CN105302132A - 一种基于行走机器人的分布式视觉定位系统及方法 - Google Patents

一种基于行走机器人的分布式视觉定位系统及方法 Download PDF

Info

Publication number
CN105302132A
CN105302132A CN201510484036.6A CN201510484036A CN105302132A CN 105302132 A CN105302132 A CN 105302132A CN 201510484036 A CN201510484036 A CN 201510484036A CN 105302132 A CN105302132 A CN 105302132A
Authority
CN
China
Prior art keywords
walking robot
image
distance
identification point
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510484036.6A
Other languages
English (en)
Inventor
谢应孝
陈正寿
孙孟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Ocean University ZJOU
Original Assignee
Zhejiang Ocean University ZJOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ocean University ZJOU filed Critical Zhejiang Ocean University ZJOU
Priority to CN201510484036.6A priority Critical patent/CN105302132A/zh
Publication of CN105302132A publication Critical patent/CN105302132A/zh
Pending legal-status Critical Current

Links

Abstract

本发明涉及一种基于行走机器人的分布式视觉定位系统及方法。解决现有技术行走机器人定位不准确,工作效率低的问题。系统包括设置视觉节点、行走机器人和控制服务器,视觉节点包括多个摄像头单元,控制服务器包括图像处理单元、定位单元和地图单元,摄像头单元分别与图像处理单元连接,图像处理单元和地图单元分别与定位单元相连,定位单元与行走机器人相连接,在行走机器人上设置有特征标示。通过对采集图像,对图像中特征标示进行图像处理和计算,得到距离,在地图上定位。本发明的优点是准确定位行走机器人在室内的位置,大大提高了行走机器人的工作职能,提高了工作效率。多个摄像头单元分布在室内环境中,形成多视觉节点协同定位。

Description

一种基于行走机器人的分布式视觉定位系统及方法
技术领域
本发明涉及一种机器人导航技术领域,尤其是涉及一种基于行走机器人的分布式视觉定位系统及方法。
背景技术
近年来,随着科技的发展,行走机器人在服务、探测、物流等领域得到越来越广泛的应用。而要对行走机器人快速定位和导航成为实现智能化的关键。
目前行走机器人很多只靠自身的安装的传感器或摄像头对环境进行检测和建立,而没有涉及到机器人与外部视觉设备协同定位的技术,这大大限制了机器人的工作职能,降低了工作效率。特别在室内如办公室环境中存在多种大物体,当行走机器人在移动时,需要获得精确定位和室内环境信息,分布式视觉定位系统就能解决这方面的问题。
发明内容
本发明主要是解决现有技术行走机器人定位不准确,工作效率低的问题,提供了一种协同定位、定位准确的基于行走机器人的分布式视觉定位系统。本发明还提供了一种基于行走机器人的分布式视觉定位方法。
本发明的上述技术问题主要是通过下述技术方案得以解决的:一种基于行走机器人的分布式视觉定位系统,包括设置在室内环境中的视觉节点、行走机器人和控制服务器,所述视觉节点包括多个摄像头单元,所述控制服务器包括图像处理单元、定位单元和地图单元,摄像头单元分别与图像处理单元连接,图像处理单元和地图单元分别与定位单元相连,定位单元与行走机器人相连接,在行走机器人上设置有特征标示。本发明能准确定位行走机器人在室内的位置,大大提高了行走机器人的工作职能,提高了工作效率。多个摄像头单元分布在室内环境中,形成多视觉节点协同定位。摄像头单元将拍摄到的图像传送给图像处理单元处理,图像处理单元对图像进行特征点提取,判断行走机器人是否进入图像。定位单元根据处理后的图像对行走机器人进行位置定位,同时根据地图单元储存的环境地图在地图上定位并显示行走机器人。特征标示设置在行走机器人表面上,用于识别机器人以及定位用。各单元之间通过IPC进行通信。
作为一种优选方案,所述图像处理单元包括依次连接的图像增强模块和轮廓提取模块,图像增强模块分别与摄像头单元连接,轮廓提取模块与定位单元连接。通过图像增强模块和轮廓提取模块的处理,将图像中行走机器人上的特征标示提取出来,作为后续定位计算。图像增强模块对图像进行灰度化、二值化处理。轮廓提取模块采用改进的Canny算子算法提取主体识别点和距离识别点的边缘。
作为一种优选方案,所述处理单元上设置有显示单元。显示单元能显示当前环境地图,并能将定位后的行走机器人显示在环境地图中,使得操作者直观看到行走机器人当前位置。
作为一种优选方案,所述摄像头单元之间通过网络互相连接。摄像头之间通过IPC(Inter-ProcessCommunication)进行通信。摄像头单元之间能进行同步操作,将同一时刻的图像发送给控制服务器进行处理。
作为一种优选方案,所述特征标示包括设置在行走机器人表面正中的主体识别点,对称设置在识别点两侧的两个距离识别点,主体识别点和两个距离识别点为圆形且处于同一直线上,两个距离识别点之间形成标示长度。主体识别点在图像上用于识别行走机器人,在图像处理单元中提取到主体识别点,检测到行走机器人进入拍摄该图像的摄像头单元范围内。而距离识别点根据它们之间的距离用来推算出行走机器人到拍摄的摄像头单元之间的距离。
一种基于行走机器人的分布式视觉定位方法,包括以下步骤:
S1.分别对各摄像机单元设定不同距离进行标定,获取图像坐标系内标示长度和全局坐标系内标示长度之比与距离的关系表;即在各不同距离进行标定时,记录标示长度在图像坐标系内长度与标示长度在全局坐标系内长度的比值,这样就可以根据图像中检查到的标示长度推导出距离。每隔一个距离进行一次标定,标定采用Halcan标定算法进行操作,获取摄像机单元内外参数,得到图像坐标到全局坐标的转换。
S2.摄像头单元开始工作,每隔一时段将同时采集的图像发送给图像处理单元分别进行处理,图像处理单元对图像中特征标示进行轮廓提取,根据轮廓计算出特征标示中主体识别点和距离识别点圆心像素数据,根据这些像素数据确定标示长度像素数据;
S3.以图像中心为中心将图像划分若干区域,确定行走机器人在图像中的区域位置,根据区域优先级,选取行走机器人位于优先级更高区域的图像进行后续处理;对多张图像进行处理,最后选取其中行走机器人位于区域优先级最高的图像进行处理。
S4.计算图像坐标系内标示长度和全局坐标系内标示长度之比,选取标定中与其最接近的比值,获得行走机器人到摄像单元的距离值,根据距离值在环境地图上对行走机器人进行定位。
作为一种优选方案,步骤S1中对摄像机标定过程为:采用标定板进行标定,将标定板在摄像机单元工作距离设定范围内,每隔固定间距进行一次标定,获得每个距离的摄像机内外参数。一般设定在800~1500cm距离内,每隔50cm进行一次标定。本方案采用Halcan标定算法进行操作。
作为一种优选方案,步骤S2中标示长度像素数据获取具体包括以下步骤:
S21.对图像进行灰度化、二值化处理;该处理方法为已公开的技术,具体内容可以参见文献:刘广起,郑晓势,张晓波。基于图像纹理特征提取的车牌定位算法[J]。中国图象图形学报,2005,10(11):1419-1422。
S22.采用改进的Canny算子算法提取主体识别点和距离识别点的轮廓;经过处理提取得到的主体识别点和距离识别点是许多点构成的这样一个图像。该改进的Canny算子算法为已知公开的技术,具体内容可以参见文献:李庆利,张少军,李忠富等。一种基于多项式插值改进的亚像素细分算法[J]。北京科技大学学报,2003,25(3):280-283。对主体识别点和距离识别点提取边缘时,由于主体识别点和距离识别点是圆形,重要特征点分布在各个方向,只有对梯度方向进行细分后,求出(45°,135°,180°,235°,270°,315°)等8个梯度方向,才能提取连通性较好的单像素边缘,因此采用8个模板方向进行边缘检测。采用的8个方向的模板。
S23.对提取的轮廓图像进行Hough变换,
提取图像中像素值为1的所有像素点,并统计出总的像素个数;根据图像中主体识别点位置设定半径的范围(rmin,rmax)、圆半径r步长、角度步长和阈值;
根据公式计算圆心横坐标a,式中b为纵坐标,取遍整个y值,从而确定有效的a、b值;
根据有效的a、b值,确定Hough数字的索引值;
根据求出的索引值,通过计算累计、构建出层数为r=rmax-rmin的Hough数组;
求得半径层的所有a、b值,其平均值即为主体识别点圆心坐标(a0,b0);
如此计算获得两距离识别点的圆心坐标;
S24.若两距离识别点处于同一直线上,将两距离识别点圆心列坐标进行相减获得标示长度值,若两距离识别点不处于同一直线上,将两距离识别点圆心列坐标进行相减获得直边长度值,将两距离识别点圆心横坐标进行相减获得横边长度值,然后计算出标示长度值。
作为一种优选方案,步骤S3中选取要进行后续处理的图像的具体步骤包括:
S31.以图像中心为中心向外将图像依次划分为最佳区域、可信区域和偏离区域,且设定各区域的优先级依次降低;
S32.根据主体识别点的圆心坐标,检测主体识别点位于哪个区域,即获得活动行走机器人位于哪个区域;
S33.比较多张图像,选取行走机器人位于区域优先级最高的图像进行后续处理。若所在区域相同,则选取圆心坐标更靠近中心的图像。
因此,本发明的优点是:准确定位行走机器人在室内的位置,大大提高了行走机器人的工作职能,提高了工作效率。多个摄像头单元分布在室内环境中,形成多视觉节点协同定位。
附图说明
附图1是本发明的一种结构框示图;
附图2是本发明的一种方法流程示意图。
1-视觉节点2-控制服务器3-行走机器人4-摄像头单元5-图像处理单元6-定位单元7-地图单元8-显示单元9-图像增强模块10-轮廓提取模块
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:
本实施例一种基于行走机器人的分布式视觉定位系统,如图1所示,包括设置在室内环境中的视觉节点1、行走机器人3和控制服务器2。视觉节点包括多个摄像头单元4,摄像头单元之间通过IPC相连接。控制服务器包括图像处理单元5、定位单元6、地图单元7和显示单元8,其中图像处理单元又包括图像增强模块9和轮廓提取模块10。摄像头单元分别与图像处理单元的图像增强模块连接,图像增强模块与轮廓提取模块相连,轮廓提取模块与定位单元相连。地图单元和显示单元分别与定位单元相连,定位单元与行走机器人相连接,在行走机器人上设置有特征标示。特征标示包括设置在行走机器人表面正中的主体识别点,对称设置在识别点两侧的两个距离识别点,主体识别点和两个距离识别点为圆形且处于同一直线上,两个距离识别点之间形成标示长度。
一种基于行走机器人的分布式视觉定位方法,如图2所示,包括以下步骤:
S1.分别对各摄像机单元设定不同距离进行标定,获取图像坐标系内标示长度和全局坐标系内标示长度之比与距离的关系表;
S2.摄像头单元开始工作,每隔一时段将同时采集的图像发送给图像处理单元分别进行处理,图像处理单元对图像中特征标示进行轮廓提取,根据边缘计算出特征标示中主体识别点和距离识别点圆心像素数据,根据这些像素数据确定标示长度像素数据;这些摄像机单元每隔3秒钟同时采集一张图像发送给图像处理单元。
S3.以图像中心为中心将图像划分若干区域,确定行走机器人在图像中的区域位置,根据区域优先级,选取行走机器人位于优先级更高区域的图像进行后续处理;
S4.计算图像坐标系内标示长度和全局坐标系内标示长度之比,选取标定中与其最接近的比值,获得行走机器人到摄像单元的距离值,根据距离值在环境地图上对行走机器人进行定位。
其中步骤S1中对摄像机标定过程为:采用标定板进行标定,将标定板在摄像机单元工作距离设定范围内,每隔固定间距进行一次标定,获得每个距离的摄像机内外参数。一般设定在800~1500cm距离内,每隔50cm进行一次标定。本方案采用Halcan标定算法进行操作。
步骤S2中标示长度像素数据获取具体包括以下步骤:
S21.对图像进行灰度化、二值化处理;将特征标示在图像上凸显出来,便于进行后续的采集。
S22.采用改进的Canny算子算法提取主体识别点和距离识别点的轮廓;
S23.对提取的轮廓图像进行Hough变换,
提取图像中像素值为1的所有像素点,并统计出总的像素个数;根据图像中主体识别点位置设定半径的范围(rmin,rmax)、圆半径r步长、角度步长和阈值;
根据公式计算圆心横坐标a,式中b为纵坐标,取遍整个y值,从而确定有效的a、b值;
根据有效的a、b值,确定Hough数字的索引值;
根据求出的索引值,通过计算累计、构建出层数为r=rmax-rmin的Hough数组;
求得半径层的所有a、b值,其平均值即为主体识别点圆心坐标(a0,b0);
如此计算获得两距离识别点的圆心坐标;
S24.若两距离识别点处于同一直线上,将两距离识别点圆心列坐标进行相减获得标示长度值,若两距离识别点不处于同一直线上,将两距离识别点圆心列坐标进行相减获得直边长度值,将两距离识别点圆心横坐标进行相减获得横边长度值,然后计算出标示长度值。
特征标示包括设置在行走机器人表面正中的主体识别点,对称设置在识别点两侧的两个距离识别点,主体识别点和两个距离识别点为圆形且处于同一直线上,两个距离识别点之间形成标示长度。
步骤S3中选取要进行后续处理的图像的具体步骤包括:
S31.以图像中心为中心向外将图像依次划分为最佳区域、可信区域和偏离区域,且设定各区域的优先级依次降低;
S32.根据主体识别点的圆心坐标,检测主体识别点位于哪个区域,即获得活动行走机器人位于哪个区域;
S33.比较多张图像,选取行走机器人位于区域优先级最高的图像进行后续处理。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了视觉节点、控制服务器、行走机器人、摄像头单元、图像处理单元等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (9)

1.一种基于行走机器人的分布式视觉定位系统,其特征在于:包括设置在室内环境中的视觉节点(1)、行走机器人(3)和控制服务器(2),所述视觉节点包括多个摄像头单元(4),所述控制服务器包括图像处理单元(5)、定位单元(6)和地图单元(7),摄像头单元分别与图像处理单元连接,图像处理单元和地图单元分别与定位单元相连,定位单元与行走机器人相连接,在行走机器人上设置有特征标示。
2.根据权利要求1所述的一种基于行走机器人的分布式视觉定位系统,其特征是所述图像处理单元(5)包括依次连接的图像增强模块(9)和轮廓提取模块(10),图像增强模块分别与摄像头单元连接,轮廓提取模块与定位单元连接。
3.根据权利要求1所述的一种基于行走机器人的分布式视觉定位系统,其特征是所述定位单元(6)上设置有显示单元(8)。
4.根据权利要求1或2或3所述的一种基于行走机器人的分布式视觉定位系统,其特征是所述摄像头单元(4)之间通过网络互相连接。
5.根据权利要求1或2或3所述的一种基于行走机器人的分布式视觉定位系统,其特征是所述特征标示包括设置在行走机器人表面正中的主体识别点,对称设置在识别点两侧的两个距离识别点,主体识别点和两个距离识别点为圆形且处于同一直线上,两个距离识别点之间形成标示长度。
6.一种基于行走机器人的分布式视觉定位方法,采用权1-5任一项中的系统,其特征是:包括以下步骤:
S1.分别对各摄像机单元设定不同距离进行标定,获取图像坐标系内标示长度和全局坐标系内标示长度之比与距离的关系表;
S2.摄像头单元开始工作,每隔一时段将同时采集的图像发送给图像处理单元分别进行处理,图像处理单元对图像中特征标示进行轮廓提取,根据轮廓计算出特征标示中主体识别点和距离识别点圆心像素数据,根据这些像素数据确定标示长度像素数据;
S3.以图像中心为中心将图像划分若干区域,确定行走机器人在图像中的区域位置,根据区域优先级,选取行走机器人位于优先级更高区域的图像进行后续处理;
S4.计算图像坐标系内标示长度和全局坐标系内标示长度之比,选取标定中与其最接近的比值,获得行走机器人到摄像单元的距离值,根据距离值在环境地图上对行走机器人进行定位。
7.根据权利要求6所述的一种基于行走机器人的分布式视觉定位方法,其特征是步骤S1中对摄像机标定过程为:采用标定板进行标定,将标定板在摄像机单元工作距离设定范围内,每隔固定间距进行一次标定,获得每个距离的摄像机内外参数。
8.根据权利要求6所述的一种基于行走机器人的分布式视觉定位方法,其特征是步骤S2中标示长度像素数据获取具体包括以下步骤:
S21.对图像进行灰度化、二值化处理;
S22.采用改进的Canny算子算法提取主体识别点和距离识别点的轮廓;
S23.对提取的轮廓图像进行Hough变换,
提取图像中像素值为1的所有像素点,并统计出总的像素个数;根据图像中主体识别点位置设定半径的范围(rmin,rmax)、圆半径r步长、角度步长和阈值;
根据公式计算圆心横坐标a,式中b为纵坐标,取遍整个y值,从而确定有效的a、b值;
根据有效的a、b值,确定Hough数字的索引值;
根据求出的索引值,通过计算累计、构建出层数为r=rmax-rmin的Hough数组;
求得半径层的所有a、b值,其平均值即为主体识别点圆心坐标(a0,b0);
如此计算获得两距离识别点的圆心坐标;
S24.若两距离识别点处于同一直线上,将两距离识别点圆心列坐标进行相减获得标示长度值,若两距离识别点不处于同一直线上,将两距离识别点圆心列坐标进行相减获得直边长度值,将两距离识别点圆心横坐标进行相减获得横边长度值,然后计算出标示长度值。
9.根据权利要求6所述的一种基于行走机器人的分布式视觉定位方法,其特征是步骤S3中选取要进行后续处理的图像的具体步骤包括:
S31.以图像中心为中心向外将图像依次划分为最佳区域、可信区域和偏离区域,且设定各区域的优先级依次降低;
S32.根据主体识别点的圆心坐标,检测主体识别点位于哪个区域,即获得活动行走机器人位于哪个区域;
S33.比较多张图像,选取行走机器人位于区域优先级最高的图像进行后续处理。
CN201510484036.6A 2015-08-07 2015-08-07 一种基于行走机器人的分布式视觉定位系统及方法 Pending CN105302132A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510484036.6A CN105302132A (zh) 2015-08-07 2015-08-07 一种基于行走机器人的分布式视觉定位系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510484036.6A CN105302132A (zh) 2015-08-07 2015-08-07 一种基于行走机器人的分布式视觉定位系统及方法

Publications (1)

Publication Number Publication Date
CN105302132A true CN105302132A (zh) 2016-02-03

Family

ID=55199513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510484036.6A Pending CN105302132A (zh) 2015-08-07 2015-08-07 一种基于行走机器人的分布式视觉定位系统及方法

Country Status (1)

Country Link
CN (1) CN105302132A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106843224A (zh) * 2017-03-15 2017-06-13 广东工业大学 一种多目视觉定位协同引导运输车的方法及装置
CN107543531A (zh) * 2017-08-13 2018-01-05 天津职业技术师范大学 一种机器人视觉定位系统
CN108924742A (zh) * 2018-06-29 2018-11-30 杭州叙简科技股份有限公司 一种在管廊通道内基于ap设备和摄像头的共同定位方法
CN110274599A (zh) * 2019-06-26 2019-09-24 皖西学院 一种基于多深度摄像头的移动机器人室内定位系统及方法
CN111000498A (zh) * 2019-12-23 2020-04-14 深圳市无限动力发展有限公司 扫地机器人及其清扫区域的设定方法、装置和存储介质
CN113001536A (zh) * 2019-12-20 2021-06-22 中国科学院沈阳计算技术研究所有限公司 一种面向协作多机器人的防碰撞检测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322128A (ja) * 2004-05-11 2005-11-17 Rikogaku Shinkokai ステレオ3次元計測用キャリブレーション方法及び3次元位置算出方法
CN102048612A (zh) * 2011-01-07 2011-05-11 东华大学 一种基于机器视觉的导盲机器人
CN202255404U (zh) * 2011-08-24 2012-05-30 国营红林机械厂 一种室内移动机器人双目视觉导航系统
CN102656532A (zh) * 2009-10-30 2012-09-05 悠进机器人股份公司 用于移动机器人位置识别的地图的生成及更新方法
CN102929280A (zh) * 2012-11-13 2013-02-13 朱绍明 移动式机器人分离式视觉定位导航方法及其定位导航系统
CN103926927A (zh) * 2014-05-05 2014-07-16 重庆大学 一种室内移动机器人双目视觉定位与三维建图方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322128A (ja) * 2004-05-11 2005-11-17 Rikogaku Shinkokai ステレオ3次元計測用キャリブレーション方法及び3次元位置算出方法
CN102656532A (zh) * 2009-10-30 2012-09-05 悠进机器人股份公司 用于移动机器人位置识别的地图的生成及更新方法
CN102048612A (zh) * 2011-01-07 2011-05-11 东华大学 一种基于机器视觉的导盲机器人
CN202255404U (zh) * 2011-08-24 2012-05-30 国营红林机械厂 一种室内移动机器人双目视觉导航系统
CN102929280A (zh) * 2012-11-13 2013-02-13 朱绍明 移动式机器人分离式视觉定位导航方法及其定位导航系统
CN103926927A (zh) * 2014-05-05 2014-07-16 重庆大学 一种室内移动机器人双目视觉定位与三维建图方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孔明 等: "图像处理的货车侧面防护装置安装位置的研究", 《中国计量学院学报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106843224A (zh) * 2017-03-15 2017-06-13 广东工业大学 一种多目视觉定位协同引导运输车的方法及装置
CN106843224B (zh) * 2017-03-15 2020-03-10 广东工业大学 一种多目视觉定位协同引导运输车的方法及装置
CN107543531A (zh) * 2017-08-13 2018-01-05 天津职业技术师范大学 一种机器人视觉定位系统
CN107543531B (zh) * 2017-08-13 2019-10-11 天津职业技术师范大学 一种机器人视觉定位系统
CN108924742A (zh) * 2018-06-29 2018-11-30 杭州叙简科技股份有限公司 一种在管廊通道内基于ap设备和摄像头的共同定位方法
CN108924742B (zh) * 2018-06-29 2020-05-01 杭州叙简科技股份有限公司 一种在管廊通道内基于ap设备和摄像头的共同定位方法
CN110274599A (zh) * 2019-06-26 2019-09-24 皖西学院 一种基于多深度摄像头的移动机器人室内定位系统及方法
CN113001536A (zh) * 2019-12-20 2021-06-22 中国科学院沈阳计算技术研究所有限公司 一种面向协作多机器人的防碰撞检测方法及装置
CN111000498A (zh) * 2019-12-23 2020-04-14 深圳市无限动力发展有限公司 扫地机器人及其清扫区域的设定方法、装置和存储介质
CN111000498B (zh) * 2019-12-23 2021-10-08 深圳市无限动力发展有限公司 扫地机器人及其清扫区域的设定方法、装置和存储介质

Similar Documents

Publication Publication Date Title
CN105302132A (zh) 一种基于行走机器人的分布式视觉定位系统及方法
CN205068153U (zh) 一种基于行走机器人的分布式视觉定位系统
CN105307115A (zh) 一种基于行动机器人的分布式视觉定位系统及方法
CN112396650B (zh) 一种基于图像和激光雷达融合的目标测距系统及方法
CN105307116A (zh) 一种基于移动机器人的分布式视觉定位系统及方法
CN104197899B (zh) 移动机器人定位方法及系统
US10102433B2 (en) Traveling road surface detection apparatus and traveling road surface detection method
CA2950791C (en) Binocular visual navigation system and method based on power robot
CN102435174B (zh) 基于混合式双目视觉的障碍物检测方法及装置
Shao et al. Application of a fast linear feature detector to road extraction from remotely sensed imagery
CN108303096B (zh) 一种视觉辅助激光定位系统及方法
TWI534764B (zh) 車輛定位裝置與方法
CN105447853A (zh) 飞行装置、飞行控制系统及方法
CN104916163A (zh) 泊车位检测方法
CN106599760B (zh) 一种变电站巡检机器人行驶区域计算方法
CN113359782B (zh) 一种融合lidar点云与图像数据的无人机自主选址降落方法
CN103727930A (zh) 一种基于边缘匹配的激光测距仪与相机相对位姿标定方法
CN111681283B (zh) 一种基于单目立体视觉的应用于无线充电对位的相对位姿解算方法
CN110827361B (zh) 基于全局标定架的相机组标定方法及装置
CN104931057B (zh) 一种机器人的任意位置定位方法、装置及系统
CN108205660B (zh) 基于顶视角的红外图像人流量检测装置和检测方法
CN110108269A (zh) 基于多传感器数据融合的agv定位方法
CN109827516B (zh) 一种通过车轮来测量距离的方法
CN106709432B (zh) 基于双目立体视觉的人头检测计数方法
Li et al. Judgment and optimization of video image recognition in obstacle detection in intelligent vehicle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160203

RJ01 Rejection of invention patent application after publication