CN105339781A - 用于热机械结构健康监测的原位标记的方法 - Google Patents

用于热机械结构健康监测的原位标记的方法 Download PDF

Info

Publication number
CN105339781A
CN105339781A CN201480034919.0A CN201480034919A CN105339781A CN 105339781 A CN105339781 A CN 105339781A CN 201480034919 A CN201480034919 A CN 201480034919A CN 105339781 A CN105339781 A CN 105339781A
Authority
CN
China
Prior art keywords
assembly
mark
base alloy
stress
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480034919.0A
Other languages
English (en)
Other versions
CN105339781B (zh
Inventor
L.道托瓦
W.V.小崔尔弗斯
J.奥特
E.巴彻尔
G.A.施尔青格
R.J.赫伯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of CN105339781A publication Critical patent/CN105339781A/zh
Application granted granted Critical
Publication of CN105339781B publication Critical patent/CN105339781B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/25Measuring force or stress, in general using wave or particle radiation, e.g. X-rays, microwaves, neutrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/39Traceability, e.g. incorporating identifier into a workpiece or article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/33Platforms or substrates translatory in the deposition plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种监测组件的表面和近表面区中的残余应力的方法,其包括识别组件表面上预期在所述组件正常操作条件期间经受高应力的预定位置。标记颗粒在组件在预定位置处的添加制造期间被引入所述组件中。然后,使用x射线技术在与标记材料对应的位置处测量所述组件的残余应力。

Description

用于热机械结构健康监测的原位标记的方法
发明背景
本发明一般涉及添加制造领域。具体说来,本发明涉及一种添加制造工艺,其使得能够测量组件中在特定位置处的残余应力。
添加制造是一种工艺,可通过该工艺,使用根据部件的精确三维(3D)计算机模型生成每层的机器以逐层方式制作部件。在粉末层添加制造中,将粉末层铺展于平台上并且将选择区通过烧结或熔融由定向能量束相连。将平台向下分度,施加另一层粉末,并且再次连接选择区。将所述过程重复高达上千次直到产生成品3D部件。在直接沉积添加制造技术中,根据通过挤压、注射或送丝产生的部件的3D模型将少量熔融或半固体材料施用于平台上并且由能量束激发以粘结材料从而形成部件。常见的添加制造工艺包括选择性激光烧结、直接激光熔融直接金属沉积、以及电子束熔融。
一旦制造组件,便将所述组件并入有待用于特定功能的系统中。一个实例是燃气涡轮发动机。在操作期间,组件暴露于对组件施加应力的热和机械环境。组件所经受的应力及所产生的应变导致组件中的残余应力及可能的结构破坏或裂纹。
存在若干非破坏性技术以检测组件中之裂纹扩展或残余应力。当前的非破坏性技术将组件暴露于外部探头,如电磁场、染料或超声波。难以用当前的技术在组件中的预定位置处获得地域性信息,例如,在使用应力增加的区域处。当前的技术主要在裂纹形成之后对其进行检测,并且对导致裂纹例如内部裂缝形成的阶段极不敏感。
发明内容
本发明涉及一种监测通过添加制造形成的基合金的组件的残余应力的方法,所述方法包括识别组件上在组件正常操作条件期间经受高应力的预定位置。标记颗粒在组件在预定位置处的添加制造期间被引入所述组件的表面及近表面区中。在标记颗粒位置处测量组件的残余应力。
通过添加制造形成且在操作期间进一步经受应力的组件含有在组件表面上的各个预定位置处插入组件的表面及近表面区中的标记材料。标记允许在每种标记材料的位点处在组件上进行残余应力测量。
附图简述
图1是表示监测组件中的残余应力的方法的流程图。
图2是直接金属沉积工艺的示意图。
图3是涡轮机叶片的透视图。
具体实施方式
图1是表示监测残余应力的方法的流程图。方法10首先涉及由组件之正常使用条件所引起的高应力区的识别(步骤12)。在下一步中,开始添加制造工艺(步骤14)。标记颗粒在制造期间(步骤16)被引入组件的预定高应力位置处。然后完成添加制造工艺(步骤18),并且组件在正常使用条件下交付使用(步骤20)。必要时将组件从服务中除去(步骤22)。在标记颗粒所位于的区中进行X射线衍射测量(步骤24)以测定标记颗粒的面间距,从而确定局部内部弹性应变及内部残余应力(步骤26)。
测量金属组件中的残余应力的X射线衍射技术在本领域中是公知的并且依赖于以下事实:内部弹性应力将从无应力状态下结晶固体的面间距改变为应力下的同样材料的面间距。面间距通过公知的布拉格定律来测定
nλ=2dsinθ
其中λ是入射x射线波长,d是面间距,θ是衍射峰的衍射角且n是整数。如果d1是某一结晶方向上的受应力金属的面间距且d0是无应力状态下相同方向上相同金属的间距,那么在那个方向上的残余应变ε是:
ϵ = . d 1 - d 0 d 0
在弹性各向同性材料中的残余应力可由应变决定,通过将所述应变乘以含有弹性模数及泊松比(Poisson’sratio)的适当项。论述残余应力的x射线测量的实例参考文献是Fitzpatrick等人,NationalPhysicalLaboratoryoftheUK的“DeterminationofResidualStressesbyX-rayDiffraction-issue2”(获自www.npl/co/uk),其全部并入本文。
被插入添加制造组件中的标记颗粒被选出,从而不通过合金化、通过形成第二相或通过其他形式的溶液或相互作用与组件材料相互作用。标记的面间距变化可随后用作在标记附近含有标记的组件的内部应力的量度。竣工状态中的标记材料的面间距被视为无应力参考值。
标记颗粒被插入组件的表面和近表面区中以用于通过x射线测量残余应力。x射线穿透到金属组件中通常大约几微米。
与钛合金涡轮组件如Ti-6Al-4V一起使用的示例性标记材料是钸。铈几乎不能溶于钛中,在Ti-Ce二元系统中不存在金属间化合物,并且钸因其大的原子质量而产生相对强大的x射线信号。镝和钐是其他候选物。
适用于本发明方法的添加制造工艺是直接金属沉积(DMD)。直接金属沉积工艺的示意图展示于图2中。DMD工艺30包括基底32、工件34、沉积单元36及传感器46和48。基底32能够三轴计算机控制定位,如箭头A所示意性地指示。沉积单元36含有通道40和42,这些通道可以携带沉积粉末和惰性气体到沉积部位。沉积单元36还含有激光能量源(未示出)及相关光学器件38。沉积单元36能够在构建期间五轴计算机控制定位。来自传感器44和46的输出被用于控制工件34的构建。工件34是通过激光38形成的,激光38将工件34上的小区48熔融到引入粉末穿过的通道42和44中。所述构建是根据储存在装置30的控制系统的存储器中的工件34模型的CAD模型的逐点过程。
在本发明中,当需要标记区时,标记颗粒代替正常构造颗粒沉积于熔池48中。标记区的尺寸可以从0.1微米到超过1毫米,这取决于需求。
示例性涡轮机叶片50的透视图展示于图3中。涡轮机叶片50包括根部52、平台54、具有冷却通道58的翼型56及端头60。在作业期间叶片50上的高应力区主要在过渡区中,如翼型56与平台54之间,以及在根部52的弯曲区中,所有都由箭头T指示。这些区也是添加制造构造期间如图2所示本发明的标记所置放以便监测在作业期间产生的残余应力的地方。适用的标记材料将展现至少以下特征。其在添加制造工艺期间不会与基合金合金化。其不会与基合金形成金属间相。对于强X射线签名,其优选具有高原子序数。另外,标记材料的衍射峰优选将不会与基合金的衍射峰重叠。
可能实施方案的论述
以下是本发明的可能实施方案的非排他性描述。
监测通过添加制造形成的基合金组件的残余应力的方法可包括:识别在组件的正常操作条件期间经受高应力的组件的高应力位置;在添加制造期间将标记颗粒引入表面和近表面区中以生成与组件所识别的高应力位置有关的标记;以及测量标记处组件的残余应力。
另外地和/或可替代地,前段的方法可任选包括以下特征、配置和/或另外组件的任何一种或多种:
用x射线衍射测量标记处的残余应力;
x射线衍射可用于测量表面和近表面预定位置的至少一个中标记的面间距;
标记中的局部应变可由所测量的面间距决定;
x射线衍射测量可用x射线衍射仪进行;
x射线衍射可用集中于组件表面上的直径为约1mm至2mm的x射线束进行;
添加制造可包括直接金属沉积、直接激光熔融或直接激光沉积;
标记可不溶于基合金中;
基合金可包括钛合金且标记可以是铈。
通过添加制造形成且在操作期间经受应力的基合金组件可包括不同于基合金的标记材料的标记,所述标记材料被插入所述组件的表面和近表面区中的预定位置处以允许在所述标记处的组件上进行残余应力测量。
另外地和/或可替代地,前段的组件可任选包括以下特征、配置和/或另外组件的任何一种或多种:
预定位置可以是预期在组件的正常操作条件期间经受应力的区;
残余应力测量可以是x射线衍射测量;
x射线衍射测量可用于通过测量标记材料的晶格面间距来确定标记材料中的残余应变;
x射线衍射测量可用x射线衍射仪进行;
x射线衍射测量可以使用约1mm至2mm的光束尺寸;
添加制造可包括直接金属沉积、直接激光熔融或直接激光沉积;
标记材料不可溶于基合金中并且不能与基合金形成第二相且另外不能与基合金反应;
基合金可以是钛合金且标记材料可以是铈。
尽管已参考示例性实施方案描述本发明,但是本领域技术人员应理解,在不背离本发明的范围下,可以对本发明做出各种改变且可用等效物替换其要素。另外,许多修改可在不背离其必需范围下使得特定的情况或材料适于本发明的教示。因此,这意味着本发明不限于所公开的具体实施方案,而是本发明将包括属于所附权利要求书范围内的所有实施方案。

Claims (18)

1.一种监测通过添加制造形成的基合金的组件的残余应力的方法,所述方法包括:
识别在所述组件的正常操作条件期间经受高应力的所述组件的高应力位置;
在添加制造期间将标记颗粒引入表面及近表面区中以生成与所述组件的所识别的高应力位置有关的标记;以及
测量所述组件在所述标记处的残余应力。
2.如权利要求1所述的方法,进一步包括用x射线衍射测量所述标记处的残余应力。
3.如权利要求2所述的方法,其中所述x射线衍射被用于测量所述表面和近表面预定位置的至少一个中的标记的面间距。
4.如权利要求3所述的方法,其中所述标记中的局部应变是由所测量的面间距来确定。
5.如权利要求3所述的方法,其中所述x射线衍射测量是用x射线衍射仪进行。
6.如权利要求3所述的方法,进一步包括用集中于所述组件表面上的直径为约1mm至2mm的x射线束进行所述x射线衍射。
7.如权利要求1所述的方法,其中所述添加制造包括直接金属沉积、直接激光熔融或直接激光沉积。
8.如权利要求1所述的方法,其中所述标记不可溶于所述基合金中。
9.如权利要求1所述的方法,其中所述基合金包括钛合金且所述标记包括铈。
10.一种通过添加制造形成且在操作期间经受应力的基合金的组件,所述组件包括不同于基合金的标记材料的标记,所述标记材料被插入所述组件的表面和近表面区中的预定位置处以允许在所述标记处的组件上进行残余应力测量。
11.如权利要求10所述的方法,其中所述预定位置包括在所述组件的正常操作条件期间预期经受应力的区。
12.如权利要求10所述的组件,其中所述残余应力测量是x射线衍射测量。
13.如权利要求11所述的组件,其中所述x射线衍射测量被用于通过测量所述标记材料的晶格面间距来确定所述标记材料中的残余应变。
14.如权利要求12所述的组件,其中所述x射线衍射测量是用x射线衍射仪进行。
15.如权利要求12所述的组件,其中所述X射线衍射测量使用约1mm至2mm的光束尺寸。
16.如权利要求10所述的组件,其中所述添加制造包括直接金属沉积、直接激光熔融或直接激光沉积。
17.如权利要求10所述的方法,其中所述标记材料不可溶于所述基合金中,不与所述基合金形成第二相且另外不与所述基合金反应。
18.如权利要求10所述的方法,其中所述基合金包括钛合金且所述标记材料包括铈。
CN201480034919.0A 2013-08-21 2014-08-08 用于热机械结构健康监测的原位标记的方法 Active CN105339781B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361868297P 2013-08-21 2013-08-21
US61/868297 2013-08-21
PCT/US2014/050296 WO2015026540A1 (en) 2013-08-21 2014-08-08 Method for in-situ markers for thermal mechanical structural health monitoring

Publications (2)

Publication Number Publication Date
CN105339781A true CN105339781A (zh) 2016-02-17
CN105339781B CN105339781B (zh) 2018-12-04

Family

ID=52484046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480034919.0A Active CN105339781B (zh) 2013-08-21 2014-08-08 用于热机械结构健康监测的原位标记的方法

Country Status (5)

Country Link
US (2) US10598556B2 (zh)
EP (1) EP3036532B1 (zh)
JP (1) JP6360894B2 (zh)
CN (1) CN105339781B (zh)
WO (1) WO2015026540A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170167930A1 (en) * 2015-12-10 2017-06-15 General Electric Company Components with embedded strain sensors and methods for monitoring the same
KR102344846B1 (ko) * 2017-11-22 2021-12-29 한국재료연구원 3 차원 프린팅 장치 및 상기 장치를 이용한 3 차원 프린팅 방법
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
CN112083021B (zh) * 2020-08-21 2021-09-03 西北工业大学 一种α+β型钛合金的X射线残余应力测算方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480439A (en) * 1991-02-13 1996-01-02 Lunar Corporation Method for periprosthetic bone mineral density measurement
US6254703B1 (en) * 1999-02-19 2001-07-03 Lsp Technologies, Inc. Quality control plasma monitor for laser shock processing
US20020051514A1 (en) * 2000-07-21 2002-05-02 Ruud Clayton O. Apparatus and method for in-situ measurement of residual surface stresses
CN1588019A (zh) * 2004-07-14 2005-03-02 西南技术工程研究所 短波长x射线衍射测量装置和方法
JP2005241308A (ja) * 2004-02-24 2005-09-08 Railway Technical Res Inst X線回折装置及びx線回折システム
US20090117589A1 (en) * 2007-04-04 2009-05-07 Southern Sarka O Systems and methods for analyzing persistent homeostatic perturbations
CN102608144A (zh) * 2012-03-28 2012-07-25 苏州科技学院 一种测量金属微结构残余应力三维分布的装置及其方法
CN102998312A (zh) * 2012-11-29 2013-03-27 哈尔滨东安发动机(集团)有限公司 钛合金叶轮表面完整性检测方法
CN103056364A (zh) * 2011-10-21 2013-04-24 普拉特及惠特尼火箭达因公司 添加制造原地应力释放
CN103076115A (zh) * 2011-10-07 2013-05-01 空中客车运营有限公司 测量部件中的残余应力的方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150332A (ja) * 1983-02-16 1984-08-28 Nhk Spring Co Ltd X線ビ−ムの投射角設定方法
JPH06249798A (ja) * 1993-02-26 1994-09-09 Nippon Steel Corp X線回折用光学素子
JP3237810B2 (ja) 1994-03-18 2001-12-10 株式会社豊田中央研究所 応力検出方法
US5817945A (en) 1996-04-15 1998-10-06 Mcdonnell Douglas System and method of determining strain
US5942444A (en) 1997-01-27 1999-08-24 Biocode, Inc. Marking of products to establish identity, source and fate
US7286893B1 (en) * 1998-06-30 2007-10-23 Jyoti Mazumder Tailoring residual stress and hardness during direct metal deposition
JP4261080B2 (ja) * 2001-03-30 2009-04-30 株式会社東芝 残留応力測定方法
US7918141B1 (en) * 2007-04-03 2011-04-05 The United States Of America As Represented By The Secretary Of The Air Force Local residual stress measurement and analysis for detection and prediction of damage in thermal barrier coatings
WO2009143849A2 (en) * 2008-05-30 2009-12-03 Vestas Wind System A/S A wind turbine rotor, a wind turbine and use thereof
WO2012174232A2 (en) 2011-06-15 2012-12-20 New York University Methods of identifying original and counterfeit articles using micro x-ray diffraction mapping
JP5347001B2 (ja) 2011-08-18 2013-11-20 日立Geニュークリア・エナジー株式会社 X線回折装置
JP5522411B2 (ja) * 2011-11-10 2014-06-18 パルステック工業株式会社 X線回折測定装置及びx線回折測定方法
EP2946255B8 (en) * 2013-01-17 2020-12-02 BAE SYSTEMS plc Object production using an additive manufacturing process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480439A (en) * 1991-02-13 1996-01-02 Lunar Corporation Method for periprosthetic bone mineral density measurement
US6254703B1 (en) * 1999-02-19 2001-07-03 Lsp Technologies, Inc. Quality control plasma monitor for laser shock processing
US20020051514A1 (en) * 2000-07-21 2002-05-02 Ruud Clayton O. Apparatus and method for in-situ measurement of residual surface stresses
JP2005241308A (ja) * 2004-02-24 2005-09-08 Railway Technical Res Inst X線回折装置及びx線回折システム
CN1588019A (zh) * 2004-07-14 2005-03-02 西南技术工程研究所 短波长x射线衍射测量装置和方法
US20090117589A1 (en) * 2007-04-04 2009-05-07 Southern Sarka O Systems and methods for analyzing persistent homeostatic perturbations
CN103076115A (zh) * 2011-10-07 2013-05-01 空中客车运营有限公司 测量部件中的残余应力的方法和装置
CN103056364A (zh) * 2011-10-21 2013-04-24 普拉特及惠特尼火箭达因公司 添加制造原地应力释放
CN102608144A (zh) * 2012-03-28 2012-07-25 苏州科技学院 一种测量金属微结构残余应力三维分布的装置及其方法
CN102998312A (zh) * 2012-11-29 2013-03-27 哈尔滨东安发动机(集团)有限公司 钛合金叶轮表面完整性检测方法

Also Published As

Publication number Publication date
JP6360894B2 (ja) 2018-07-18
US10598556B2 (en) 2020-03-24
JP2016530523A (ja) 2016-09-29
EP3036532A1 (en) 2016-06-29
WO2015026540A1 (en) 2015-02-26
US20200003639A1 (en) 2020-01-02
EP3036532A4 (en) 2017-04-05
CN105339781B (zh) 2018-12-04
US20170067788A1 (en) 2017-03-09
EP3036532B1 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
CN105339781A (zh) 用于热机械结构健康监测的原位标记的方法
Ma et al. Crystallographic texture in an additively manufactured nickel-base superalloy
Rieth et al. Review on the EFDA programme on tungsten materials technology and science
El-Awady et al. Pre-straining effects on the power-law scaling of size-dependent strengthening in Ni single crystals
Pettinari et al. Stacking fault energy in short-range ordered γ-phases of Ni-based superalloys
Tuck et al. A study of creep in polysilicon MEMS devices
Tiley et al. Strengthening mechanisms in an inertia friction welded nickel-base superalloy
Liu et al. Cutting force prediction on micromilling magnesium metal matrix composites with nanoreinforcements
Cheng et al. Study on embedding and integration of microsensors into metal structures for manufacturing applications
Levitin High Temperature Strain of Metals and Alloys: Physical Fundamentals
Shin et al. Evaluation of irradiation effects on fracture strength of silicon carbide using micropillar compression tests
Robertson et al. Visualizing the behavior of dislocations—seeing is believing
Sutter et al. Size‐Dependent Room Temperature Oxidation of Tin Particles
Peng et al. Uncertainty analysis of solid-liquid-vapor phase change of a metal particle subject to nanosecond laser heating
Liu et al. Dependence on manufacturing directions of tensile behavior and microstructure evolution of selective laser melting manufactured inconel 625
Ma et al. Measurement error of Young’s modulus considering the gravity and thermal expansion of thin specimens for in situ tensile testing
Miglietti et al. High strength, ductile braze repairs for stationary gas turbine components—part I
Laux et al. Advanced braze alloys for fast epitaxial high-temperature brazing of single-crystalline nickel-base superalloys
Soula et al. Quantitative evaluation of high temperature deformation mechanisms: a specific microgrid extensometry technique coupled with EBSD analysis
Nagy et al. Wide gap braze repair using vertically laminated repair scheme
He et al. In situ SEM study of creep deformation behavior of nickel-based single-crystal superalloys
Pak et al. VISUAL AND COGNITIVE ANALYSIS OF MULTIVARIATE DATA FOR CHARACTERIZING AL/SIC METAL MATRIX COMPOSITES.
Budiman et al. Probing Mechanics at the Extremes
US20210134472A1 (en) Techniques for incorporating sensors into apparatuses and systems
Shade Small scale mechanical testing techniques and application to evaluate a single crystal nickel superalloy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant