CN105316327A - 小麦TaAGO4a基因CRISPR/Cas9载体及其应用 - Google Patents

小麦TaAGO4a基因CRISPR/Cas9载体及其应用 Download PDF

Info

Publication number
CN105316327A
CN105316327A CN201510744334.4A CN201510744334A CN105316327A CN 105316327 A CN105316327 A CN 105316327A CN 201510744334 A CN201510744334 A CN 201510744334A CN 105316327 A CN105316327 A CN 105316327A
Authority
CN
China
Prior art keywords
taago4a
crispr
wheat
gene
cas9
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510744334.4A
Other languages
English (en)
Other versions
CN105316327B (zh
Inventor
李爱丽
宋高原
耿帅锋
贾美玲
毛龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Original Assignee
Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Crop Sciences of Chinese Academy of Agricultural Sciences filed Critical Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Priority to CN201510744334.4A priority Critical patent/CN105316327B/zh
Publication of CN105316327A publication Critical patent/CN105316327A/zh
Application granted granted Critical
Publication of CN105316327B publication Critical patent/CN105316327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了小麦TaAGO4a基因的CRISPR-Cas9载体及其应用,属于作物分子生物学领域。本发明首先提供了特异性靶向TaAGO4a第三个外显子的gRNA,其DNA序列如SEQ?ID?NO.1所示,包含一个酶切位点XmnI,本发明接着提供了含有该gRNA的CRISPR-Cas9载体,通过共转化Cas9和该特异性gRNA到小麦原生质体中,利用酶切和测序技术,成功检测到该gRNA可以引导Cas9切割分别位于TaAGO4a染色体3A、3B和3D上的三个拷贝,从而引起该基因发生移码突变,致使其功能缺失或部分缺失,可用于制备TaAGO4a基因缺失的转基因小麦。

Description

小麦TaAGO4a基因CRISPR/Cas9载体及其应用
技术领域
本发明属于基因工程和基因遗传修饰领域,具体地说,涉及小麦TaAGO4a基因的CRISPR/Cas9载体及其应用。
背景技术
小麦作为一种重要的粮食作物,全世界有35%-40%的以小麦为主要粮食。同时作为三大谷物之一,产量几乎全做食用,是世界上总产量仅次于玉米的粮食作物。随着分子生物学技术的不断发展和对基因功能研究的逐步深入,表观遗传学如DNA甲基化、组蛋白修饰等在修饰基因、调控基因表达进而控制重要农艺性状如千粒重、开花等,发挥重要作用。AGO4a是AGO大家族成员,通过介导sRNAs参与DNA甲基化路径,进而调控相关基因的表达。AGO4蛋白作为RdDM路径的核心组分不仅参PAMP(pathogen-associatedmolecularpattern)启动的基础抗性,同时参与抗病基因介导的小种专化抗性。最新研究则显示,拟南芥接种细菌后,包括AGO4、AGO6在内的10个RdDM路径组分的表达均下调,这种基因表达下调直接导致了一个受甲基化调控的NLR(NOD-likereceptor)类抗病基因RMG1的上调,进而启动抗病反应。说明包括AGO4在内的整个RdDM路径在植物抗病反应中发挥重要作用。在小麦中AGO4a基因有三个拷贝,分别位于3A、3B和3D染色体上,分别命名为TaAGO4a-A、TaAGO4a-B和TaAGO4a-D。沉默该基因可以帮助研究人员进一步了解AGO4a如何在小麦抗病中的发挥作用,揭示其工作原理。
CRISPR(clusteredregularlyinterspacedshortpalindromicrepeats)/Cas(CRISPR-associated)系统是一种原核生物特有的针对外源性遗传物质的免疫系统,通过序列特异的RNA介导,切割降解外源性DNA,包括噬菌体和外源质粒,致使目的基因功能的缺失或部分缺失。CRISPR/Cas系统可以作为一种具有位点特异性的基因编辑系统,其最大的特点是操作简单、成本低、作用高效,是近两年来新发现并广泛用于基础研究的基因编辑新技术。2013年,科学家首次报道CRISPR/Cas系统在细胞上应用成功,随后,在斑马鱼、果蝇、小鼠、大鼠、猪中迅速得到应用。CRISPR/Cas系统在靶位点产生双链DNA断裂(doublestrandbreak,DSB),细胞可通过非同源末端连接(non-homologousendjoining,NHEJ)进行修复,导致基因发生移码突变,丧失功能。除此之外,该系统还能与同源重组载体、寡聚核苷酸共同作用,使靶基因发生高效的精确修饰。CRISPR/Cas系统凭借其巨大优势迅速成为基因编辑工具中的佼佼者,在基因功能研究等领域得到广泛的应用。
发明内容
本发明的目的是提供一种小麦的CRISPR-Cas9载体及其在制备TaAGO4a基因突变的转基因小麦中的应用。
本发明首先根据TaAGO4a-A、TaAGO4a-B和TaAGO4a-D的cDNA保守序列设计一个长度为20bp的gRNA,该gRNA位于TaAGO4a第三个外显子上,中间具有一个酶切位点,为XmnI。
具体地,本发明提供的特异性靶向小麦TaAGO4a基因第三外显子的gRNA的DNA序列如SEQIDNO.1所示或如SEQIDNO.2所示。
本发明提供了上述gRNA在制备小麦TaAGO4a基因CRISPR/Cas9载体中的应用。
本发明利用gRNA所构建小麦TaAGO4a基因的CRISPR/Cas9载体,可以对TaAGO4a的三个拷贝,分别位于3A、3B和3D染色体上进行基因编辑,从而引起该基因发生移码突变,致使功能部分或全部缺失。
进一步地,本发明提供了上述gRNA在制备TaAGO4a基因突变的转基因小麦中的应用。
含有本发明所述gRNA的DNA序列的CRISPR/Cas9载体属于本发明的保护范围,其能够特异地针对小麦TaAGO4a基因。
进一步地,本发明的CRISPR/Cas9载体,其通过以下方法制备得到,将SEQIDNO.1、2所示的寡聚核苷酸在95℃,5min,从95℃开始降温,每分钟降低1℃,历时70min降至25℃,在10℃下保持;U6-sgRNA骨架载体用限制性内切酶BbsI进行酶切过夜,回收后,与退火的寡聚核苷酸连接。
本发明提供了上述小麦TaAGO4a基因CRISPR/Cas9载体在TaAGO4a-A引起基因移码突变的应用。
本发明提供了上述小麦TaAGO4a基因CRISPR/Cas9载体在TaAGO4a-B引起基因移码突变的应用。
本发明提供了上述小麦TaAGO4a基因CRISPR/Cas9载体在TaAGO4a-D引起基因移码突变的应用。
更进一步地,本发明提供了上述小麦TaAGO4a基因CRISPR/Cas9载体在制备TaAGO4a基因突变的转基因小麦中的应用。
本发明提供了上述小麦TaAGO4a基因CRISPR/Cas9载体在制备抗病力提高的小麦中的应用。
本发明还提供了用于检测CRISPR/Cas9-TaAGO4a基因突变的引物组合,其核苷酸序列如SEQIDNO.3-4所示。
本发明提供了核苷酸序列如SEQIDNO.3-4所示的引物组合在检测CRISPR/Cas9-TaAGO4a基因突变中的应用。
具体地,上述应用包括以下步骤:
(1)提取待测小麦原生质体DNA,用XmnI酶切;
(2)以酶切产物为模板,以SEQIDNO.3-4所示的核苷酸序列为引物进行PCR,PCR产物琼脂糖凝胶电泳检测,若目的片段大小为956bp,回收PCR产物,用XmnI酶切回收产物,此时没有被切的片段为阳性,发生切割的则没有突变产生,为阴性。
本发明通过构建TaAGO4a基因的CRISPR/Cas9载体,实现部分沉默或同时沉默TaAGO4a基因,对研究该基因参与DNA甲基化路径的功能和对小麦抗病研究。进一步了解小麦抗病中由RdDM介导的机理,对未来培育小麦抗病新品种有重要作用。
附图说明
图1A-图1E为TaAGO4a基因三个拷贝的同源序列比对图。*是指TaAGO4a-A、TaAGO4a-B和TaAGO4a-D三个拷贝间相同的序列。
图2为TaAGO4a的gRNA连接到CRISPR/Cas9系统的载体上,通过测序验证正确连接结果。虚框线是gRNA序列,通过多个样品测序说明gRNA已经正确连接。
图3为XmnI酶切割PCR产物的琼脂糖凝胶图,1泳道为DNAmarker;2泳道为未转化CRISPR/Cas9-AGO4a载体的野生型TaAGO4a,为对照;3、4泳道为转化CRISPR/Cas9-AGO4a载体后,互为重复。2泳道中上面的亮度较弱的条带大小为956bp,下面的较亮条带约为470bp和486bp(由于大小相差很小,电泳图中区分不是很明显)。3和4泳道分别为被Cas9编辑过后,经过XmnI酶无法切割,表明该片段为阳性突变,3和4的条带分别为956bp。
图4A-图4C为CRISPR/Cas9-AGO4a载体切割目的基因引起突变,经过测序确定突变类型。图中AGO4A1-3-11-A/D的描述中,1-3-11是编号顺序,A/D是说明该基因可能在A基因组上也可能在D基因组上。WT-AGO4A-D是野生型该基因的序列。Consensus是指序列一样的。其中图4A中的AGO4A1-3-11-A/D和野生型WT-AGO4A-A和WT-AGO4A-D相比缺失2个碱基,分别是AT,AGO4A1-3-17-A/D和野生型WT-AGO4A-A和WT-AGO4A-D相比缺失3个碱基,分别是AAG;AGO4A1-3-21-A/D和野生型WT-AGO4A-A和WT-AGO4A-D相比,缺失1个碱基,为C。图4B中,AGO4a1-3-2-B和野生型WT-AGO4A-B相比,缺失六个碱基,分别为AAGCCA;AGO4a1-3-3-B和野生型WT-AGO4A-B相比,缺失2个碱基,分别为AT;AGO4a1-3-8-B与野生型WT-AGO4A-B相比,缺失2个碱基,分别为CA。图4C中,AGO4A1-10-A/D与野生型WT-AGO4A-A和WT-AGO4A-D相比,插入67个碱基,分别为CCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCGTCCACTTCATCATATTTAAA。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改或替换,均属于本发明的范围。
若未特别指明,实施例中所用的材料、生物化学试剂均为常规市售试剂,实施例中所用的技术手段为本领域技术人员熟知常规手段。
实施例1小麦TaAGO4a基因CRISPR/Cas9的gRNA设计
1、小麦TaAGO4a基因三个拷贝序列的比对
以中国春小麦(TriticumaestivumL.)AGO4a基因的三个拷贝序列用DNAMAN进行比对,结果如图1A-图1E所示。
2、小麦TaAGO4a基因酶切分析
以中国春小麦AGO4a基因序列用Primer5.0进行酶切位点和数量的分析,尤其关注在三个拷贝保守的序列,和在目标区间内存在单一酶切的位置。
3、寻找PAM(protoadjacentmotif)基序
在合适的酶切位置附件寻找PAM基序,即NGG。保证酶切位置刚好位于NGG的5’端4-6碱基处。
4、确定gRNA序列
确定合适的PAM位置,在其5’端20bp的一段序列即为gRNA序列,一般小麦CRISPR/Cas9中使用U6启动子来转录sgRNA,因此优先NGG的5’端20位的碱基为G,即G(N)19NGG。
5、gRNA添加粘性末端
在找到的gRNA上分别在F:5’CTTGG(N)193’;R:5’ATTC(N)19C3’,然后合成两条序列。其DNA序列如SEQIDNO.1或SEQIDNO.2所示。
实施例2小麦TaAGO4a基因gRNA连接到CRISPR/Cas9载体上
1、双链gRNA的合成体系
将实施例1合成的gRNA,分别如SEQIDNO.1或SEQIDNO.2所示分别加去离子水,使其浓度为10μM,然后配制双链合成体系如下:
2、双链gRNA合成条件
3、酶切CRISPR/Cas9-U6-sgRNA质粒
酶切体系如下:
充分混匀,37℃酶切3-16小时。
4、回收酶切片段
用1.2%的琼脂糖凝胶来检测酶切产物,酶切正确大小的质粒片段约为2.9Kb。然后依据胶回收试剂盒操作说明来回收酶切片段。
5、将双链sgRNA连接到U6-sgRNA上
4℃过夜。
6、将连接产物转化到大肠杆菌中
将过夜连接的双链sgRNA和U6-sgRNA产物转化到大肠杆菌DH5α中,并在有Amp抗性的LB平板上,37℃培养过夜。
7、挑选单克隆摇菌
在LB平板上挑选5-10个单克隆,进行摇菌并用特异性的菌液PCR引物进行PCR鉴定,上、下游引物序列如SEQIDNO.5、6所示。PCR程序:94℃,5min;94℃,30s;56℃,30s;72℃,3min;30个循环;72℃,10min;4℃hold。
PCR体系:
然后用1.2%的琼脂糖凝胶来检测目的PCR产物,正确的目的片段约为460bp。挑选3个阳性菌液送样去测序。
8、质粒连接确认
分析比对测序结果,检测是否成功将双链sgRNA连接到U6-sgRNA载体上,结果如图2所示。结果说明TaAGO4a-sgRNA连接到U6-sgRNA载体上,得到含有特异性靶向小麦TaAGO4a基因gRNA的CRISPR/Cas9载体。
实施例3小麦CRISPR/Cas9-AGO4a载体转化小麦原生质体及突变检测
1、高浓度CRISPR/Cas9-AGO4a质粒的提取
摇菌250μl(LB+Amp),使其OD600约为1.5左右,然后依据Promega质粒提取试剂盒的说明书提取实施例2制得的连接了TaAGO4a-sgRNA的U6-sgRNA质粒,使最终质粒浓度大于1000ng/μl。
2、小麦原生质体制备及转化
挑选种植7-9天小麦幼苗的新鲜叶片,根据小麦原生质体制备的步骤说明(参见文献Shanetal,naturebiotechnology,2014(10):2395-2410)制备原生质体。一般每5×105个小麦原生质体细胞来转化质粒。然后将Cas9质粒和连接了TaAGO4a-sgRNA的U6-sgRNA质粒在PEG4000诱导下转化到小麦原生质体中,28℃培养48h。
3、原生质体DNA的提取
先12000g离心步骤2制得的小麦原生质体2分钟,用来富集原生质体细胞,然后用CTAB法提取原生质体DNA,并检测浓度(一般需大于30ng/μl),用来后续实验检测。
4、PCR特异性扩增目的片段
以提取的原生质体DNA为底物,先用XmnI进行酶切,然后以酶切产物为模板,用特异性的检测引物(SEQIDNO.3-4所示)进行PCR扩增,然后用1.2%的琼脂糖凝胶进行检测,目的片段约为950bp左右。并用胶回收试剂盒回收目的片段,用于后续实验。
5、XmnI酶切检测突变情况
用XmnI酶切胶回收的目的片段,酶切反应体系如下:
37℃酶切1小时,同时用野生型的作为对照。然后用2%的琼脂糖凝胶检测酶切产物,结果如图3。此时没有被切的片段为基因突变阳性,发生切割的则没有基因突变产生,为阴性。
6、将酶切过后未能消化的片段进行胶回收并连接
将酶切后,片段大小仍然在956bp左右的片段回收,然后将此片段连接到P-BluntVector上。
7、转化
将连接产物转化大肠杆菌,在含有Kana的LB平板上培养过夜,然后挑选单克隆进行摇菌,用特异性引物如SEQIDNO.3-4来验证扩增,挑选阳性菌液若干送样测序。
8、序列比对
将测序的结果与野生型进行比对,分析确定目的区间的突变情况。如图4A、图4B、图4C所示。该质粒载体可以在小麦原生质体中发挥功能来切割目的基因TaAGO4a,并对该基因的三个拷贝TaAGO4a-A、TaAGO4a-B和TaAGO4a-D进行切割,从而引起突变。这些突变包括在TaAGO4a-A和TaAGO4a-D中引入1-3个碱基的缺失以及67个碱基的插入。在TaAGO4a-B中也检测到2个和6个碱基缺失,从而引起移码突变,致使该基因功能丧失或部分丧失。
虽然,上文中已经用一般性说明、具体实施方式及试验,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

1.特异性靶向小麦TaAGO4a基因第三外显子的gRNA,其特征在于,分别位于染色体3A、3B、3C上,其DNA序列包含一个酶切位点XmnI。
2.如权利要求1所述的gRNA,其特征在于,其DNA序列如SEQIDNO.1所示或如SEQIDNO.2所示。
3.如权利要求1或2所述gRNA在制备小麦TaAGO4a基因CRISPR/Cas9载体中的应用。
4.如权利要求1或2所述gRNA在制备TaAGO4a基因突变的转基因小麦中的应用。
5.含有权利要求1或2所述gRNA的DNA序列的CRISPR/Cas9载体。
6.如权利要求5所述的CRISPR/Cas9载体,其通过以下方法制备得到,将SEQIDNO.1、2所示的寡聚核苷酸在95℃,5min,从95℃开始降温,每分钟降低1℃,历时70min降至25℃,在10℃下保持;U6-sgRNA骨架载体用限制性内切酶BbsI进行酶切过夜,回收后,与退火的寡聚核苷酸连接。
7.权利要求5或6所述的CRISPR/Cas9载体在制备TaAGO4a基因突变的转基因小麦中的应用。
8.用于检测CRISPR/Cas9-TaAGO4a基因突变的引物组合,其特征在于,其核苷酸序列如SEQIDNO.3-4所示。
9.权利要求8所述的引物组合在检测CRISPR/Cas9-TaAGO4a基因突变中的应用。
10.如权利要求9所述的应用,其特征在于,包括以下步骤:
(1)提取待测小麦原生质体DNA,用XmnI酶切;
(2)以酶切产物为模板,以SEQIDNO.3-4所示的核苷酸序列为引物进行PCR,PCR产物琼脂糖凝胶电泳检测,若目的片段大小为956bp,回收PCR产物,用XmnI酶切回收产物,此时没有被切的片段为基因突变的阳性,发生切割的则没有基因突变产生,为阴性。
CN201510744334.4A 2015-11-03 2015-11-03 小麦TaAGO4a基因CRISPR/Cas9载体及其应用 Active CN105316327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510744334.4A CN105316327B (zh) 2015-11-03 2015-11-03 小麦TaAGO4a基因CRISPR/Cas9载体及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510744334.4A CN105316327B (zh) 2015-11-03 2015-11-03 小麦TaAGO4a基因CRISPR/Cas9载体及其应用

Publications (2)

Publication Number Publication Date
CN105316327A true CN105316327A (zh) 2016-02-10
CN105316327B CN105316327B (zh) 2019-01-29

Family

ID=55244645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510744334.4A Active CN105316327B (zh) 2015-11-03 2015-11-03 小麦TaAGO4a基因CRISPR/Cas9载体及其应用

Country Status (1)

Country Link
CN (1) CN105316327B (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11999947B2 (en) 2023-02-24 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104450774A (zh) * 2014-12-04 2015-03-25 中国农业科学院作物科学研究所 一种大豆CRISPR/Cas9体系的构建及其在大豆基因修饰中的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104450774A (zh) * 2014-12-04 2015-03-25 中国农业科学院作物科学研究所 一种大豆CRISPR/Cas9体系的构建及其在大豆基因修饰中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
薛银垒: "小麦TaAGO4a基因的克隆和表达", 《中国优秀硕士学位论文全文数据库》 *
谢胜松: "CRISPR/Cas9 系统中sgRNA 设计与脱靶效应评估", 《遗传HEREDITAS (BEIJING)》 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US12006520B2 (en) 2019-06-14 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11999947B2 (en) 2023-02-24 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof

Also Published As

Publication number Publication date
CN105316327B (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
CN105316327A (zh) 小麦TaAGO4a基因CRISPR/Cas9载体及其应用
Wang et al. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat
Chandrasekhara et al. Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis
Biswal et al. CRISPR mediated genome engineering to develop climate smart rice: Challenges and opportunities
CN107164401A (zh) 一种基于CRISPR/Cas9技术制备水稻OsPIL15突变体的方法及应用
CN104293828A (zh) 植物基因组定点修饰方法
CN108034671B (zh) 一种质粒载体及利用其建立植物群体的方法
CN111741969A (zh) 玉米基因krn2及其用途
US20200377900A1 (en) Methods and compositions for generating dominant alleles using genome editing
Kurokawa et al. A simple heat treatment increases SpCas9-mediated mutation efficiency in Arabidopsis
CN104195225A (zh) 一种快速鉴定转基因水稻纯合子的定量pcr法
Rinne et al. Loss of MAR1 function is a marker for co-selection of CRISPR-induced mutations in plants
CN104628839B (zh) 一种水稻胚乳造粉体发育相关蛋白及其编码基因和应用
US20230323384A1 (en) Plants having a modified lazy protein
JP2023527446A (ja) 植物単数体の誘導
Chang et al. Characterization of a plant-transformation-ready large-insert BIBAC library of Arabidopsis and bombardment transformation of a large-insert BIBAC of the library into tobacco
WO2023173003A2 (en) Methods and compositions for modifying flowering time genes in plants
CN102002496A (zh) 与光合作用相关的dna分子及其应用
CN105925587B (zh) 一个受低温响应的早期水稻叶绿体发育基因及其检测方法和应用
CN117069813A (zh) 孤雌生殖单倍体诱导基因BnDMP及其应用
CN107794264A (zh) 用于构建多倍体植物突变体库的接头序列及鉴定方法
CN107475285A (zh) 一种Xa21基因突变体植株及其制备方法
Raingam et al. Forward and reverse genetics in plant breeding
Yang et al. A method for generating genome edited plant lines from CRISPR-transformed Shanxin poplar plants
BR112020008745A2 (pt) promotor de planta para expressão de transgene

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant