CN105319387A - 一种交流自加热式风速风向传感器及其测量方法 - Google Patents

一种交流自加热式风速风向传感器及其测量方法 Download PDF

Info

Publication number
CN105319387A
CN105319387A CN201510883889.7A CN201510883889A CN105319387A CN 105319387 A CN105319387 A CN 105319387A CN 201510883889 A CN201510883889 A CN 201510883889A CN 105319387 A CN105319387 A CN 105319387A
Authority
CN
China
Prior art keywords
semiconductor thermocouple
heating
self
heating type
wind speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510883889.7A
Other languages
English (en)
Other versions
CN105319387B (zh
Inventor
易真翔
秦明
黄庆安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201510883889.7A priority Critical patent/CN105319387B/zh
Publication of CN105319387A publication Critical patent/CN105319387A/zh
Application granted granted Critical
Publication of CN105319387B publication Critical patent/CN105319387B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

本发明公开了一种交流自加热式风速风向传感器及其测量方法,该传感器包括砷化镓衬底,生长在砷化镓衬底表面上的用于产生热量的发热电阻和用于感知温差的半导体热电偶。将四个风速传感器进行正交排列,形成交流自加热式风速风向传感器。其检测方法为发热电阻产生热量,当风吹过时,会改变半导体热电偶冷、热两端形成的温差,改变冷、热两端产生的直流电压,通过检测四个直流电压的大小最终实现风速风向的同时检测。

Description

一种交流自加热式风速风向传感器及其测量方法
技术领域
本发明提出了一种风速风向传感器及其测量方法,属于微电子机械系统(MEMS)的技术领域。
背景技术
风速风向的检测与人们的日常生活密切相关,并在工农业生产、航天探空、能源开发、交通旅游、气象预报以及环境保护等诸多领域,风速风向检测所提供的信息都起着至关重要的作用。早期,风速风向的检测主要由机械式风杯和风向标来实现,接着又分别出现了基于超声原理和多普勒原理的风速检测系统。但是,这些风速传感器由于体积庞大、功耗高无法满足可移动、便携式等应用需求。微电子机械系统技术的发展推动了风速传感器的前进,并使得小型化、便携式的风速风向检测微系统成为可能。尽管国内外对基于MEMS技术的风速传感器进行了广泛而深入的研究,但是,随着物联网技术的快速崛起,对风速传感器的灵敏度和功耗又提出了更高的要求。
发明内容
发明目的:针对上述现有技术,提出一种结构简单、易于测量的自加热式风速风向传感器及其测量方法。
技术方案:为解决上述技术问题,本发明采用的技术方案是:
一种交流自加热式风速风向传感器,包括衬底,在所述衬底表面上生长并正交分布的四个交流自加热式风速传感器;其中,每个交流自加热式风速传感器包括一个发热电阻和一个半导体热电偶,所述发热电阻和半导体热电偶的横截面尺寸一致,所述半导体热电偶和发热电阻的长度比为15~20:1,所述发热电阻贴合于半导体热电偶的热端,所述发热电阻和半导体热电偶并联连接交流信号,在半导体热电偶连接所述交流信号的回路中串联有电容。
交流自加热式风速风向传感器的风速风向测量方法,包括如下步骤:
1),在无风的条件下,分别通过功率为100-500mW的交流信号对每个自加热式风速传感器的发热电阻和半导体热电偶同时加热,同时发热电阻通过接触面对半导体热电偶进行热传导加热,并同时检测所述半导体热电偶热端和冷端之间输出的直流电压大小;记录所述直流电压至稳定不变时的加热时间t1及稳定时的直流电压值;
2),将交流自加热式风速风向传感器置于待检测条件下,采用与步骤1)中相同的加热方式对发热电阻和半导体热电偶进行加热,当加热时间超过t1后,实时测量每个自加热式风速传感器的半导体热电偶的热端和冷端之间输出的直流电压值;
3),根据四个交流自加热式风速传感器测量得到的四个直流电压值计算得到实时风速风向。
有益效果:本发明的自加热式风速风向传感器用于检测风速风向时,风吹过会使得发热电阻产生的热量形成的温度梯度发生变化,即改变半导体热电偶冷热端的温差。通过测量正交排列的四组交流自加热式风速传感器中半导体热电偶的热端和冷端之间的直流输出电压,可以计算出风速的大小和方向。本发明的交流自加热式风速风向传感器及其测量方法不但具有结构简单,易于测量的优点,而且其测量速度在于毫秒级,具有灵敏性高且功耗小的特点。
附图说明
图1是交流自加热式风速风向传感器的俯视图;
图2是图1中交流自加热式风速风向传感器的A-A剖面图。
具体实施方式
下面结合附图对本发明做更进一步的解释。
如图1、2所示,一种交流自加热式风速风向传感器,包括砷化镓衬底3,在砷化镓衬底3表面上生长并正交分布的四个交流自加热式风速传感器。其中,每个交流自加热式风速传感器包括通过溅射、剥离等工艺在砷化镓衬底3表面形成的一个发热电阻1和一个半导体热电偶2,发热电阻1和半导体热电偶2的横截面尺寸一致,半导体热电偶2和发热电阻1的长度比为15-20:1。本实施例中,发热电阻1为边长10mm的方形结构,发热电阻1的长度为150mm。发热电阻1的一端贴合于半导体热电偶2的热端,发热电阻1和半导体热电偶2并联连接交流信号,在半导体热电偶2连接交流信号的回路中串联有电容C。
利用上述交流自加热式风速风向传感器检测风速风向时,首先要在无风条件下对其进行加热检测,即在无风的条件下,通过功率为100-500mW的交流信号对每个自加热式风速传感器的发热电阻1和半导体热电偶2同时加热,同时发热电阻1通过接触面对半导体热电偶2进行热传导加热,并同时检测半导体热电偶2热端和冷端之间输出的直流电压大小;记录该直流电压至稳定不变时的加热时间t1及稳定时的直流电压值。
上述过程中,在每个交流自加热式风速传感器上,发热电阻1和半导体热电偶2并联在交流信号两端,通过施加的交流信号使它们同时发热。其中,发热电阻1的阻值较小,由于并联的关系,发热电阻1产生的热量较多,由于半导体热电偶2的阻值远大于半导体热电偶2的阻值,故半导体热电偶2产生的热量较少,但这部分热量能够使半导体热电偶2的自身温度升高,从而使其Seebeck系数增大。由于发热电阻1的温度要高于半导体热电偶2,发热电阻1会通过接触面对半导体热电偶2进行热传导加热,通过实验测得半导体热电偶2和发热电阻1的长度比为15-20:1的范围时,加热时间t1后使得半导体热电偶2冷端和热端存稳定的温差,即半导体热电偶2能够给输出稳定的直流电压值。发热电阻1对半导体热电偶2的热传导式加热作用也起到增大其Seebeck系数的作用,从而导致半导体热电偶2的冷、热端之间输出的直流电压增大,很大程度上提高了传感器整体的灵敏度。
将交流自加热式风速风向传感器置于待检测条件下,通过同样的功率对发热电阻1和半导体热电偶2进行加热,在经过加热时间t1后,当风吹过传感器时,会使得发热电阻1产生的热量沿着风传播的方向传递并形成一定的温度梯度,该温度梯度的形成会改变半导体热电偶2的冷、热两之间的温差,基于Seebeck效应(塞贝克效应),最终改变半导体热电偶2的冷、热端之间输出的直流电压值。
本发明方案中,对于半导体热电偶2需要同时对其进行交流加热并检测直流输出,因此在半导体热电偶2连接交流信号的回路中串联有电容C,起到隔绝直流电压的作用。为了实现风速风向的同时测量,采用四个交流自加热式风速传感器正交排列的方式,每个交流自加热式风速传感器中的发热电阻1和半导体热电偶2的位置关系满足整体顺时针排列或逆时针排列;通过四个交流自加热式风速传感器输出的直流电压的大小,可以计算出风速和风向。
本发明的交流自加热式风速风向传感器在简化传统微机械风速风向传感器结构的同时也使得半导体热电偶发热,温度升高,从而提高半导体热电偶的Seebeck系数,最终增大输出直流电压,提高风速传感器的灵敏度、降低功耗。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种交流自加热式风速风向传感器,其特征在于:包括衬底(3),在所述衬底(3)表面上生长并正交分布的四个交流自加热式风速传感器;其中,每个交流自加热式风速传感器包括一个发热电阻(1)和一个半导体热电偶(2),所述发热电阻(1)和半导体热电偶(2)的横截面尺寸一致,所述半导体热电偶(2)和发热电阻(1)的长度比为15~20:1,所述发热电阻(1)贴合于半导体热电偶(2)的热端,所述发热电阻(1)和半导体热电偶(2)并联连接交流信号,在半导体热电偶(2)连接所述交流信号的回路中串联有电容。
2.基于权利要求1所述的交流自加热式风速风向传感器的风速风向测量方法,其特征在于,包括如下步骤:
1),在无风的条件下,分别通过功率为100-500mW的交流信号对每个自加热式风速传感器的发热电阻(1)和半导体热电偶(2)同时加热,同时发热电阻(1)通过接触面对半导体热电偶(2)进行热传导加热,并同时检测所述半导体热电偶(2)热端和冷端之间输出的直流电压大小;记录所述直流电压至稳定不变时的加热时间t1及稳定时的直流电压值;
2),将交流自加热式风速风向传感器置于待检测条件下,采用与步骤1)中相同的加热方式对发热电阻(1)和半导体热电偶(2)进行加热,当加热时间超过t1后,实时测量每个自加热式风速传感器的半导体热电偶(2)的热端和冷端之间输出的直流电压值;
3),根据四个交流自加热式风速传感器测量得到的四个直流电压值计算得到实时风速风向。
CN201510883889.7A 2015-12-03 2015-12-03 一种交流自加热式风速风向传感器及其测量方法 Active CN105319387B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510883889.7A CN105319387B (zh) 2015-12-03 2015-12-03 一种交流自加热式风速风向传感器及其测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510883889.7A CN105319387B (zh) 2015-12-03 2015-12-03 一种交流自加热式风速风向传感器及其测量方法

Publications (2)

Publication Number Publication Date
CN105319387A true CN105319387A (zh) 2016-02-10
CN105319387B CN105319387B (zh) 2019-12-03

Family

ID=55247227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510883889.7A Active CN105319387B (zh) 2015-12-03 2015-12-03 一种交流自加热式风速风向传感器及其测量方法

Country Status (1)

Country Link
CN (1) CN105319387B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107291167A (zh) * 2017-07-28 2017-10-24 京东方科技集团股份有限公司 一种腕部可穿戴的装置
CN107907706A (zh) * 2017-11-10 2018-04-13 北京卫星环境工程研究所 适用于低气压下的热膜风速风向测量系统
CN109164270A (zh) * 2018-06-21 2019-01-08 东南大学 一种超宽量程风速仪及制造方法
CN116559974A (zh) * 2023-07-07 2023-08-08 太原中北新缘科技中心(有限公司) 加热器式全风向气象传感器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162271A (ja) * 2000-11-24 2002-06-07 Tokyo Gas Co Ltd 流速センサ及び流速検出装置
CN102095888A (zh) * 2010-12-14 2011-06-15 东南大学 一种具有热隔离结构的热式风速风向传感器及其制备方法
CN201886035U (zh) * 2010-12-14 2011-06-29 东南大学 一种具有热隔离结构的热式风速风向传感器
CN102169126A (zh) * 2011-01-17 2011-08-31 东南大学 基于减薄工艺的热式风速风向传感器及其制备方法
JP2013195085A (ja) * 2012-03-15 2013-09-30 Sharp Corp 風速計
CN104090121A (zh) * 2014-07-09 2014-10-08 东南大学 三维集成正面感风的热式风速风向传感器装置及封装方法
CN104730283A (zh) * 2015-03-12 2015-06-24 东南大学 一种基于mems技术的三维风速风向传感器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162271A (ja) * 2000-11-24 2002-06-07 Tokyo Gas Co Ltd 流速センサ及び流速検出装置
CN102095888A (zh) * 2010-12-14 2011-06-15 东南大学 一种具有热隔离结构的热式风速风向传感器及其制备方法
CN201886035U (zh) * 2010-12-14 2011-06-29 东南大学 一种具有热隔离结构的热式风速风向传感器
CN102169126A (zh) * 2011-01-17 2011-08-31 东南大学 基于减薄工艺的热式风速风向传感器及其制备方法
JP2013195085A (ja) * 2012-03-15 2013-09-30 Sharp Corp 風速計
CN104090121A (zh) * 2014-07-09 2014-10-08 东南大学 三维集成正面感风的热式风速风向传感器装置及封装方法
CN104730283A (zh) * 2015-03-12 2015-06-24 东南大学 一种基于mems技术的三维风速风向传感器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张昭勇 等: "CMOS集成二维风速和风向传感器的研制", 《仪器仪表学报》 *
程海洋 等: "CMOS二维风速计控制及检测电路的研究", 《微纳电子技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107291167A (zh) * 2017-07-28 2017-10-24 京东方科技集团股份有限公司 一种腕部可穿戴的装置
CN107291167B (zh) * 2017-07-28 2019-06-14 京东方科技集团股份有限公司 一种腕部可穿戴的装置
CN107907706A (zh) * 2017-11-10 2018-04-13 北京卫星环境工程研究所 适用于低气压下的热膜风速风向测量系统
CN107907706B (zh) * 2017-11-10 2019-11-08 北京卫星环境工程研究所 适用于低气压下的热膜风速风向测量系统
CN109164270A (zh) * 2018-06-21 2019-01-08 东南大学 一种超宽量程风速仪及制造方法
CN109164270B (zh) * 2018-06-21 2020-01-17 东南大学 一种超宽量程风速仪及制造方法
CN116559974A (zh) * 2023-07-07 2023-08-08 太原中北新缘科技中心(有限公司) 加热器式全风向气象传感器
CN116559974B (zh) * 2023-07-07 2024-01-02 太原中北新缘科技中心(有限公司) 加热器式全风向气象传感器

Also Published As

Publication number Publication date
CN105319387B (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
CN100460875C (zh) 十字架结构的二维风速风向传感器及其制备方法
CN105319387A (zh) 一种交流自加热式风速风向传感器及其测量方法
Ashauer et al. Thermal flow sensor for liquids and gases based on combinations of two principles
US8453501B2 (en) Heat conduction-type barometric sensor utilizing thermal excitation
CN106017696B (zh) 热阻式薄膜热电堆型瞬态热流计及制备方法
CN102095888B (zh) 一种具有热隔离结构的热式风速风向传感器及其制备方法
CN104482971B (zh) 一种基于mems技术的热式流量传感器
WO2007014400A3 (en) Three dimensional anemometer comprising thick film segmented thermistors
Que et al. A compact flexible thermal flow sensor for detecting two-dimensional flow vector
CN201886035U (zh) 一种具有热隔离结构的热式风速风向传感器
De Luca et al. Diode-based CMOS MEMS thermal flow sensors
CN113933535B (zh) 一种二维双模式mems风速风向传感器及其制备方法
CN107907707B (zh) 一种基于双层热电堆结构的风速风向传感器及检测方法
CN101520351B (zh) 热敏表面剪切应力传感器
CN203798395U (zh) 一种石墨烯微型流量传感器
CN106814212B (zh) 一种热温差型风速传感器及其制备方法和检测方法
CN202403836U (zh) 多晶硅-金属热电偶塞贝克系数的在线测试结构
CN104535793B (zh) 基于延时测量的热风速传感器结构和风速风向测定方法
RU2764241C2 (ru) Устройство измерения скорости или расхода газа
CN101782410A (zh) 一种微机电系统热式流量计
Zhao et al. Wearable anemometer for 2D wind detection
Lan et al. Fabrication and characterization of dual coordinate self examined thermal flow sensor arrays based on longitudinal heat conduction
Kim et al. Design and fabrication of a flow sensor detecting flow direction and velocity
CN103926023A (zh) 一种用于高温大热流测量的热流传感器及其制备方法
Immonen et al. Development of a vertically configured mems heat flux sensor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant