CN105332853B - 在额定风速以上协调风力发电机转速与功率的控制方法 - Google Patents

在额定风速以上协调风力发电机转速与功率的控制方法 Download PDF

Info

Publication number
CN105332853B
CN105332853B CN201510852094.XA CN201510852094A CN105332853B CN 105332853 B CN105332853 B CN 105332853B CN 201510852094 A CN201510852094 A CN 201510852094A CN 105332853 B CN105332853 B CN 105332853B
Authority
CN
China
Prior art keywords
wind
wind speed
power
speed
driven generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510852094.XA
Other languages
English (en)
Other versions
CN105332853A (zh
Inventor
樊英
赵雪浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201510852094.XA priority Critical patent/CN105332853B/zh
Publication of CN105332853A publication Critical patent/CN105332853A/zh
Application granted granted Critical
Publication of CN105332853B publication Critical patent/CN105332853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开一种在额定风速以上协调风力发电机转速与功率的控制方法,先获取当前时刻实时风速值并记录存储;计算当前时刻前一设定时间段内风速方差值;将风速方差值与设定阀值进行比较,根据比较结果判断此时风机工作的风况:如果所述风速方差值大于设定阀值,则处于风速波动区,反之处于平滑风速区;根据风况确定变流器控制策略:在处于风速波动区情况下,对变流器采用最大风能跟踪控制,减小风力发电机的转速,在处于平滑风速区情况下,对变流器采用平滑功率跟踪控制,保证功率的平滑输出。本方法在传统平滑功率算法的基础上,增加了对风速波动情况的判断环节,达到发电机转速与输出功率的综合最优。

Description

在额定风速以上协调风力发电机转速与功率的控制方法
技术领域
本发明涉及一种额定风速以上风力发电机控制方法,属于电机的控制领域。
背景技术
日益严峻的能源供应与全球气候变暖,引起了各国对于能源使用方式的深刻反思。随着全社会对能源和环境问题的持续关注,发展清洁的可再生能源,如风能、太阳能、生物质能等也成为了大势所趋。其中风能是可以为人类大量使用的、取之不尽用之不绝的绿色能源。风能利用的主要方式是风力发电,风力发电系统是将风能转化为电能的装置。风力发电系统输出功率随外界风速的变化而变化,由于风速的波动会造成功率的波动,所以在并网时对电网冲击较大。因而很有必要对风力发电机平滑功率控制进行研究。
传统风力发电机平滑功率控制策略仅仅关注于在额定风速以上时将功率限制在额定值并平滑输出并未考虑对风力发电机转速的限制,所以在实际应用时会导致风力发电机的转速远远超过额定值,会造成相当大的机械应力,减少了风机使用寿命。
基于上述问题,需要找到一个能够在额定风速以上协调风力发电机功率与转速的控制方法。
发明内容
技术问题:对于风力发电机在额定风速以上的运行情况,如果简单采用传统的平滑功率控制策略,由于风速是随机波动的,这就意味着风力机输出转矩是波动的,当风力机输出转矩增大,若发电机输出功率保持不变则转速必将增大,这就导致风力发电机组机械部件所受机械应力增加。
技术方案:针对上述问题,提出一种在额定风速以上协调风力发电机转速与功率的控制方法,在额定风速以上运行时,变流器所采用的控制策略并不是全程都是平滑功率控制,加入了对风速波动情况的判断环节,当风速在额定风速以上波动小时采用平滑功率控制以保证功率的平滑输出,当风速波动情况较大时,为了减小风力机叶片等机械部件因转速上升所造成的损耗,则采用传统的最大功率跟踪控制策略。
具体包括以下步骤:
步骤一:获取当前时刻实时风速值并记录存储;
步骤二:计算当前时刻前一设定时间段内风速方差值;
步骤三:将所述风速方差值与设定阀值进行比较,根据比较结果判断此时风机工作的风况:如果所述风速方差值大于设定阀值,则处于风速波动区,反之处于平滑风速区;
步骤四:根据风况确定变流器控制策略:
在处于风速波动区情况下,对变流器采用最大风能跟踪控制,减小风力发电机的转速,在处于平滑风速区情况下,对变流器采用平滑功率跟踪控制,保证功率的平滑输出。
有益效果:
(1)在额定风速以上运行时,当风速波动较小情况下,采用所述控制方法能够使风力发电机可以平滑输出功率,提高电能质量。
(2)当风速波动情况较大时则采用传统的最大功率跟踪的变流器控制策略以减小转速超调,减少风力机机械部件的损耗。
附图说明
图1是风力发电机组控制方法的流程图
图2是风力发电机组控制方法的结构框图
具体实施方式
下面结合附图对本发明的技术方案分步骤进行详细说明。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图1和具体实施方式对本发明作进一步详细的说明。
本发明的在额定风速以上协调风力发电机转速与功率的控制方法包括如下步骤:
步骤1:获取当前时刻实时风速值并记录存储;
步骤2:计算当前时刻前一设定时间段T内风速方差值,具体公式如下:
其中V是记录存储的当前时刻实时风速值,为在该当前时刻前T时间内的风速平均值,Var(V)为该当前时刻前T时间内的风速方差值。所取时间段T应当根据控制要求的实时性及有效性合理进行选择。
步骤3:判断此时风机工作的风况,即处在额定值上下抖动区(即风速波动区)还是持续大于额定风速的高风速区(平滑风速区)。具体判断方法为:
Var(V)≥δ→风速波动区
(3)
Var(V)<δ→平滑风速区
其中,设定阀值δ根据风力发电机实际运行状况进行设置,当对风力发电机输出功率有较高要求时,设置较大的设定阀值;当对风力发电机叶片等机械部件的寿命有较高要求时,设置较小的设定阀值。
步骤4:当所判断出的当前风况是在平滑风速区时,即风速波动不大,并且由于风力机组巨大的转动惯量,风力发电机转速不能完全的跟随风速的变化而变化,所以此时更主要考虑的是如何提高电能质量。
当所判断出的当前风况是在风速波动区,即风速存在剧烈变化的状况,如果仍然采用平滑功率控制策略,单凭变桨机构无法将发电机转速限制在安全范围,可下列式子证明
两边同时乘以ω:
其中ω为发电机机械角速度,Tm为风力机输出转矩,Te为发电机电磁转矩,J为发电机转动惯量。若采用的是平滑功率控制策略,则风力发电机输出功率Pe=Te*ω保持在额定值。当风速突然增大时,则风力机输出转矩Tm也将突然增大,而在式(5)中第二项为定值,所以风力发电机转速也将必然增大,所以此时应当采用最大功率跟踪的变流器控制策略。
图2所示为风力发电机组控制方法的结构框图,风力发电机机组采用id=0的矢量控制策略,这样就使得风力发电机电磁转矩就仅仅与iq相关。当发电机在运行时,根据风速判断环节,来对工作模式进行切换,也就是对iq *值进行切换(iq *是iq的给定值,iq通过闭环跟踪iq *)。图中MPPT表示在风速波动区采用最大风能跟踪控制策略下给定的iq *,式表示在平滑风速区下计算iq *的公式,PN表示风力发电机的额定功率,ω为发电机机械角速度,p为电机极对数,ψf为发电机永磁磁链。

Claims (3)

1.一种在额定风速以上协调风力发电机转速与功率的控制方法,其特征在于包括:
步骤一:获取当前时刻实时风速值并记录存储;
步骤二:计算当前时刻前一设定时间段内风速方差值;
步骤三:将所述风速方差值与设定阀值进行比较,根据比较结果判断此时风机工作的风况:如果所述风速方差值大于设定阀值,则处于风速波动区,反之处于平滑风速区;
步骤四:根据风况确定变流器控制策略:
在处于风速波动区情况下,对变流器采用最大风能跟踪控制,减小风力发电机的转速,在处于平滑风速区情况下,对变流器采用平滑功率跟踪控制,保证功率的平滑输出。
2.根据权利要求1所述在额定风速以上协调风力发电机转速与功率的控制方法,其特征在于,所述设定时间段根据控制所要求实时性以及有效性合理进行选择。
3.根据权利要求1所述在额定风速以上协调风力发电机转速与功率的控制方法,其特征在于,所述设定阀值根据风力发电机实际运行状况进行设置,当对风力发电机输出功率有较高要求时,设置较大的设定阀值;当对风力发电机叶片等机械部件的寿命有较高要求时,设置较小的设定阀值。
CN201510852094.XA 2015-11-30 2015-11-30 在额定风速以上协调风力发电机转速与功率的控制方法 Active CN105332853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510852094.XA CN105332853B (zh) 2015-11-30 2015-11-30 在额定风速以上协调风力发电机转速与功率的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510852094.XA CN105332853B (zh) 2015-11-30 2015-11-30 在额定风速以上协调风力发电机转速与功率的控制方法

Publications (2)

Publication Number Publication Date
CN105332853A CN105332853A (zh) 2016-02-17
CN105332853B true CN105332853B (zh) 2018-01-30

Family

ID=55283576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510852094.XA Active CN105332853B (zh) 2015-11-30 2015-11-30 在额定风速以上协调风力发电机转速与功率的控制方法

Country Status (1)

Country Link
CN (1) CN105332853B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108119302B (zh) * 2016-11-30 2019-11-19 北京金风科创风电设备有限公司 风力发电机的额定转速控制方法及装置
CN108590961A (zh) * 2018-04-24 2018-09-28 深圳智润新能源电力勘测设计院有限公司 一种变桨控制方法
CN108506163B (zh) * 2018-04-25 2024-01-30 华北电力科学研究院有限责任公司 一种双馈风电虚拟同步机转速恢复方法、装置及系统
CN113090453B (zh) * 2019-12-23 2023-03-03 新疆金风科技股份有限公司 风力发电机组的控制方法、装置和风力发电机组
CN113790130B (zh) * 2021-09-23 2022-10-14 风脉能源(武汉)股份有限公司 风力发电机组转速波动平稳性的评估方法
CN114439683B (zh) * 2022-01-13 2023-05-02 华能大理风力发电有限公司 风力发电机转矩控制方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155356A (zh) * 2011-03-22 2011-08-17 国电联合动力技术有限公司 一种基于电磁耦合器调速前端的风电机组运行控制方法
CN102242689A (zh) * 2011-06-24 2011-11-16 南京理工大学 基于风力发电的最大功率点跟踪控制的改进爬山算法
CN102518555A (zh) * 2012-01-12 2012-06-27 三一电气有限责任公司 一种兆瓦级风力机组及其控制方法、控制系统
CN104329225A (zh) * 2014-08-29 2015-02-04 江苏中航动力控制有限公司 风力发电机组功率控制方法
CN104863793A (zh) * 2015-06-10 2015-08-26 东南大学 一种根据平均值触发风力发电机变桨动作指令的控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698400A (en) * 1979-12-29 1981-08-07 Mitsubishi Electric Corp Controlling device of wind power generation
FI118027B (fi) * 2004-08-11 2007-05-31 Abb Oy Menetelmä tuulivoimalan yhteydessä
WO2015135549A1 (en) * 2014-03-12 2015-09-17 Vestas Wind Systems A/S Control method for a wind turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155356A (zh) * 2011-03-22 2011-08-17 国电联合动力技术有限公司 一种基于电磁耦合器调速前端的风电机组运行控制方法
CN102242689A (zh) * 2011-06-24 2011-11-16 南京理工大学 基于风力发电的最大功率点跟踪控制的改进爬山算法
CN102518555A (zh) * 2012-01-12 2012-06-27 三一电气有限责任公司 一种兆瓦级风力机组及其控制方法、控制系统
CN104329225A (zh) * 2014-08-29 2015-02-04 江苏中航动力控制有限公司 风力发电机组功率控制方法
CN104863793A (zh) * 2015-06-10 2015-08-26 东南大学 一种根据平均值触发风力发电机变桨动作指令的控制方法

Also Published As

Publication number Publication date
CN105332853A (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
CN105332853B (zh) 在额定风速以上协调风力发电机转速与功率的控制方法
Chen et al. New overall power control strategy for variable-speed fixed-pitch wind turbines within the whole wind velocity range
Mesemanolis et al. High-efficiency control for a wind energy conversion system with induction generator
Belmokhtar et al. Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator)
Wang et al. Modelling of a PMSG wind turbine with autonomous control
Jansuya et al. Design of MATLAB/Simulink modeling of fixed-pitch angle wind turbine simulator
Shafiei et al. A control approach for a small-scale PMSG-based WECS in the whole wind speed range
CN107476937A (zh) 一种永磁同步风力发电系统的自适应滑模控制策略
US20120139350A1 (en) System and method of integrating wind power and tidal energy
Siraj et al. Modeling and control of a doubly fed induction generator for grid integrated wind turbine
Daoud et al. Control scheme of PMSG based wind turbine for utility network connection
Cirrincione et al. Growing neural gas (GNG)-based maximum power point tracking for high-performance wind generator with an induction machine
Singh et al. Performance of wind energy conversion system using a doubly fed induction generator for maximum power point tracking
Smida et al. Pitch angle control for variable speed wind turbines
Liu et al. Design and realization of DC motor and drives based simulator for small wind turbine
Taoussi et al. Low-speed sensorless control for wind turbine system
Saad et al. Optimal tracking, modeling and control of aerogenerator based on PMSG driven by wind turbine
Pena et al. Control strategy of doubly fed induction generators for a wind diesel energy system
Imad et al. Robust Active disturbance Rejection Control of a direct driven PMSG wind turbine
Al-Toma et al. Intelligent pitch angle control scheme for variable speed wind generator systems
Zhu et al. SM-MRAS based sensorless MPPT control for dual power flow wind energy conversion system
CN104863793A (zh) 一种根据平均值触发风力发电机变桨动作指令的控制方法
Soumia et al. Maximum power tracking control wind turbine based on permanent magnet synchronous generator with complete converter
Serhoud et al. Sensorless sliding power control of doubly fed induction wind generator based on MRAS observer
Zine et al. Sliding mode control of wind turbine emulator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant