中的MEMSDVC器件的示意性横截面图。
为了便于理解,在可能的地方使用相同的附图标记表示附图所共用的相同的元素。应预期的是,在没有具体叙述的情况下在一个实施例中公开的元素可以有益地用于其他实施例。
具体实施方式
本发明总体上涉及MEMSDVC及其制造方法。在MEMSDVC内的可移动板的顶板和底板应具有相同应力水平以确保MEMSDVC的正确工作。为了获得相同应力水平,可移动板在制造期间与CMOS地电位解耦。可移动板仅在板已经完全形成之后电耦合到CMOS地电位。耦合通过使用形成上拉电极的与将可移动板电耦合到CMOS地电位的层相同的层而产生。由于相同的层将可移动板耦合到CMOS地电位并且还提供用于MEMSDVC的上拉电极,因此在同一加工步骤中发生沉积。通过在形成后使可移动板电耦合到CMOS地电位,可移动板的层中的每个中的应力能够是基本相同的。
使板移动至Cmin或Cmax位置的静电致动力与(电压/空隙)2成比例。为了严格控制致动电压Vpu和Vpd,需要加工后的可移动板是平的并且不具有任何弯曲(即需要严格控制可移动板与PD和PU电极之间的空隙)。在如图4所示的两层刚性板构造中,这意味着底板和顶板的绝对应力需要匹配。
如果顶板中的应力比底板中的应力更具压缩性,那么板容易变形为皱眉形。因此,器件朝着PD电极会具有更大空隙,并且所产生的相对于底部的致动电压Vpd会增大。同时,器件朝着PU电极会具有更小空隙,并且所产生的相对于顶部的致动电压Vpu会减小。类似地,如果顶板中的应力比底板中的应力更具拉伸性,那么板容易变形为笑脸形,并且致动电压Vpd将减小且致动电压Vpu将增大。
图7A到7C示出了用于产生具有柔性腿悬置部的两层半刚性板的加工步骤。首先,底板层被沉积在第一牺牲层SL1之上,并且被图案化以产生底板和柔性腿(见图7A)。然后底板被第二牺牲层SL2覆盖,该第二牺牲层随后被图案化以在底板之上的SL2中产生几个孔(见图7B)。最后,顶板层被沉积在第二牺牲层SL2之上并且沉积到孔中以接触底板(见图7C)。在加工结束时,牺牲层SL1和SL2被移除,留下悬在表面上的可移动板。
如果板电极在这些加工步骤期间连接到CMOS地电位(即衬底),那么热效应和等离子体效应会在层的沉积和刻蚀期间改变底部和顶板中的应力。应力的这些改变随后导致不平的梁结构,这导致改变的Vpd和Vpu以及降低的晶片产率。
通过在双层板的制造步骤期间使板电极与CMOS地电位(即衬底)断开,能够更好地控制底板和顶板中的应力,产生严格受控的致动电压Vpu和Vpd。为了仍然提供在工作期间板电极到CMOS地电位的连接(对于静电致动是需要的),使用顶电极层进行电连接,这与在CMOS设计中为了避免天线阻碍所进行的相似。这样,在已经产生双层梁之后产生电连接,并且两个层中的应力能够匹配。
图8示出了用于在双层板的制造期间使板电极与CMOS地电位断开的结构的横截面图。结构A和B两者都在底部电极层(即用于板电极、PD电极和RF电极的层)中产生。结构A连接到MEMSDVC器件的板电极,而结构B通过Rplate(见图5)或Dplate(见图6)连接到CMOS地电位。
通过使用也在DVC加工中使用的锚固层和顶部电极层,结构A在顶部电极层(即用于PU电极的层)已经被沉积之后连接到结构B。在顶电极沉积之前,结构A与结构B电学上断开,并且板电极保持浮动。这实现在制造过程期间底板和顶板的应力控制,并且产生良好受控的致动电压Vpu和Vpd。
图9A到9G是不同制造阶段中的MEMSDVC900的示意性横截面图。如图9A所示,MEMSDVC形成在衬底902上,在衬底中具有一个或更多个层,在所述一个或更多个层中形成有一个或更多个电极904。电极904可以如通过箭头“C”所示地在衬底902的下层处耦合到Rplate或Dplate。几个电极908、910、912、914、916、918、920可以形成在衬底902上。电极908、910、912、914、916、918、920通过在衬底902上沉积导电材料并且通过覆盖层沉积然后图案化或者通过于在其上覆盖有掩膜的衬底902上沉积导电材料来形成。
所形成的CMOS地电极908(即图8中的结构“B”)通过填充有导电材料的通孔906耦合到在902的下层中形成的一个或更多个金属导体904。如此,电极908直接在电极908的制造时就通过电阻器Rplate或二极管Dplate接地到衬底902。
板式接地电极910(即图8中的结构“A”)在制造中在该点处与CMOS地电极908解耦,但是通过金属导体922和通孔924、926、928连接到可移动板电极912、914,所述通孔形成于衬底902内并且填充有导电材料。虽然没有示出,但是下拉电极916、918通过通孔和沟槽耦合到衬底902的其他层以产生到电源的电连接,所述电源与衬底902分开。类似地,RF电极920在图中未示出的位置处耦合到RF结合区(bondpad)。电极908、910、912、914、916、918、920中的每个都在同一制造步骤中形成。
形成电极908、910、912、914、916、918、920之后,如图9B所示,介电层930可以形成于电极908、910、912、914、916、918、920上。可以用于介电层930的合适材料包括氮化硅、二氧化硅、氮氧化硅、和其他电绝缘材料。介电层930将在可移动板处于Cmax位置时最终使可移动板与RF电极920隔开,这是因为可移动板将落到(即接触)介电层930而不是RF电极920。
介电层930已经沉积之后,介电层930被图案化以在选择的位置处形成穿过介电层930的开口932从而暴露所选电极。如图9C所示,开口932被形成以暴露CMOS地电极908、板式接地电极910和可移动板电极912、914。开口932可以通过利用合适的刻蚀剂刻蚀介电层930而形成。
如图9D所示,导电材料、例如氮化钛可以随后形成于开口932内和介电层930的一部分上以形成锚固结构934。锚固结构934可以通过导电材料的覆盖层沉积然后刻蚀而形成,或者通过在介电层930上布置掩膜(与用于形成开口932的掩膜不同的掩膜)然后选择性沉积到被暴露区域上而形成。在该时间点处,板式接地电极908、并且因此可移动电极912、914与CMOS地电位电隔离,这是因为板式接地电极910与CMOS地电极908电隔离。
形成锚固结构934之后,可移动板的形成可以继续。如图9E所示,在CMOS地电极908或板式接地电极910上没有形成另外的沉积或层,而在其他电极912、914、916、918、920上形成有额外的层。应理解的是,在形成额外的层期间,在CMOS地电极908和板式接地电极910上可以形成有不导电的掩膜层,但是在CMOS地电极908和板式接地电极910上没有形成永久层。另外地,在形成额外的层期间,CMOS地电极908和板式接地电极910上没有形成电连接。如图9E所示,所形成的的额外的层包括用于使可移动板与介电层930隔开的牺牲层936、可移动板的底层938、可移动板的顶层940、连接两个板938、940的柱942、另外的牺牲材料944和介电层946。
形成额外的层之后、最特别是形成可移动板之后,如图9F所示,导电层948被沉积,该导电层不但将形成上拉电极,并且还提供CMOS地电极908和板式接地电极910之间的电连接。导电层948可以通过覆盖层沉积然后刻蚀加工被沉积以使上拉电极与CMOS地电极908和板式接地电极910之间的电连接解耦。可替代地,导电层948可以通过首先在器件上形成掩膜然后选择性沉积在开口中而被沉积。可以用于导电层的合适材料包括氮化钛、铝、钛-铝、铜、钛、钨、金和其他导电材料。
然后穿过在额外的层之上的导电层948形成开口950。开口950延伸穿过导电层948以及第二介电层946以暴露牺牲材料944、936。此后,刻蚀剂被引入穿过开口950,并且牺牲材料936、944被移除使得形成空腔952并且可移动板是在空腔内被释放以在独立状态(Cmax和Cmin)之间移动。
在空腔952内释放可移动板之后,如图9G所示,钝化或介电顶部954可以被沉积以密封空腔952。可以用于钝化层954的合适材料包括二氧化硅、氮化硅、氮氧化硅和其他绝缘材料。如图9A到9G所示,可移动梁与CMOS衬底902电解耦直到形成上拉电极。因此,可移动梁的每个层将具有基本相同的应力。
在双层板制造期间使MEMS器件与CMOS地电位(即衬底)电学上断开避免了热和等离子体在板层中引起的应力改变。通过移除电连接,MEMS器件也与衬底更加热隔离,这也有助于改进板层的应力控制。另外,使用顶部电极层来产生MEMS器件和CMOS地电位之间的电连接使得在已经产生双层梁之后产生电连接是确保MEMS器件仍然如所期望地起作用的有效方法。通过在板形成期间使可移动板电学上断开,提高了晶片产率并且存在用于产生双层板的更宽的工艺窗口。
虽然前述内容针对本发明的实施例,但是在不脱离本发明的基本范围的情况下可以设想本发明的其他和另外的实施例,并且本发明的范围由所附权利要求确定。

Claims (20)

1.一种MEMSDVC,包括:
被布置在形成于衬底之上的空腔内的可移动板,该可移动板被布置在拉近电极和拉离电极之间并且耦合到可移动板电极,并且所述拉离电极由导电层形成;
耦合到所述可移动板电极的板式接地电极;和
通过所述导电层耦合到所述板式接地电极的CMOS地电极。
2.如权利要求1所述的MEMSDVC,还包括:
第一锚固结构,其在与所述衬底相对的表面上耦合到所述板式接地电极;和
第二锚固结构,其在与所述衬底相对的表面上耦合到所述CMOS地电极,其中所述导电层耦合到所述第一锚固结构和所述第二锚固结构。
3.如权利要求2所述的MEMSDVC,其中所述可移动板电极通过一个或更多个导电填充通孔或沟槽和形成于所述衬底内的金属导体耦合到所述板式接地电极。
4.如权利要求3所述的MESDVC,其中所述CMOS地电极耦合到被布置在所述衬底内的一个或更多个金属导体。
5.如权利要求4所述的MEMSDVC,还包括至少部分地在所述拉近电极、所述板式接地电极和所述CMOS地电极上形成的介电层。
6.如权利要求5所述的MEMSDVC,其中所述可移动板包括通过一个或更多个柱耦合在一起的多个层,并且其中,所述多个层中的每个层具有基本相同的应力。
7.如权利要求1所述的MEMSDVC,其中所述可移动板电极通过一个或更多个导电填充通孔或沟槽和形成于所述衬底内的金属导体耦合到所述板式接地电极。
8.如权利要求1所述的MEMSDVC,其中所述CMOS地电极耦合到被布置在所述衬底内的一个或更多个金属导体。
9.如权利要求1所述的MEMSDVC,还包括至少部分地在所述拉近电极、所述板式接地电极和所述CMOS地电极上形成的介电层。
10.如权利要求1所述的MEMSDVC,其中所述可移动板包括通过一个或更多个柱耦合在一起的多个层,并且其中,所述多个层中的每个层具有基本相同的应力。
11.一种形成MEMSDVC的方法,包括:
在衬底上沉积第一导电层;
图案化所述第一导电层以形成CMOS地电极、板式接地电极、可移动板电极、拉近电极和RF电极;
在所述衬底以及所述CMOS地电极、所述板式接地电极、所述可移动板电极、所述拉近电极和所述RF电极上沉积介电层;
穿过所述介电层形成开口以暴露所述CMOS地电极、所述板式接地电极和所述可移动板电极中的至少一部分;
形成在所述介电层上并且与所述CMOS地电极、所述板式接地电极和所述可移动板电极接触的锚固元件;
形成在与所述可移动板电极接触的锚固元件上并且与其接触的可移动板;和
在所述可移动板和所述锚固元件上沉积第二导电层,所述锚固元件形成在所述CMOS地电极和所述板式接地电极上并且与其接触。
12.如权利要求11所述的方法,其中,在所述图案化之后,所述板式接地电极通过形成于所述衬底中的导电材料电耦合到所述可移动板电极。
13.如权利要求12所述的方法,其中在所述图案化之后并且形成所述可移动板期间,所述CMOS地电极和所述板式接地电极彼此电隔离。
14.如权利要求13所述的方法,其中在沉积所述第二导电层之后,所述CMOS地电极和所述板式接地电极电耦合到一起。
15.如权利要求14所述的方法,其中形成可移动板包括:形成通过一个或更多个柱耦合到一起的多个层,其中,所述多个层中的每个层具有基本相同的应力,并且其中,所述可移动板电极在形成所述可移动板期间电耦合到所述板式接地电极。
16.如权利要求15所述的方法,还包括,形成空腔并且从所述空腔移除牺牲材料以释放所述可移动板使其在所述空腔内移动。
17.如权利要求11所述的方法,其中在所述图案化之后并且形成所述可移动板期间,所述CMOS地电极和所述板式接地电极彼此电隔离。
18.如权利要求11所述的方法,其中在沉积所述第二导电层之后,所述CMOS地电极和所述板式接地电极电耦合到一起。
19.如权利要求11所述的方法,其中形成可移动板包括,形成通过一个或更多个柱耦合到一起的多个层,其中,所述多个层中的每个层具有基本相同的应力,并且其中,所述可移动板电极在形成所述可移动板期间电耦合到所述板式接地电极。
20.如权利要求11所述的方法,还包括,形成空腔并且从所述空腔移除牺牲材料以释放所述可移动板使其在所述空腔内移动。
CN201480036181.1A 2013-06-28 2014-06-04 在mems数字可变电容器(dvc)加工期间的应力控制 Active CN105359237B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361840975P 2013-06-28 2013-06-28
US61/840,975 2013-06-28
PCT/US2014/040824 WO2014209556A1 (en) 2013-06-28 2014-06-04 Stress control during processing of a mems digital variable capacitor (dvc)

Publications (2)

Publication Number Publication Date
CN105359237A true CN105359237A (zh) 2016-02-24
CN105359237B CN105359237B (zh) 2018-07-13

Family

ID=51014668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480036181.1A Active CN105359237B (zh) 2013-06-28 2014-06-04 在mems数字可变电容器(dvc)加工期间的应力控制

Country Status (5)

Country Link
US (1) US9754724B2 (zh)
EP (1) EP3014639B1 (zh)
JP (1) JP6426164B2 (zh)
CN (1) CN105359237B (zh)
WO (1) WO2014209556A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6853248B2 (ja) * 2015-11-16 2021-03-31 キャベンディッシュ・キネティックス・インコーポレイテッドCavendish Kinetics, Inc. Rfスイッチにおける改善されたコンタクト

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040262645A1 (en) * 2001-05-18 2004-12-30 Corporation For National Research Initiatives Radio frequency microelectromechanical systems (MEMS) devices on low-temperature co-fired ceramic (LTCC) substrates
WO2011086767A1 (ja) * 2010-01-14 2011-07-21 株式会社村田製作所 可変容量装置
CN102256893A (zh) * 2008-11-07 2011-11-23 卡文迪什动力有限公司 利用多个较小的mems器件替换较大的mems器件的方法
CN102725808A (zh) * 2010-01-28 2012-10-10 株式会社村田制作所 可变电容装置
WO2013033613A2 (en) * 2011-09-02 2013-03-07 Cavendish Kinetics, Inc Rf mems isolation, series and shunt dvc, and small mems

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6012336A (en) * 1995-09-06 2000-01-11 Sandia Corporation Capacitance pressure sensor
US7528691B2 (en) * 2005-08-26 2009-05-05 Innovative Micro Technology Dual substrate electrostatic MEMS switch with hermetic seal and method of manufacture
KR101003335B1 (ko) * 2005-10-12 2010-12-23 가부시키가이샤 어드밴티스트 시험 장치, 핀 일렉트로닉스 카드, 전기 기기, 및 스위치
US8945970B2 (en) * 2006-09-22 2015-02-03 Carnegie Mellon University Assembling and applying nano-electro-mechanical systems
US7663196B2 (en) * 2007-02-09 2010-02-16 Freescale Semiconductor, Inc. Integrated passive device and method of fabrication
US7978045B2 (en) * 2008-12-04 2011-07-12 Industrial Technology Research Institute Multi-actuation MEMS switch
US9373447B2 (en) * 2011-08-19 2016-06-21 Cavendish Kinetics, Inc. Routing of MEMS variable capacitors for RF applications
US8592876B2 (en) * 2012-01-03 2013-11-26 International Business Machines Corporation Micro-electro-mechanical system (MEMS) capacitive OHMIC switch and design structures
US8853801B2 (en) * 2012-04-19 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. MEMS devices and methods of forming the same
EP3696861A1 (en) * 2012-04-30 2020-08-19 Wispry, Inc. Mixed-technology combination of programmable elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040262645A1 (en) * 2001-05-18 2004-12-30 Corporation For National Research Initiatives Radio frequency microelectromechanical systems (MEMS) devices on low-temperature co-fired ceramic (LTCC) substrates
CN102256893A (zh) * 2008-11-07 2011-11-23 卡文迪什动力有限公司 利用多个较小的mems器件替换较大的mems器件的方法
WO2011086767A1 (ja) * 2010-01-14 2011-07-21 株式会社村田製作所 可変容量装置
CN102725808A (zh) * 2010-01-28 2012-10-10 株式会社村田制作所 可变电容装置
WO2013033613A2 (en) * 2011-09-02 2013-03-07 Cavendish Kinetics, Inc Rf mems isolation, series and shunt dvc, and small mems

Also Published As

Publication number Publication date
EP3014639B1 (en) 2019-05-15
US20160126017A1 (en) 2016-05-05
EP3014639A1 (en) 2016-05-04
JP6426164B2 (ja) 2018-11-21
US9754724B2 (en) 2017-09-05
JP2016527715A (ja) 2016-09-08
CN105359237B (zh) 2018-07-13
WO2014209556A1 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
US9711291B2 (en) MEMS digital variable capacitor design with high linearity
CN101231910B (zh) 可变电容器
KR101871522B1 (ko) 풀업 전극 및 와플형 마이크로구조
JP4186727B2 (ja) スイッチ
US9324706B2 (en) Method of making an integrated switchable capacitive device
US10248911B2 (en) Ion trapping device with insulating layer exposure prevention and method for manufacturing same
US9214622B2 (en) Size-controllable opening and method of making same
JP2006518911A (ja) バンプ型memsスイッチ
US10403442B2 (en) Method of manufacturing a MEMS DVC device
CN105359237A (zh) 在mems数字可变电容器(dvc)加工期间的应力控制
US10896787B2 (en) Contact in RF-switch
KR101376012B1 (ko) 마이크로 팁 구조물 및 이의 제조방법
US11536872B2 (en) Method for producing an integrated circuit pointed element comprising etching first and second etchable materials with a particular etchant to form an open crater in a project
KR101865446B1 (ko) 마이크로 탐침 구조물 및 이의 제조방법
US20120279837A1 (en) Method for reducing substrate charging
US20040166602A1 (en) Electro-thermally actuated lateral-contact microrelay and associated manufacturing process
CN112437751B (zh) 电接触部和用于制造电接触部的方法
EP2747102B1 (en) Vertical electromechanical switch device and method for manufacturing the same.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220407

Address after: North Carolina

Patentee after: QORVO US, Inc.

Address before: California, USA

Patentee before: CAVENDISH KINETICS, Inc.

TR01 Transfer of patent right